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ABSTRACT
Collaborative filtering (CF) is one of the most popular techniques

for building recommender systems. To alleviate the data sparsity is-

sue in CF, social recommendation has emerged by leveraging social

influence among users for better recommendation performance. In

these systems, uses’ preferences over time are determined by their

temporal dynamic interests as well as the general static interests.

In the meantime, the complex interplay between users’ internal

interests and the social influence from the social network drives the

evolution of users’ preferences over time. Nevertheless, traditional

approaches either neglected the social network structure for tem-

poral recommendation or assumed a static social influence strength

for static social recommendation. Thus, the problem of how to

leverage social influence to enhance temporal social recommenda-

tion performance remains pretty much open. To this end, in this

paper, we present an attentive recurrent network based approach

for temporal social recommendation. In the proposed approach, we

model users’ complex dynamic and general static preferences over

time by fusing social influence among users with two attention

networks. Specifically, in the dynamic preference modeling process,

we design a dynamic social aware recurrent neural network to

capture users’ complex latent interests over time, where a temporal

attention network is proposed to learn the temporal social influence

over time. In the general static preference modeling process, we

characterize each user’s static interest by introducing a static social

attention network to model the stationary social influence among

users. The output of the dynamic preferences and the static pref-

erences are combined together in a unified end-to-end framework

for the temporal social recommendation task. Finally, experimental

results on two real-world datasets clearly show the superiority of

our proposed model compared to the baselines.
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1 INTRODUCTION
Collaborative filtering is one of the most successful ways to build

recommender systems and has received significant success in the

past decades [1, 21]. Specifically, it infers each user’s interests by

collecting the user-item interaction history without any content in-

formation. Among all models of CF, latent factor based models have

received great success in both academia and industry. These models

try to characterize both users and items in a same low latent space

inferred from the historical user-item interaction matrix [25, 27].

Then, the predicted preference of a user to an item could be reduced

to comparing users and items in the low latent space. Despite the

huge success, in the real-world systems, a user usually rates or

experiences a small set of items in these applications, the data spar-

sity issue remains a key challenge for enhancing recommendation

performance [1].

Luckily, the emergence of online social networks greatly im-

proves users’ initiative on the Internet, such as Facebook, Twitter,
online social product review platform Epinions, and location based

social network Gowalla. In these social applications, users like to

spread their preferences for items to their social connections (e.g.,

friends in a undirected social network and followers in a directed

social network), and social influence effect is well recognized as

a main factor in these platforms [14]. The social influence theory

argues that, users are influenced by the social connections in the

social network, leading to the homophily effect of similar prefer-

ences among social neighbors [3, 4]. Thus, by leveraging the social

influence among users, social recommendation has become a popu-

lar way to tackle the data sparsity issue in traditional recommender

systems and has been extensively studied [16, 17, 24, 34]. E.g., Jamali

et al. proposed a social influence propagation based latent factor

models for social recommendation [16], and Ma et al. designed a

latent factor based model with the social regularization of users’

interests [24]. In summary, these works focused on how to push the

social influence theory among users in the recommendation process.

Usually, the social influence strength was set equally for the social

connections [16] or relied on a predefined static function [17, 24].

Successful as they are, these social recommender systems as-

sumed a general static assumption of users’ interests over time. In

the real world social recommendation scenarios, users’ preferences

for items are not always stationary but evolve over time. In fact, time

has been recognized as an important type of information for model-

ing the dynamics of users’ preferences in traditional recommender

systems [9, 40, 44]. Researchers proposed tensor factorization or

temporal user latent factor based models to capture users’ dynamic
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interests over time. Instead of capturing users’ temporal interests,

other researchers argued that each user’s preference is composed

of two parts: a general static interest that is stationary and does

not evolve over time, and a complex dynamic interest that is easily

influenced by the external environments. Thus, some models have

been proposed to tackle the temporal recommendation problem

by combining static and dynamic interest modeling [20, 42]. These

models showed better performance by simultaneously modeling

users’ static interests for temporal recommendation. To summarize,

all these temporal models relied on the variants of latent factor

based models to capture users’ dynamic interest. Nevertheless, the

inherent reasons for users’ preference evolution are complex and

non-linear, which are hard to be captured by these linear shallow

latent factor based models. Therefore, the performance of those

approaches are still not satisfactory.

Recently, Recurrent Neural Network (RNN) based approaches

have shown promising potentials for capturing complex temporal

patterns for time series tasks, such as sentence generation [19],

and acoustic modeling [30]. Some pioneering works attempted to

introduce RNNs for temporal recommendation [26, 38, 47]. These

RNN based recommendation models modeled the latent structure

of each user at each time with a hidden state. These hidden states

over time are learned from the recurrent neural networks to model

the complex temporal patterns, which advance previous shallow

temporal recommendation models. Despite the success of applying

RNNs for temporal recommendation, to the best of our knowledge,

few research works have attempted to tackle the temporal social

recommendation task with RNNs. Indeed, it is a non-trivial task

due to the following two key challenges in this process. First, as the

RNN based models are good at modeling the complex dynamic user

interests, how to design a model that unifies both users’ dynamic

interests and the static interests? Second, in both the dynamic

user interest and static user interest modeling part, different social

connections would have different social influence strengths on

users. This social influence strength issue is more challenging in

the dynamic user interest modeling process due to the interplay

between users’ dynamic interests and the social influence. The

dynamics of the social influence strengthwould affect the connected

users’ preferences, and users’ evolving preferences would also affect

their influence strengths to their social connections. Thus, how to

model the complex interplay between social influence and users’

interests over time becomes another challenge.

