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Abstract—Zero-shot learning deals with the problem when the
training domain and the test domain have different class sets of
image instances. To tackle the problem of some classes in the test
data never appeared in the training set, a most popular approach
is to map both images and classes in a common space under
the embedding based framework. Nevertheless, most embedding
based models suffered from the semantic loss problem. Further-
more, the expressive power is limited by representing classes and
images as mere points. To tackle these problems, in this paper, we
propose an Energy-Based Zero-shot Learning model (EBZL) to
encode the association between class attributes and input images
for zero-shot learning. EBZL is composed of two parts. The first
part is a variational autoencoder that reduces the input dimension
of images with representative hidden representations. By feeding
the hidden representations as the input of the second part, the
second part works as the energy function part based on the
deep Boltzmann machine. Specifically, we adapt tradition deep
Boltzmann machine to a supervised setting without changing its
property as an undirected probabilistic graphic model, which
helps to preserve semantic integrity and circumvents semantic
loss problem. We further utilize variational inference techniques
and mean-field approximation to reduce time complexity in model
training process. Finally, extensive experimental results on several
real-world datasets clearly show the effectiveness of our proposed
method.

Index Terms—zero-shot learning; deep Boltzmann machine

I. INTRODUCTION

With the rapid development of machine learning techniques

in recent years, tremendous progress has been made in many

machine learning tasks, such as object recognition [10, 20],

natural language processing [34], and time-series prediction [9,

22]. However, these approaches confine the system to a closed

set of classes and require a large number of supervised training

samples to achieve satisfactory classification performance [7].

Well-annotated data is difficult as well as expensive to obtain.

Therefore, more and more interests have been paid to the

domain of transfer learning, which utilizes supervised infor-

mation from related tasks [27]. One particular scenario is that

there are no available samples for the test class in the training

dataset [17]. This situation arises mainly for two reasons. First,

samples in the real world often follows a long tail distribution,

making it extremely hard and uneconomical to guarantee the

presence of all classes, especially those rare ones [21]. Second,

the set of classes is ever-growing, and it is impossible to keep

the dataset up-to-date [21]. The emergence of new concepts

makes it an arduous task to collect a sufficiently large training

set.

Zero-Shot Learning [31], abbreviated as ZSL, or zero-shot

visual recognition, tries to deal with this problem when the

training and testing domains have different class sets. In other

words, there is no labeled samples available for the classes

in test domain. The goal of ZSL learning is to generalize

the classifiers trained on seen classes to these unseen classes.

Therefore, the key challenge of ZSL is how to model the

correlation among different classes, and transfer knowledge

from seen classes to unseen ones. Furthermore, how to build

classifiers for unseen classes, and guarantee that these classi-

fication models are discriminative enough.

As shown in Fig.1, existing methods for ZSL usually lever-

age side information, typically in the form of class attributes

to depict the association between different categories [18, 30].

The common paradigm of ZSL models follows an embedding-

based framework [8, 39, 40]. These embedding based models

learn two mapping functions using the available samples

from seen classes to transform both the input images and

the classes into a common space. Then, the similarity and

distance between each sample and each class can be measured.

However, by representing each class as a mere point in

the common space, these models neglected the intra-class

variability. Therefore, the expressive power is limited. What’s

worse, they also suffer from the semantic loss problem. In

fact, the mapping function from image input space to the

embedding space can be seen as a feature extractor. In the

training process, these embedding based models naturally

discarded features that are less-discriminative for the unseen

classes. However, these discarded features could be beneficial

for the classification of unseen classes, due to the semantic

discrepancy between seen and unseen classes.

Considering the limitation of representing each class as

a mere point and measure similarity based on distance in

these embedding based models, in this paper, we propose a

novel Energy-Based Zero-shot Learning model (EBZL) which

returns the compatibility between an input image and the

attributes of each class. The proposed model is composed

of two parts. Concretely, we first use the classical variational

autoencoder to reduce the dimension of input images. Then,

we design an undirected graph model named s-DBM, which

works as the energy function part to measure the correspon-

dence between an input and a class attribute vector. We

embed the supervised information into the deep Boltzmann

machine without changing its structure. Specifically, to pre-

serve semantic integrity, we adopt undirected links in the
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Fig. 1: Illustration of the zero-shot learning problem. In the

test stage, we want to learn a classifier for leopard, but we

do not have any images that belong to the leopard category

in the training data. In ZSL problem, we usually leverage the

attributes associated with each class to connect the association

between unseen class and other seen classes in the training

data.

energy function part. The energy model, which returns the

co-occurrence of one point in the input of image space and

one in the class space, can represent all sorts of distributions

and therefore better model the relationship between images

and class attributes [19]. Besides, as each layer of our energy

function part has bidirectional links, it can fit the parameters

in the top-down manner in addition to conventional bottom-

up manner. Therefore, the undirected modeling could better

reconstruct inputs from extracted features and prevents the se-

mantic loss problem. In model training process, we utilize the

variational inference technique and mean-field approximation

to accelerate the optimization step.