To solve the above technical challenges, in this paper, we present

an attentive recurrent network based approach for the temporal

social recommendation task. In the proposed approach, we model

users’ complex dynamic and general static preferences over time

by leveraging social influence among users with two attention net-

works. Specifically, we use a recurrent neural network model as

the base model for dynamic interest modeling, where each user’s

dynamic preference over time could be introduced as a hidden tem-

poral state in the neural network structure. To capture the interplay

between social influence and user dynamic interest over time, we

build a dynamic social attention module in each hidden state to

measure the temporal social influence strength. The dynamic atten-

tion network could selectively choose the social connections that

have large influence for each user at each time, and a social aware

recurrent neural network is proposed to capture users’ complex

latent interests over time. In the general static preference modeling

process, we augment each user’s static interest part by introduc-

ing a static social attention module to model the stationary social

influence among users. Thus, both users’ complex dynamic inter-

ests and general static interests are fused in a unified framework

with the attentive social modeling networks. We summarize the

contributions of this paper as follows.

• We propose the problem of temporal social recommendation.

We argue that it is important to take users’ complex dynamic

interest and general static interest into consideration, where

both the dynamic interest modeling part and the general

interest modeling part needs to leverage the social influence

in social networks.

• We propose RNN based structure to capture users’ com-

plex dynamic interest and design a dynamic social attention

network to measure the dynamic social influence of social

connections over time. We also extend the static user inter-

est modeling part with a static social attention network to

measure the stationary social influence among users. These

two parts are fused together for the temporal social recom-

mendation task.

• We conduct extensive experimental results on two real-world

datasets. The experimental results clearly demonstrate the

superiority of our proposed model compared to the baselines.

2 RELATEDWORK
We summarize the related work into the following three categories:

temporal recommendation, social recommendation and the atten-

tion mechanism.

2.1 Temporal Recommendation
Collaborative Filtering (CF) is one of the most popular techniques

to build recommender systems by utilizing the collective behavior

of users without any content information [12, 13, 21, 41]. Latent

factor based models have dominated CF due to their relatively high

performance inmany CF tasks [25, 27, 39]. Most existing recommen-

dation models neglected the time information in recommendation

process, with the general static assumption of users’ interests over

time, i.e., the latent factor of each user is the same at each time

slice [25, 27]. In the real world, users’ preferences to items are

not static but change over time. Thus, it is important to take the

temporal dynamics of users’ interests in the recommendation pro-

cess [9, 18, 44]. Xiong et al. proposed to treat time as an additional

dimension and designed a tensor factorization approach to capture

the temporal dynamics of users’ preferences over time [44]. Other

works have expanded the latent factor based models to character-

ize the dependency and transition between users’ current latent

vector and that of next time period by manual feature engineer-

ing [9, 40]. Instead of capturing users’ interests with either the

general static interest or the dynamic interest, some studies argued

that users’ preferences are composed of two parts: a global static

preference that do not change over time (e.g., the preference that

is related to each user’s gender and birthplace ), and a temporal

local preference that evolves over time (e.g., the preference that is

related to the currently popular products). Given this assumption,

some studies combined the static part and the dynamic part in a

2
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unified framework to further improve temporal recommendation

performance [20, 28, 38].

In fact, all the above proposed temporal recommendation models

relied on shallow linear latent factor based models and relied heav-

ily on the manual efforts to define the temporal evolution patterns

over time. Thus, they are hard to capture the inherent complex

relationships of users’ dynamic preferences. Recently, with the suc-

cess of recurrent network based approaches for many temporal

data, some pioneering works adapted the RNNs for temporal rec-

ommendation [26, 38, 47]. E.g., a dynamic recurrent basket based

model is proposed to capture the dynamic preferences of users over

time [47]. Instead of capturing users with temporal states, recurrent

recommender network is proposed to endow both users and items

with temporal hidden states with a recurrent neural networks [38].

Pei et al. proposed an attention-gated recurrent network to selec-

tively memorize the previous time steps that are closely related to

the current user interest [26]. Our work differs from these works

by modeling the complex interplay between social influence and

user interests in temporal social recommendation.

2.2 Social Influence and Social
Recommendation

By leveraging the social network information, social recommenda-

tion provides an effective approach to alleviate data sparsity and

improve recommendation performance. The underlying reason for

social recommendation originates from the social influence theory,

which states that users’ behaviors are influenced or affected by oth-

ers, leading to the similar behaviors (preferences) between socially

connected users [2, 14, 36]. Social influence is a driving force for

the prosperity of social platforms, and has a broad range of applica-

tions, such as node importance ranking [37] and social influence

maximization [6]. In all these social network based applications,

social influence strength modeling is a central problem [10, 11]. E.g.,

Goyal et al. designed a model to calculate influence strength from

users’ historical behaviors [11]. Various social recommendation al-

gorithms have been proposed by pushing the social influence theory

in the modeling process [16, 17, 24, 46]. E.g., Jamali et al. designed

a social influence propagation based model in latent based recom-

mendation models [16]. Ma et al. introduced a social correlation

term to force similar users to have similar latent preferences [24].

All these works explicitly or implicitly modeled the social influ-

ence among users, where the social influence strength is assumed

equal among social neighbors or with a simple metric from other

sources (e.g., the strength between their interactions in the past).

Despite the potentials of RNNs for temporal modeling, nevertheless,

to the best of our knowledge, few has explored the neural networks

for temporal social recommendation. In this paper, we try to model

the interplay between users’ temporal interest and the dynamic

social influence in the social recommender systems.

2.3 Attention Mechanism
Our proposed technique is closely related to the attention mecha-

nism that is widely adopted in neural network based approaches.

The attention mechanism originates from the neural science studies

by empirically demonstrating that human usually focus on specific

parts of the input rather than using all available information [15].

In an attention based model, it automatically models and selects

pertinent piece of information with the attentive weights from

a set of inputs, with higher (lower) weights indicate the corre-

sponding inputs more informative to generate the outputs. While

attention is widely used for neural network based tasks, such as

image captioning [45] and machine translation [33], it has recently

been used in recommendation tasks [5, 26, 43]. E.g., an interacting

attention-gated recurrent network is proposed for recommenda-

tion, which adopts the attention model to measure the relevance

of each time [26]. Chen et al. designed an attentive collaborative

filtering for multimedia recommendation with item and component

level attention [5]. Intuitively, this attention technique could easily

transferred to the social influence modeling task. In social influence

modeling, each time a user decides to select an item, she would

not take all social neighbors’ opinions equally. Instead, she selects

from informative friends and aggregates the attentive influence

strengths. To the best of our knowledge, our proposed model is

one of the first few attempts that adopts the attention networks for

social influence strength modeling in social recommendation.

3 PROBLEM DEFINITION AND
PRELIMINARIES

3.1 Problem Definition
In an online social service platform, there are a set of usersU (|U | =

M) and a set of items V (|V | = N ). Users connect with each other

to form a social network S ∈ RM×M
, with sba = 1 denotes that a

follows b, otherwise it equals 0. Besides, users show preferences to

items in this platform over time. Specifically, we represent users’

preferences at time t as a matrix Rt ∈ RM×N
. As users usually

implicitly express their behaviors of action or inaction (e.g., buy or

not buy, like or not), in this paper we consider the more practical

problem with implicit feedback of users. If user a likes item i at
time t , then r tai = 1. Otherwise it equals 0 indicating this user does

not show any preference of the item at that time. As we consider

the temporal evolution of users’ preferences to items over time,

we summarize users’ preferences over time as a matrix sequence

R = [R1,R2, ...,RT ]. Without confusion, we use a, b, c to represent

users and i ,j , k to denote items. Then, the problem we study in this

paper could be defined as:

Definition 1. [Temporal Social Recommendation] Given a
user set U , an item set V , with user-user social network matrix S
and user-item preference sequences from time 1 to time T as: R =
[R1,R2, ...,RT ], our goal is to predict each user’s consumption behav-
ior R̂T+1 at time T + 1.

3.2 Preliminary
Traditionally, different models have been proposed to tackle the

time-series data, such as the Hidden Markov Model [7], and Con-

ditional Random Fields [23]. The commonality of these models is

that, they need to assume intimate knowledge of the dataset and

explicitly define the correlation of time series in the model design

process. However, the underlying reasons for the temporal changes

are complex, and could not well captured by naive human feature

engineering. Recently, the recurrent neural network based models

provide an elegant way to model time-series data. Among all RNN

3
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based models, LSTM works tremendously well on a large variety of

tasks, and are now widely used [30, 33]. Thus, we also consider to

adopt the LSTM as a base module for modeling users’ complex dy-

namic behaviors over time. Similar as many RNN modules, LSTMs

have the form of a chain of repeating modules in neural networks.

Instead of characterizing the repeating module with a simple struc-

ture (e.g., a single Tanh layer), LSTMs have a cell state that can

remove or add information. Next, we introduce the key steps of

LSTMs.

Figure 1: The overall architecture of LSTM.

Given an input xt at time t with a fixed size of dimension, LSTM

first decides what information to throw away with a forget layer

as:

ft = σ (Wf × [ht−1, xt ]), (1)

whereht−1 denotes the hidden state at the previous time t−1. With-

out confusion, we omit the bias terms in the following equations

for simplicity. The next step is to decide what information to store

based on a cell state as:

it = σ (Wi × [ht−1, xt ])

c̃t = tanh(Wc × [ht−1, xt ])

ct = ft × ct−1 + it × c̃t , (2)

where ct is the new cell state that forgets parts of previous state

ct−1 and remembers some new parts of input data.

Given the cell state, the updated hidden state ht is defined as

ot = σ (Wo · [ht−1, xt ])

ht = ot × tanh(ct ). (3)

Fig 1 shows the module of LSTM. By combining Eq.(1), Eq.(2),

and Eq.(3), for each time t , the updated hidden state ht in LSTM

could be summarized as:

ht = fLSTM ([h(t−1), xt ]). (4)

In the following of this paper, we use fLSTM to denote a LSTM

module, and ΘLSTM to summarize the parameters in this LSTM

module.