We perform experiments on four widely-used datasets,

AwA [17], CUB-200 [36], SUN [28], and aPY [6]. The experi-

mental results show an increase of 1.53%, 2.4%, 5.72%, 2.13%
over the best state-of-the-art models [11] respectively on

each dataset, which validate the effectiveness of our proposed

method.

In summary, our main contributions are three-fold:

• We address the ZSL problem using an energy-based

model to encode the association between class attribute

vectors and input images, which is much more expressive

than traditional methods that represent classes and images

as mere points.

• We extend traditional DBM to supervised settings for

energy function part. The connections in each layer are

undirected, which can model the reconstruction process

and solve the semantic loss problem. To accelerate the

training process, we further utilize variational inference

techniques and mean-field approximation to reduce time

complexity.

• We conduct extensive experiments on four widely used

datasets for ZSL image classification problem, indicating

their superiority against state-of-the-art methods.

II. RELATED WORK AND PRELIMINARIES

In this section, we will first go into the details of previous

ZSL methods. After that, we will give a concise review on

restricted Boltzmann machine, which is closely related to our

proposed method.

A. Related Work

The goal of ZSL problem is to recognize the unseen

categories without available samples in the training data. We

summarize the existing methods on ZSL into three categories:

embedding-based methods, basis-based methods and sample

synthesis-based methods.

Embedding-based models learn the mapping of both classes

and samples in a common embedding space [8, 39, 40]. These

methods can be summarized into a general function as follows:

c(x) = argmaxysim(τ(x), ψ(ay)), where x is a sample and

c is a classifier. sim measures the similarity, and ay refers to

the attribute vector of class y. Specifically, τ maps the input

images into the embedding space, and ψ maps the classes

with the side information of class attributes. This kind of

models assume that an image should belong to the class whose

attributes have least distance to τ(x) in the embedding space.

ESZSL makes modifications to previous methods by adding

some regularization terms to enhance the expressive power of

the embedding space [31]. However, there are two limitations

of this kind of methods. First is the semantic loss problem. τ
can be viewed as a feature extraction function. When training,

it only learns to preserve the features that are discriminative

for seen classes. Therefore, the extracted features may be not

suitable for classifying unseen classes, as some information

that is valuable for the unseen classes is discarded in the

training process. Second is the simple assumption that maps

each class as a mere point, which causes quite restricted ex-

pression power. Some attempts have been made to address the

semantic loss problem. E.g., [14] introduced a recovery loss

in the modeling process to ensure that the learned embeddings

could also recover the input data. Researchers designed a

semantic preserving adversarial embedding network to prevent

the semantic loss by introducing an independent visual to

semantic space [4]. However, these embedding based methods

suffer from the limited expressive power of modeling each

sample as a mere point. Different from them, we design an

approach by modeling the distribution of data to both avoid

the semantic loss problem and enhance the expressive power.

Instead of aligning the image and attribute domain as most

embedding-based methods, the basis-based models learn class-

specific classifier for ZSL problem [3, 5, 35]. Basis-based

methods can roughly be summarized as training classifiers

separately for each seen classes, and using them to synthesize

classifiers for unseen classes. They commonly utilize attributes

as the guiding information. RIS [35] and DAP [17] train

independent classifiers for each attribute, taking the mapping

from attributes to classes as a given linear transformation.

SCZL [3] chooses a subset of seen classes as bases, and

use them to align the semantic space(attributes) and model

space(classifiers). It assumes that the classifier of one class can
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be expressed based on the classifiers of those bases classes in

the same way its attributes being expressed by those bases

attributes. These methods all have semantic loss problem

and the strong attribute-independent assumption. RULE [1]

modifies RIS by using attribute vector as a whole, and uses it to

guide the synthesis of classifiers for unseen classes. SMS [13]

learns a function which takes semantic attributes as the input

and outputs the classifier model. However, the class attributes

are correlated, measuring the proximity among classes using

only using attributes is inaccurate. Besides, the semantic loss

problem also exists in most of these basis-based models.