4 THE PROPOSED MODEL
In this section, we first present the overall framework of our pro-

posed model Attentive Recurrent Social rEcommendation (ARSE)

for temporal social recommendation. The proposed framework is

composed of two parts: a complex Dynamic ARSE (DARSE) part

that captures the dynamic preferences of users over time, and a

general Static ARSE (SARSE) part that shows users’ fixed interests

that are stationary over time. Then, we will introduce these two

parts in detail. After that, we show the model learning process

of ARSE, which jointly optimizes the parameters in DARSE and

SARSE in a tightly manner. For ease of explanation, Table 1 lists

the mathematical notations used in this paper.

Table 1: Mathematical Notations

Notations Description

U Userset, |U | = M
V Itemset, |V | = N
a,b,c,u User

i,j,k,v Item

Rt ∈ RM×N
Rating matrix at time t

S ∈ RM×M
Social network matrix, with sba denotes whether a follows b

Lta ∈ V The item list that a likes at time t, Lta = [i : |r
t
ai = 1]

Q ∈ RD×N
Item latent matrix in the dynamic latent space

W ∈ RD×N
Item latent matrix in the static latent space

P ∈ RD×N
User base latent matrix in the static latent space

qi The dynamic embedding of item i in the dynamic latent space

wi The static embedding of item i in the static latent space

pa The static embedding of user a in the static latent space

xta The input vector of user a at time t
hta The dynamic latent vector of a at time t
α tab The dynamic influence strength of b to a at time t
βab The static influence strength of b to a

4.1 The General Framework
Overall Prediction Function. In a temporal social recommender

system, a natural assumption is that users’ latent preferences over

items are dynamic over time. To capture the time-evolving dynamic

property of users’ preference, we use a latent vector hta to denote

each user a’s latent preference at each time t . Besides, we argue
that even though a user’s state can be time-varying, there is still

some stationary components of each user such as the user profile,

long-term preference. We use p̃a to denote a’s static latent vector.
Then, the predicted preference r̂ tai of user a to item i at time t ,
could be predicted a combination of the dynamic effect and the

static effect:

r̂ tai = r̂
t
D,ai + r̂S,ai = q

′
i × hta +w

′
i × p̃a, (5)

where r̂ tD,ai denotes the predicted dynamic preference of user a to

item i at time t , and r̂S,ai is the predicted static preference score that
does not evolve over time. qi is the i-th column of Q that denotes

the latent vector of item i in the dynamic latent space. Similarly,wi
is the i-th column ofW that denotes the latent vector of item i in the
static item space. We use two latent matrices to characterize items,

as the dynamic effect and the static effect capture different latent

characteristics of items. hta denotes a’s complex dynamic interest

at time t , and p̃a is a static latent factor of a that is stationary over

time.

ARSE is such a neural network structure that models users’

preferences over time with the prediction function in Eq.(5). The

overall structure of ARSE is shown in Fig. 2, where the left part

shows DARSE that captures the dynamic effect, and the right part

depicts SARSE part that captures the static effect. In each part,

the user-user social network is sent to a social attention layer to

get the influence strength of users. Specifically, given user a, item
i , and time t , we use α tab to denote the dynamic social influence

degree of user b to user a (sba = 1), and βab to denote the static

social influence degree of b to a. A naive idea is to set α tab =

βab =
1

|Sa |
, denoting each social connection influences user a

equally over time. This naive social influence strength is widely

used in many social recommender systems [16]. However, it fails

4
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Figure 2: The overall architecture of ARSE, where the left part models the dynamic effect and the right part shows the static
effect.

to consider the influence strength of different social connections.

Accurately modeling the social influence strength is crucial for

better social recommendation performance. Hence, we borrow the

ideas of attention mechanism and design two attention networks to

model the static and dynamic social influence strengths. Specifically,

the static social influence βab is learned from a static social attention

network. In DARSE, the dynamic influence strength α tab is learned

from a dynamic attention network with users’ preferences over

time, and the learned attention scores are summarized with social

connections’ latent vectors to obtain each user’s future dynamic

latent vectorht+1a of each user. In this way, we can accurately model

the interplay between users’ dynamic interests and the evolving

social influence.

Thus, the proposed framework unifies the strength of classical

latent factor based models to capture users’ static preferences and

the recurrent neural networks that capture the non-linear complex

user interest drift over time. In the meantime, the two social at-

tention parts in this framework could alleviate the data sparsity in

recommendation and adaptively select the influential connections,

thus further improve social recommendation performance. Next,

we would introduce the two parts of ARSE in detail.

4.2 Dynamic Attentive Social Recurrent
Recommendation

In the DARSE part, we adapt an LSTM structure to capture each

user’s complex temporal latent vector over time. We choose LSTM

as the base model due to its effectiveness in modeling the complex

temporal data. We would show how to transform the user-item

rating data over time into a valid input of the LSTM framework,

and how to embed the dynamic social influence of users over time

to help better model each user’s latent vector over time. Specifically,

for each user a, given her previous hidden stateht−1a and the current

preference list Lta at time t , DARSE tries tomodel each user’s current

state hta by leveraging the social network at the same time. DARSE

is mainly composed of four modules: an input pooling layer that

generates the input, a dynamic attention layer that models the

dynamic influence strength over time, a social aware LSTM part

that enriches the LSTMwith dynamic social contextual information,

and finally an output layer that generates the predicted dynamic

preferences of users over time. Next, we introduce these parts in

detail.