Synthesis-based methods are relatively new [11, 12, 41].

They train a generative model from attributes to images and

synthesize pseudo samples for unseen classes. After that, the

ZSL problem could be transformed to the classical supervised

classification form. SSZL [11] proposes to generate samples

for new classes through learning relationship among classes

using their attributes. It assumes that if two class are similar

in the attribute space, then their samples should also be

similar. FZLC [21] synthesizes samples using a mediate space

and builds two mapping functions. One mapping function

lies between the input and the mediate space, and the other

one between the mediate and the attribute space. Despite

their relatively high performance, the generation ability is the

bottleneck of this kind of methods. Images of real-life species

are usually diverse, so synthesizing high-quality pseudo sam-

ples based only on the attributes is difficult. Synthesized

images may drift from real ones and consequently harm the

effectiveness of the trained classifiers. We build an energy-

based model to enhance traditional embedding-based methods.

To the best of our knowledge, this is the first work that

considers exploiting joint distributions of input images and

class attributes. By aligning the input image space and the

class space using energy function, the proposed model can

depict all sorts of distributions, and are much more expressive

than traditional ones.

B. Restricted Boltzmann Machine

Restricted Boltzmann Machine (RBM) is an undirected

probabilistic graph model under the unsupervised setting. It

is originally composed of two-layered network, with a visual

layer (input) and a hidden layer (can be seen as embedding

layer). When training, it tries to maximize the joint probability

between input images and the hidden vectors with the energy

function as:

E(x,h) = −(vTx+ uTh+ xTWh), (1)

where v,u,W are parameters. x is input and h is the hidden

vector. It is commonly used as a feature extractor to find the

most representative hidden vector for the input image. Several

works have dedicated to expand this model to supervised

problem settings. [25, 26] added a SVM layer above the

hidden layer, using RBM as the base feature extractor. [24]

proposes a unified framework for supervised RBM, which

preserves its property as a probabilistic graphical model,

and can be trained jointly. However, it assumes that the

top layer follows a distribution in exponential family. This

directed bottom-up connection assumption without top-down

connections would impair the model’s power as an energy

function. As the information could not be propagated from

the top-down connections, the semantic integrity of the upper

layer can not be guaranteed, and would lead to the semantic

loss problem.

As deep structure has been proven useful for many vi-

sual tasks, to enhance the modeling power of RBM, Deep

Boltzmann Machine (DBM) is proposed by stacking tra-

ditional RBMs together using multiple hidden layers [? ].

The traditional training algorithms for DBM is the MCMC

training algorithm. However, as using MCMC to estimate

the probability when there are multiple hidden layers is

intractable, researchers also designed the variational inference

algorithm [15] and an inference net to accelerate the training

process [32].

III. THE PROPOSED MODEL

A. Problem Definition

In the problem setting, we are given S seen classes and

U unseen classes, along with attributes of these classes as

side information, each being a M -dimensional class-attribute

vector. In this work, each class y is represented by its at-

tribute vector ay , and attributes of all classes form a matrix

A ∈ R
M×(S+U), with the j-th column denotes the attribute

vector of the j-th class. The training dataset is denoted as

Dtrain = {(xk,ayk
)}Nk=1 with N training samples, where xk

denotes the k-th input image and is the k-th column of the

input matrix X. yk is its label denoting the class it belongs

to. These training samples are all from seen classes.

Before going further, we will first present the key ideas of

our proposed energy-based model for the ZSL problem. As

discussed above, energy model is suitable for capturing joint

probabilistic distributions of vectors from different domains.

So, in this paper we will use it to model how much the

input image features are related to each vector in the attribute

space, which suits the ZSL problem setting quite well. And,

our energy-function part is a symmetrical graph model, which

circumvents the semantic loss problem as it is computed

bidirectionally. Concretely, as shown in Fig. 2, the model

is comprised of two parts, a Variational AutoEncoder (VAE)

part and a supervised DBM part (s-DBM) that models the

supervision information under the DBM model. The VAE

part can extract representative features with sufficient se-

mantic information. By reducing the input information with

representative features, this step can significantly reduce the

complexity in the training of the s-DBM part. The s-DBM

part is an extension of the traditional DBM with supervised

information in the top layer. Different from previous works in

this direction, we build it as an undirected graphical model,

which can be used as the energy function.