Input Pooling Layer At each time, an LSTM receives input of

fixed size. The input pooling layer transforms each user’s liked

itemset Lta into a valid input of an LSTM. Specifically, given a’s con-
sumed item set Lta with varying sizes of consumed items, DRASE

first adopts an average pooling operation that transforms this vari-

able length list into a fixed-size latent representation xta ∈ RD

as:

xta = Poolinд(Q (:, Lta )) (6)

whereQ is the latent matrix of items in the dynamic space.Q(:,Lta )
denotes choosing all item latent vectors that appear in Lta . Since
Lta changes for each user at each time, we generate the input xta
through an pooling operation. Specifically, pooling is a basic opera-

tion that appears in many neural networks. It refers the operation

that combines the outputs of neuron clusters at one layer into a

neuron in the next layer [22]. By treating each row in Q(:,Lta ) as a
neuron cluster, the pooling would generate a fixed size representa-

tion of xta with size D. Commonly used pooling operations include

the max pooling and the average pooling [22]. E.g., for the average

pooling operation, the l-th element xta (l) in xta is:

∀l = 1, .., D, ∀i ∈ Lta, x
t
a (l ) =

∑
i∈Lta

Q (l, i)

|Lta |
. (7)

In practice, we find there are not significant differences in choos-

ing different pooling operations, we select the average pooling

operation in the following experiments.

Dynamic Attentive Network The goal of the dynamic atten-

tion layer is to select influential social connections for each user

over time, and then summarizes these social connections’ states

with a social contextual vector h̃ta . This contextual vector could

5
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be further sent to an LSTM to better model the social influence of

each user’s latent vectors over time. Given user a and one of her

social connection b (sba =1), let α
t
ab denote the influence strength

of b to a at time t , we use a two-layered subnetwork to capture the

dynamic attentive scoremt (a,b) as:

mt (a, b) = ReLU (A5×ReLU (A1×ht−1a +A2×ht−1b +A3×ea +A4×eb ))
(8)

where ht−1a denotes the latent vector of a at time t − 1. We use

ΘA = [A1,A2,A3,A4,A5] to denote the parameters in the dynamic

attention network, where the first four elements are the parameters

in the first layer of the attention network, and the last parame-

ter (i.e., A5) is the parameter in the second layer. ReLU denotes the

ReLU activation function. ea and eb are the social embeddings of

a and b from the social network structure. In fact, various social

embedding techniques have been proposed to extract meaningful

embeddings from S . Since the focus of this paper is not to devise

more sophisticated techniques for social embedding, we simply

use a popular unsupervised deep learning model, i.e, denoising

autoEnoder, to model each user’s social embedding [35]. This sim-

ple technique is empirically proved to have good performance for

capturing hidden structures in a social network [48].

The final dynamic social influence score α tab is obtained by nor-

malizing the above attention scores as:

α tab =
exp(mt (a, b))∑

c∈Sa exp(m
t (a, c))

. (9)

where Sa denotes all users that a follows in the social network. The

learned valueα tab shows the influence ofb on a at time t . Given each
usera’s hidden state at time t , then the social contextual information

of a, denoted as h̃ta , is represented as a weighted dynamic social

influence from social neighbors as:

h̃ta =
∑
b∈Sa

α tab × htb . (10)

Social LSTM Layer In a social platform, a user’s current dy-

namic latent vector is largely influenced by her social connections’

previous latent vectors. After obtaining each user’s social contextual

vector h̃t−1a , the Social LSTM part takes each user a’s input xta , her
previous state ht−1a , and the enriched social contextual information

h̃t−1a as input, and predicts the hidden state hta as:

hta = fLSTM ([xta, h
t−1
a , h̃t−1a ]), (11)

where fLSTM (x) is an LSTM network as depicted in Fig.1. In the

social LSMT network, each user a’s input is composed of three

parts: an input representation xta that encodes user a’s consumed

items, a previous hidden state ht−1a that represents her hidden

state at previous time t − 1, and a dynamic social contextual input

h̃t−1a . Thus, different from the traditional LSTM part (Eq.(4)) that

only considers each user a’s previous input xta and her previous

hidden state ht−1a , it also encompasses each user’s dynamic social

contextual representation to infer a user’s dynamic future latent

vector. Specifically, at each time t , the social contextual information

h̃t−1a captures the dynamic social influence of a’s social neighbors
and varies over time. In such a way, the social neighbors’ dynamic

influences on each user at previous time t are naturally fused to

infer user a’s dynamic latent vector hta .
Dynamic Output Layer After getting each user’s hidden rep-

resentation hta at time t , the output of the DARSE is defined as:

r̂ tD,ai = q
′
i × hta . (12)

4.3 Static Attentive Social Recurrent
Recommendation

Besides capturing each user’s time-evolving preferenceswithDARSE,

we also argue that each user remains a static interest that does not

evolve over time. E.g., the latent factors that are correlated to a

user’s profile of gender and birthplace, and a user’s long term in-

terest. In this part, we introduce the SARSE part that depicts users’

stationary interests by leveraging the social network. Similar as

DARSE, we also use an attention network to select social neighbors

that have large influence on each user for the recommendation.

Different from DARSE, as we focus on the static user preference

over time, this part models the static social influence among users

that do not evolve over time.

InputWith the static assumption, let P andW denote the corre-

sponding user and item base latent matrix. Then, given the input of

user a’s latent vector pa and item i’s latent vectorwi , the predicted

rating r̂ tai of user a to item i at time t is usually defined as:

r̂ tS,ai = w
′
i × pa . (13)

In fact, the above simple prediction function is the foundation of

many classical latent factor based models [25, 27]. However, as the

user-item rating matrix is very sparse, the prediction performance

may be limited by the sparse rating data [24]. Next, we introduce

the static social attention part that summarizes the social influences

in a social network.

Static Social Attention The goal of the static attention layer is

to select the stationary influential social connections for each user,

and then summarizes these social connections’ stats with a social

contextual vector p̃a . This contextual social vector could enhance

the prediction results. Specifically, given user a and one of her social
connection b (sba = 1), let βab denotes the static influence strength

of b to a that does not evolve over time, we use a two-layered

subnetwork to capture the static attentive score n(a,b) as:

n(a, b) = ReLU (B5×ReLU (B1×pa +B2×pb +B3×ea +B4×eb )). (14)

where pa denotes the static latent vector of a. ea and eb are the

social embeddings of a and b from the social network structure. We

use ΘB = [B1,B2,B3,B4,B5] to denote the parameters in the static

attention network, where the first four elements are the parameters

in the first layer of the attention network, and the last parameter (i.e.,

B5) is the parameter in the second layer. Then, the final static social

influence score βab is obtained by normalizing the above attention

scores as:

βab =
exp(n(a, b))∑

c∈Sa exp(n(a, c))
. (15)

After that, we could get the enriched static social latent vector

p̃a as:

p̃a =
∑
b∈Sa

βab × pb + pa . (16)

Static Output After getting each user’s enriched representation

p̃a , the output of the SARSE part is defined as:

r̂ tS,ai = w
′
i × p̃a . (17)

Compared to the prediction function in Eq.(13), the above static

output function summarizes the static social influence from neigh-

bors for the recommendation. Thus, it can partially solve the data

sparsity issue in recommendation.
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4.4 Model Learning
In practice, we jointly train the two parts of ARSE, i.e., DARSE

and SARSE, in a unified loss function. Specifically, given the user

preference sequence from time 1 to time T , our goal is to learn

the model parameter set Θ = [ΘA,ΘB ,ΘLSTM , P ,Q,W ] with an

objective loss function. Specifically, ΘA and ΘB are the parameters

in the dynamic and static attention networks, and ΘLSTM is the

parameters in the LSTM module. Since we focus on the implicit

feedback of users, we adopt the widely used log loss function, which

is defined as:

LΘ(R, R̂)=−
T∑
t=1

M∑
a=1

N∑
i=1

[r tai loд(r̂
t
ai ) + (1 − r tai )loд(1 − r̂ tai )]. (18)

In fact, the above log loss function is equal to the negative log-

likelihood of the binary outputs with a Bernoulli distribution.

As all the modules in ARSE with the above loss function are

analytically differentiable, ARSE could be trained in an end-to-end

manner with gradient descent based methods. Specifically, we learn

all the parameters in the DARSE part and the SARSE part simultane-

ously, which enable the two parts in ARSE to reinforce each other.

In practice, we use TensorFlow to implement our proposed model

and use Adam to adaptively update the learning rate, which has

been proven especially effective for training neural networks. Since

the rating data is very sparse, if we consider all the missing values

in the optimization function as 0, then this problem turns to an es-

pecially unbalance prediction problem with much more 0s than 1s.

We borrow a widely used under sampling technique for the implicit

feedback. Specifically, in each iteration in the training process, for

each observed consumption at each time (i.e., r tai = 1), we sample

m unobserved ratings as the pseudo negative consumption with a

weight of
1

m . Since the sampling process is random, each pseudo

negative sample gives very weak signals in the learning process.

Besides, since our model heavily relies on the classical LSTMs, to

prevent overfitting, we use dropout [32] technique to randomly

drop hidden units of LSTM in each iteration during the training

process.

After obtaining the model parameter set, the predicted rating of

r̂T+1ai could be approximated as:

r̂T+1ai = Siд(r̂
T+1
S,ai + r̂

T+1
D,ai ) ≈ Siд(q′i × hT+1a +w ′

i × p̃a ), (19)

where Siд(x) is a sigmoid function that constraints the results

within the range of [0, 1].

Table 2: The statistics of the two datasets.

Dataset Epinions Gowalla

Users 4,630 21,755

Items 26,991 71,139

Time Windows 12 4

Total Links 78,356 257,550

Training Ratings 62,872 278,154

Test Ratings 2,811 52,448

Link Density 0.35% 0.053%

Rating Density 0.050% 0.018%

5 EXPERIMENTS
In this section, we conduct experiments to evaluate the performance

of ARSE on two datasets. We aim to answer the following research

questions:

RQ1: Does our proposed model outperforms the state-of-the-art

baselines for the recommendation task?