799

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on August 29,2024 at 04:10:33 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: Overview of our proposed model. We use a VAE to reduce the dimensions of input image features obtained through a

VGGnet. Then, we modify DBM to supervised settings(as s-DBM) and use it to model the relationship between input features

and attributes. Here, s-DBM part is set as a four-layer structure.

B. VAE Part

VAE is a variant of classical autoencoder models. It assumes

that the encoding results (latent variables) follow a prior of

Gaussian distribution. Its goal is to use a recognition model to

approximate the posterior distribution of the latent variables

given the input images, and to train a generative model to

recover the original image based on encoding results. As

shown in the first part of Fig. 2, it has two components:

an encoder and a decoder. The encoder infers the posterior

distribution of the latent vector fi given the input xi, i.e.,

pθ(fi|xi). The decoder learns to recover the original input

xi given the encoding result fi, i.e., qη(xi|fi). This model

is frequently used in a generative way, but the encoding result

fi can also be seen as a good representation of original input

xi, as it preserves low-level features well to reconstruct the

original image. We train it by minimizing the traditional VAE

loss and the energy value in Equ.11, where the prior p0(f)
is the standard Gaussian distribution. Specifically, the loss

function of the VAE part is defined as:

L =− Lθ,η(xi) +E(fi,ai;φ)

=− Epθ(fi|xi)[logqη (xi|fi)] +KL(pθ(fi|xi)||p0(f))
+E(fi,ai;φ)

(2)

For each image i, similar as many image representation

techniques, we first send this image into a convolutional

neural network to get the 4096 dimension representation, i.e.,

xi for each image. We use VAE as the feature extractor

to learn the feature representation fi for input sample xi,

and send fi as input for the second part, i.e., s-DBM, of

our model. This VAE part could been seen as a dimension

reduction technique for the s-DBM part. Directly using the

4096 dimensional representation would make the s-DBM part

have too many parameters to fit. At the same time, too much

trivial information makes it hard for s-DBM to converge to a

optimal solution. Based on these observations, the VAE part

reduces the dimensions of input images by learning a better

representation of the original images.

C. s-DBM Part

As shown in the second part of Fig. 2, s-DBM is an

extension of DBM by adding a layer in the top, containing

the information of class attributes so that the model can be

trained in a supervised way. Note that it is not confined to

a four-layer structure, we just stack it on the conventional

three-layer DBM to illustrate our idea. Therefore, s-DBM can

model the energy E(fi,aj) for a pair of input images and their

associated attribute vectors.

Specifically, considering DBM with supervision information

has already been proposed in the past, which assumed a

conditional distribution of exponential family with directed

connections[24]. Instead, we assume a Boltzmann distribution

for p(aj |hitbo ;φ) with bidirectional connection to ensure that

information could be propagated from both top-down and

bottom-up. Here, φ denotes the parameters and hitbo refers to

the output of the top-but-one layer in the s-DBM. In this way,

we preserve the property of the DBM as an energy function. It

can be embedded directly into any DBM structures, and here

we give a simple four-layer example as an example for better

illustration. In the four layer structure, the energy function can

be derived from Equ.1 as:

E(f ,h,a;φ) =− (v1
T f + u1

Th1 + fTW1h1)

− (v2
Th1 + u2

Th2 + h1
TW2h2)

− (v3
Th2 + u3

Ta+ h2
TW3a),

(3)

where hi denotes the results of the i-th intermediate layer and

vi,ui,Wi are detailed model parameters in the parameter set

φ in corresponding layers. We omit the subscript for f and a.

In this way, the joint probability can be modeled as:

p(f ,h,a;φ) = exp(−E(f ,h,a;φ)−A(φ)), (4)

800

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on August 29,2024 at 04:10:33 UTC from IEEE Xplore.  Restrictions apply. 



where A(φ) is the log-partition function.