RQ2: Does the combination of the dynamic and static user pref-

erences and two social attention networks make sense in recom-

mendation applications?

5.1 Experimental Settings
Datasets. We briefly introduce the two datasets that we use.

Epinions: Epinions is a who-trust-whom directed online social

network that provides product rating and review service. Users can

rate and review products in this website with rating values from 1

to 5. Also, users link to others that they trust. We used the public

available Epinions dataset provided by Richardson et al. [29] and

treated each month as a time window. Since we focus on the implicit

feedback of users over time, in Epinions dataset, we transform the

detailed ratings into a value of 0 or 1 indicating whether the user

has rated the item.

Gowalla: Peoplemake friends and share locations on this location-

based social network. In this paper, we adopted the dataset provided

by Scellato [31]. Specifically, it contains 4 snapshots, with each

month as a time window. Since we focus on the implicit feedback of

users over time, in Gowalla dataset, if a user checked in a location

at that time, the rating value is marked as 1, otherwise it equals 0.

In both datasets, we filtered out users that have less than 2 rating

records and 2 social links. We also removed those items that have

been rated less than 2 times. Table 2 shows the statistics of the two

datasets after pruning. In data splitting process, we use the data till

time T for model training, i.e., T = 11 (T=3) in Epinions (Gowalla).

To tune the parameters, we randomly select 10% from the training

data as validation data, which are used for parameter tuning.

Evaluation Metrics. To evaluate the performance of the mod-

els for item recommendation, we adopt two widely used evaluation

metrics for top-K ranking performance, i.e., Hit Ratio(HR) and Nor-

malized Discounted Cumulative Gain(NDCG) [8]. The HRmeasures

the percentage of the liked items that are presented in the ranking

list. And NDCG considers the ranking positions of the hit items in

the ranking list. For both metrics, the larger the value, the better

the performance. Since there are much more unrated items than

the rated items in the test data, similar as other works, for each

test record, we randomly select 1000 items that each user did not

rate before as the negative samples [40]. The positive sample and

the 1000 negative samples are mixed together for ranking. Then,

the final model performance is measured by averaging the ranking

scores of all the test records in the test data.

Baselines. We compare our proposed model with the following

baselines:

• BPR:It is a competing ranking based static latent factor

model for the implicit feedback. Specifically, it assumed the

predicted rating is an inner product of the corresponding

user and item latent vector, and a pair-wise loss function is

adopted for model learning [27].
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Figure 3: Overall performance under different latent dimension size D .
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Figure 4: Overall performance under different values of top-K size K .

• TMF:This model extended classical latent factor models by

considering the dynamics of users’ preferences over time.

Specifically, it introduced a temporal latent vector and mod-

eled users’ preferences over time as a tensor factorization

task [44].

• SocialMF: This is a classical model for social recommenda-

tion. Specifically, this model incorporated the social influence

among users into classical latent factor models, where the

influence strength is simply set equally for all social connec-

tions [16].

• DREAM: Dynamic REcurrent bAsket Model (DREAM) is a

recurrent network based model for temporal recommenda-

tion. Specifically, DREAM could be seen as a special case of

our dynamic social recommendation part DARSE in ARSE

without any dynamic social influence modeling[47].

• RRN: It is a state-of-the-art model that adopts recurrent neu-

ral network for temporal recommendation. RRN endowed

both users and items with an LSTM autoregressive model

that captured dynamics over time [38].

Parameter Settings. For all models that are based on latent fac-

tor models, we randomly initialize the latent factors with a Gaussian

distribution (with a mean of 0 and standard deviation of 0.01). As to

our proposed model that has an LSTM structure, the initial LSTM

cell is set as a zero matrix, and the rest parameters of our model are

initialized with the same Gaussian distribution as mentioned before.

Since all models relied on the gradient descent based methods, we

use Adam as the optimizing method for all models, with a batch

size of 1024 at each iteration. To avoid overfitting, we also adopt

the dropout in training process. We test different dropout ratios

and find that when the dropout ratio is set as 0.2, the performance

is the best. Thus, we set dropout ratio as 0.2. Please note that, there

are several other parameters in the baselines, we tune all these

parameters to ensure the best performance of the baselines for fair

comparison.

5.2 Overall Comparison(RQ1)
In this section, we compare the overall performance of various mod-

els under different parameters. Specifically, Fig. 3 shows the HR@10

and NDCG@10 for both datasets with varying latent dimension size

D. As can be seen from this figure, on both datasets, our model out-

performs all the other models with different values of D for the two

ranking metrics. E.g, whenD = 32, the improvement of HR over the

best baseline is 11.01% on Epinions. With regard to the baselines,

the performance of SocialMF and TMF improves over BPR, since

it extended BPR by considering the social influence and tempo-

ral effect. RRN always performs the best among all the baselines

by modeling the users’ dynamic latent interests with the LSTM

structure. This also validates the superiority of modeling users’