Our aim is to maximize p(fk,ayk
;φ), which is the expecta-

tion of Equ.4 over h and can be computed using Bayesian rules

as in Equ.5. We train the model to give a higher probability

to pair fk and ayk
that appeared in the training set, so that we

can use this model to find a which has a high joint probability

with given f as:

p(f ,a;φ) =
∑

h

p(f ,h,a;φ)p(h|f ,a;φ),

p(h|f ,a;φ) = p(f ,h,a;φ)/
∑

h

p(f ,h,a;φ)
(5)

To summarize, as shown in the second part of Fig. 2, the

s-DBM part contains four layers: input layer F , intermediate

layer H1, intermediate layer H2, and the top layer A. The

energy function can be written as in Equ.3, and the probability

density is presented in Equ.4. To maximize the value of

p(f ,a;φ), we first compute its derivative of log-likelihood with

respect to parameter vector W1 and v1 as follows:

∂logp(f ,a;φ)

∂W1
=

∑
h p(f ,h,a;φ)(fh

T
1 − ∂A

∂W1
)p(h|f ,a;φ)

p(f ,a;φ)

= Epdata
(fhT

1 )− Epmodel
(fhT

1 )

∂logp(f ,a;φ)

∂v1
=

∑
h p(f ,h,a;φ)(f − ∂A

v )p(h|f ,a;φ)
p(f ,a;φ)

= Epdata
(f)− Epmodel

(f)
(6)

where pdata denotes the training set data distribution, and

pmodel denotes the model distribution. The derivatives with

respect to other parameters take similar forms, involving the

expectation of h1h
T
2 , h2a

T and other vectors respectively.

D. Variational Inference

However, it is intractable to compute expectations in Equ.5

exactly, as the computation of p(h|f ,a;φ) is time-consuming.

The data-dependent expectation requires the sum over space

that is exponential in the number of hidden units, and the

model-dependent expectation requires the sum over the space

that is exponential in the number of hidden and visible units

together. These expectations can be approximated using Gibbs

sampling based on Equ.4 and Equ.5, but it still takes a lot of

time. So, inspired by [15], we propose a variational inference

technique to accelerate that.

In our proposed variational method, the posterior

p(h|f ,a;φ) is approximated by q(h;μ), where μ is the

variational parameter. Following classical variational inference

steps, we arrive at following evidence lower bound(ELBO)

as:

L = Eq(h;μ)(logp(f ,h,a;φ))− Eq(h;μ)logq(h;μ). (7)

We can learn the parameters by maximizing ELBO. Fol-

lowing a naive mean-field approach, we choose a variational

distribution that can be fully factorized into Bernoulli distri-

butions:

q(h;μ) =
∏

j

∏

k

∏

z

q(h1j;μ1j)q(h2k;μ2k)q(h3z;μ3z),

(8)

where hij is the j-th dimension of hidden layer hi, similarly

for μij . μ also denotes the parameters for corresponding

Bernoulli distributions. Now, the ELBO takes a particular

simple form:

L =(v1
T f + u1

Th1 + fTW1h1)

+ (v2
Th1 + u2

Th2 + h1
TW2h2)

+ (v3
Th2 + u3

Ta+ h2
TW3a)−A(φ) +H(q(μ)).

(9)

With the model parameters φ fixed, μ can be explicitly

computed by:

μ1 = sigmoid((fTW1)
T + u1 +W2μ2 + v2)

μ2 = sigmoid((μT
1 W2)

T + u2 +W3a+ v3).
(10)

Now that we can approximate p(h|f ,a;φ) using q(h;μ),
Equ.6 can be computed, and we are able to update parameters

φ to train the proposed model.

E. Model Training Part

The VAE part and s-DBM part are trained alternatively.

The VAE part is used to reduce the input dimensions and

preserve sufficient semantic information, so we follow the

traditional training techniques [29]. To train s-DBM part, we

have to update parameters to maximize p(f ,h,a;φ) for input

and attribute pairs appeared in the training data. However,

this procedure is intractable, because the computation of

p(h|f ,a;φ) takes time that is exponential in the number of

hidden units.

With the variational techniques proposed in Equ.9, now we

can choose to use the contrastive divergence(CD) method,

which runs short Markov chains to approximate the model

expectation. It is divided into two steps. First, we fix the

model parameters to approximate the distribution of latent

vectors by utilizing Equ.10. Then, we sample latent vectors

and update model parameters based on Equ.6. Concretely, for

each training example, we first find the value of variational pa-

rameter μ based on the current value of f ,a. To solve Equ.10,

we simply cycle through layers and update the variational

parameters until they converge. Then, we update parameters

φ. The updating strategy is quite straightforward. Approxima-

tion of data-dependent expectation Epdata
() is computed by

performing a point estimations on sample f ,h1,h2,a, which

is sampled based on q(h;μ). In practice, we maintain a set of

s sample particles and average over them. The approximation

of model-dependent expectation Epmodel
() can be computed

similarly, with pairs {(x,ay)} to be sampled in advance. This

optimization procedure belongs to the class of Robbins-Monro

algorithms[38], and guarantees asymptotic convergence. Note

that we perform layer-wise pretraining technique before train-

ing each layer jointly using variational inference, which is a
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widely used trick in training DBM. For better illustration, we

list the overall training procedure in Algorithm 1.

When testing, we first run VAE for input x to get its rep-

resentation f . Then, we use s-DBM to predict y by returning

the y whose a has the minimum energy value combined with

f . For each candidate aj we still need to first approximate the

distribution of h based on Equ.10, just like in training. Then,

we compute the energy value of current pair f ,aj based on

Equ.4. Note that we don’t need to use sampling to compute

E(f ,a;φ). In practice, we can use variational parameters μ
instead, and the value function can now be written as:

E(f ,a;φ) =− (v1
T f + u1

Tμ1 + fTW1μ1)

− (v2
Tμ1 + u2

Tμ2 + μ1
TW2μ2)

− (v3
Tμ2 + u3

Ta+ μ2
TW3a).

(11)

Algorithm 1 Training procedure of the s-DBM

Input:
input feature matrix F which is obtained using pretrained

VAE and input image matrix X;

class-attribute matrix A;

class indicator y;

sequence-sequence similarity matrix W = ATA;

τmax = 1010, ρ = 1.1
Output:

parameters W,v,u for s-DBM model

1: while not converge do
2: Pretrain Wi,vi,ui for each layer i;

3: Sample f
′

and a
′

for the approximation of data-

independent expectation;

4: while not converge do
5: Get input batch of f and a;

6: Initialize variational parameter μ1 and μ2;

7: while not converge do
8: Update μ1 according to Equ.10;

9: Update μ2 according to Equ.10;

10: end while
11: Sample s particles based on q(h, μ)
12: Use these samples to approximate data-dependent

expectation in Equ.6;

13: Sample s particles based on sampled f
′

and a
′
;

14: Use these samples to approximate data-independent

expectation in Equ.6;

15: Update W for each layer according to Equ.6;

Wi = Wi + τ(∂logp(f ,a;φ)∂Wi
);

16: Update v and u fpr each layer according to Equ.6;

vi = vi + τ(∂logp(f ,a;φ)∂vi1 );

ui = ui + τ(∂logp(f ,a;φ)∂ui
);

17: τ = τ ∗ ρ;

18: Update parameters of VAE following Equ.2;

19: Obtain new input feature matrix F
20: end while
21: end while

IV. EXPERIMENTAL RESULTS

A. Experiment Setting
Datasets: We evaluate and compare our proposed frame-

work with the state-of-the-art baselines on four datasets.

The first is Animal with Attributes(AwA) [17], the second

is Caltech-UCSD Birds-200-2001 (CUB-200) [36], the third

is SUN scene recognition dataset(SUN) [28], and the last

is aPascal-aYahoo(aPY) [6]. The AwA dataset contains 50

classes, along with 85 attributes. Similar as many works, we

use 40 of the classes in the training data and the remaining

10 classes in the test data. The CUB dataset contains 200

categories of bird species with a total of 11,788 images,

and each category is described by an attribute vector of 312

dimensions. We follow [2] and use the 150/50 split as the

training/test classes. The SUN dataset has 717 scenes from

abbey to zoo, and the attributes have 102 dimensions. Similar

as [16], we split this dataset into 707 classes in the training

data and the remaining 10 classes as the test data. The aPY

dataset contains 20 kinds of objects from VOC challenge

and related 12 classes from Yahoo image search engine, with

attribute vectors of 64 dimensions. Following the standard

setting, we use the aPascal subset as the source classes and the

aYahoo subset as the target classes. After spliting the train/test

set as aforementioned, we also divide the training set into

training and validation set for hyper-parameter selection.
Image/Class input representation: For each image from

all these datasets, we use the pretrained VGG-19 network

as feature extractor, and use the output of its top fully-

connected layer as raw input representation, which has 4096

dimensions [33]. For the representation of each class, we

utilize the default class attribute features provided by the

original datasets directly, which follows the standard settings

for zero-shot problem [37].
Implementation details: In the VAE part, we build the

encoder using a Gaussian multi-layer perceptron with three

layers, and the dimension of the output layer is set as 200.

We use tanh as the nonlinear activation function and the

dropout rate is set as 0.8 to avoid overfitting. The decoder

has a similar structure as the encoder part. The s-DBM part

has four layers, and the dimension of the intermediate layers

is set constantly as 200 for CUB dataset and 100 for the

remaining three datasets. The effectiveness is measured using

Top-1 classification accuracy [37].

B. Baselines
The performance of our proposed EBZL method is com-

pared with a variety of state-of-the-art baselines, as shown in

Table. 1. The hyphens in Table. 1 indicate that the compared

methods were not tested on the corresponding datasets in the

original papers and we could not find their publicly available

implementations. For all these methods, we use the same set

of input image features: the fc7 features of VGG-19 net as

stated before. And the classes are all represented using the

same attribute vectors.
To help us analyze the experiment results, a detailed de-

scription of each baseline has been given in the related work
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Types Method AwA CUB-200 SUN aPY

Embedding-based ESZSL [31] 49.3 27.27 61.53 /

Embedding-based SP-AEN [4] 58.5 55.4 59.2 24.1

Basis-based DAP [17] 46.1 40 39.39 33.8

Basis-based deep RIS [23] 62.7 32.3 64.15 26.7

Basis-based deep RULE [23] 77.6 56.3 78.83 44.17

Basis-based SMS [13] 78.47 / 82.00 39.03

Basis-based SCZL [3] 72.9 54.7 62.7 /

Sample Synthesize-based SSZL [11] 82.67 55.75 85 54.04

Sample Synthesize-based FZLC [21] 82.12 44.9 80.5 42.25

EBZL 84.2 58.7 87.72 56.17

TABLE I: Summary of previous methods. Typical models are grouped in category and are compared in term of whether they

can solve those three problems addressed in the main text.

part. Our proposed method is different from them by using a

s-DBM as the energy function to model the joint probability,

and is an extension of traditional embedding-based method.

C. Overall Comparison

The overall experimental results of our proposed model and

various baselines are shown in Table. 1. As we test the results

with public datasets, the results of most baselines are got

directly from the original paper. The results clearly shows that

our proposed method consistently performs the best on the

four datasets. Specifically, our method EBZL perfomrs better

than the best baseline by 1.53%, 2.4%, 5.72%, 2.13% on each

dataset respectively.

We experiment extensively to investigate the influence of

many factors in our proposed method and baselines. The re-

sults suggest that the following three factors have a remarkable

influence on the effectiveness of various methods for zero-shot

problems, and show the advantage of our method over previous

ones.

The semantic integrity of extracted features. Our model

uses a variational autoencoder to ensure that the hidden space

F preserve enough low-level information, and adopt bidirec-

tional connections in the s-DBM part to prevent semantic loss.

Samples-Synthesizing-based methods circumvent this problem

by training the model in the supervised manner. However,

methods like RIE and RULE did not take recovery loss into

consideration, they just train the model in the classical bottom-

up manner and apply it directly to unseen classes. As shown in

Table. 1, our model, along with SSZL and FZLC, outperform

most of baselines with a large margin on all four datasets.

The methods in modeling the relationship. Our model

proposes to use energy model to represent the joint distribu-

tions, making the model much more expressive than traditional

models, as energy function can model all sorts of probability

distributions. FZLC represents each class as a mere point in the

mediate space. SP-AEN and SCZL both model the relationship

in a bottom-up manner, from the image to one certain class.

They build a class-specific classifier for each class, which is

hard to be generalized to other classes. As shown in Table. 1,

our model, which tries to model the relationship between the

AwA CUB-200 SUN aPY

Dataset
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u
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EBZL

VAEmbedding

VAEbelief

Fig. 3: Comparison of our EBZL with VAEmbedding and

VAEbelief. From left to right, are the result got on datasets

AwA, CUB-200, SUN and aPY separately.

image space and class space using distributions, gets the best

performance.

The methods in utilizing attributes Our method takes each

attribute vector as a whole to model its relationship with im-

ages, while methods such as SCZL, DAP and deep RIS assume

that each dimension of attribute vectors is independent. SCZL

assumes neighboring information in the attribute space can be

applied to the model parameter space and synthesize classifier

based on that. Deep RIE makes classification on each attribute

separately, and gets the classifier by finding the class whose

attribute vector is most close to the synthesized attribute vector.

These strong assumptions result in their inferior performance

compared to ours, as shown in Table. 1.

D. Detailed Analysis

Besides overall comparison between our proposed model

with the state-of-the-art methods, we give a detailed analysis

of our proposed method, including the effectiveness of model

components, the parameter sensitivity analysis and model

result visualization.

803

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on August 29,2024 at 04:10:33 UTC from IEEE Xplore.  Restrictions apply. 



CUB Ground truth Class Prob SUN Ground truth Class Prob

Laysan

Albatross

Laysan Al 0.3216

Car interior

Backseat

Car interior

Backseat

0.5531

Sooty Al 0.2531 Living Room 0.2281

Crest Au 0.1613 Computer Room 0.0956

Black footed Al 0.1459 Shoe Shop 0.0643

Least Au 0.1181 Mineshaft 0.0589

Eastern

Towhee

Eastern To 0.2723

Cafeteria

Cafeteria 0.4136

Black billed Cu 0.2038 Bar 0.3605

Gray Ca 0.1954 Lab Classroom 0.1408

Northern Fl 0.1697 Game Room 0.0562

Indigo Bu 0.1588 Assembly Line 0.0289

Chuck will

Widow

Chuck will Wi 0.3905

Alley

Alley 0.4814

Yellow bellied Fl 0.1773 Bazaar 0.2462

Boblink 0.1593 Cloister 0.1124

Rusty Bl 0.1487 Castle 0.0937

Eastern To 0.1242 Barndoor 0.0663

Red faced

Cormorant

red faced Co 0.2821

Lake Natural

Lake Natural 0.5249

Pelagic Co 0.2142 Bayou 0.2397

Groove billed An 0.1875 Athleti Field 0.1065

Eared Gr 0.1766 Creek 0.0754

Brandit Co 0.1396 Outhouse 0.0535

TABLE II: Images and their predicted classes with top-5 predicted joint probabilities(normalized).
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Fig. 4: Sensitivity curve of our model on the number of hidden

units in each layer. X-axis denotes the number of hidden units.

Evaluation on model components. To show the effective-

ness of the proposed s-DBM part of our model, we design two

baseline models: VAEmbedding and VAEbelief:

• VAEmbedding: it combines a VAE part and two mapping

functions, which maps the attribute vector and the fea-

tures extracted by VAE to the latent embedding space.

The correspondence between an image and a class is

measured by their distance in the latent space.

• VAEbelief: it is composed of a VAE and a deep belief

network. Its structure is similar to our model, and deep

belief net is also used to measure the joint probability of

an input image and an attribute vector.

As shown in Fig.3, our proposed EBZL model and VAE-

belief outperform VAEmbedding with a large margin, vali-

dating the soundness of using energy function to model the

correspondence between an image and a class. The difference

between VAEbelief and our proposed method lies in that deep

belief net has directed connections in its intermediate layers,

while our s-DBM part has undirected connections to help to re-

duce semantic loss. As shown in Fig. 2, our model outperforms
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VAEbelief with a reasonable margin, with an improvement of

near 10% on each dataset. This experimental finding further

validates the power of s-DBM with bidirectional connections

as an energy function to model joint distributions.

Parameter sensitivity. Here, we evaluate the performance

of EBZL with respect to different numbers of hidden units

in each energy-function layer. The experimental results are

shown in Fig. 4 on different datasets. For the dataset AwA,

as we increase the dimension of hidden layers from 20 to 80,

the performance increases quickly as we have more capacity

in the modeling process. However, when the hidden dimen-

sion exceeds 100, the performance drops. For the remaining

datasets, the sensitivity curves show similar trends, but the

detailed hidden dimension varies.

Results demonstration. In Table. II, we provide some

qualitative results of our method from dataset CUB and SUN.

The left part of each row shows an test image from CUB with

its corresponding class is shown in the ground truth column.

Five classes with the top-5 predicted energy values are given

in the Class column and their corresponding energy values are

normalized and shown in the Prob column. The experimantal

results clearly show that our proposed method could accurately

classify the test data.

V. CONCLUSION

In this paper, we proposed a new energy-based method

named EBZL for zero-shot learning problem, which used joint

probability to align the input image and class attribute spaces

with bidirectional connections. It is much more expressive than

previous embedding-based methods, which embed each class

as a point and perform classification according to distances

in that embedding space. Specifically, we trained a VAE as a

feature extractor to build a discriminative feature space and

modified traditional DBM into s-DBM as the energy-function

part. Due to the expressive power of energy model and the

bidirectional connections in s-DBM, our method circumvented

semantic loss problem and outperformed all baselines with a

reasonable margin. In the future, we would like to explore the

possibility of using deep reinforcement learning techniques

for better modeling the energy model to enhance the ZSL

performance.
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