complex temporal interests with deep neural models compared to

the classical linear models. However, DREAM performs quite well

on Epinions while it does not perform well on Gowalla. We guess a

possible reason is that, the Epinions dataset exhibits more dynamics

while the Gowalla data shows more static properties (e.g., most

users can only checkin at locations nearby). As DREAM does not

considered the static user interest, it fails on the Gowalla data. Last

but not least, as the latent dimension size increases from 16 to 64,

the performances of all models on Gowalla increase. This is because

the larger dimensions could capture more hidden factors of users

and items, thus achieves better performance. On Epinions, as the

latent dimension size increases from 32 to 64, the performances be-

gin to decrease. Besides, Fig. 4 shows the HR@K and NDCG@K on

both datasets with varying top-K recommendation size K . We find

8

Session 2B: Social SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

192



the performance trends are similar as the trends in Fig. 3, with our

proposed model ARSE always shows the best performance. Based

on the overall experimental results, we could empirically conclude

that our proposed ARSE model outperforms all the baselines under

different ranking metrics and different parameters. In the following

experiments, without loss of generality, we set D = 32 and K = 10

for all models on Epinions dataset, and D = 64 and K = 10 for all

models on Gowalla.

Table 3: The improvement of the temporal and static atten-
tion subnetworks in ARSE, where AVG denotes the average
social influence strength and ATT represents our proposed
attention network.

Model

Sub model Epinions Gowalla

DARSE SARSE HR NDCG HR NDCG

ARSE

AVG - - - - -

- AVG -3.30% -2.60% 5.97% 4.55%

AVG AVG 2.23% 8.31% 6.86% 7.24%

ATT AVG 3.75% 11.19% 7.78% 8.87%

AVG ATT 2.50% 8.80% 8.90% 11.87%

ATT ATT 5.36% 12.78% 9.78% 12.76%

5.3 Attention Analysis(RQ2)
A key characteristic in our proposed model ARSE is the two de-

signed attention networks for social influence modeling: a dynamic

attention part of DARSE that captures the dynamics of social influ-

ence over time, and a static attention part of SARSE that models

the static social influence among users. In this part, we show the

effectiveness of the two attention subnetworks. We present the

different attention network strategies in Table 3. In this table, AVG

means adopting an average social influence weight among users,

which is not learned from the attention network. This average

social influence resembles an average pooling operation in neu-

ral networks. And ATT means modeling the social influence with

the designed attention networks. E.g., in this table, (DARSE=AVG,

SARSE=-) means we use the average social influence strength in

DARSE, and the SARSE part without attention modeling. With this

setting(DARSE=AVG, SARSE=-) as a baseline, we show the improve-

ment of each attention strategy compared to it. Correspondingly,

we do not show the results that are correlated with the setting

(DARSE=AVG, SARSE=-) in the first row (marked as - in the first

row).

From this table, we first compare the static part and the dynamic

part alone (the first two rows). On Epinions, the performance of

(DARSE=-, SARSE=AVG) is worse than the baseline. In contrast, the

performance of (DARSE=-, SARSE=AVG) shows better results than

the baseline on Gowalla. We guess a possible reason is that, users

exhibit more static preferences on Gowalla, while users show more

dynamic preferences on Epinions. By observing the results from

the third to the sixth rows, it is obvious that combining dynamic

part and static part together could enhance either part alone. Fur-

thermore, each attention network improves the results of the corre-

sponding model that uses the average social influence strength. For

example, on Epinions, the dynamic attention network in ARSE (i.e.,

DARSE=ATT, SARSE=AVG) improves the average (DARSE=AVG,

SARSE=AVG) social influence strength with 2.66% on NDCGmetric.

Combining both attention networks, our model further improves

7.67% compared to the results of average social influence strength

modeling. Thus, the best performance achieves when both the

static and dynamic user interests are modeled with the attention

networks.

Table 4: The contribution of different parts in ARSE. Please
refer to the explainations in Section 5.4 for the detailed
meanings of these submodules.

Model Sub modules

Epinions Gowalla

HR NDCG HR NDCG

ARSE

SRSE 0.0961 0.0537 0.6167 0.4276

SARSE 0.0994 0.0575 0.6201 0.4302

DRSE 0.1067 0.0626 0.5618 0.4003

DARSE 0.1139 0.0666 0.5702 0.4052

DRSE+SRSE 0.1102 0.0663 0.6391 0.4452

DARSE+SRSE 0.1156 0.0683 0.6411 0.4532

DRSE+SARSE 0.1112 0.0673 0.6501 0.4658

ARSE 0.1180 0.0688 0.6647 0.4718

5.4 Contribution Analysis(RQ2)
In our proposed ARSE, we adopt a combination of the DARSE mod-

ule and SARSE module to capture both users’ dynamic interests

and their static preferences. In both the DARSE part and SARSE

part, we propose an attention network to model the correspond-

ing social influence. In this subsection, we would like to show the

contribution of each part for the overall performance. Specifically,

we use DARSE and SARSE to denote the two parts in ARSE. If

DARSE disregards any dynamic attentive influence modeling (i.e,

h̃ta = 0), it degenerates to a Dynamic Recurrent Social rEcommenda-

tion (DRSE). Similar, if SARSE neglects any static attentive influence

modeling (i.e., p̃a = pa ), it degenerates to SRSE.

Table 4 shows the contribution analysis of each part in ARSE.

As can be seen from the first four rows of this table, combing the

social attention in either part would enhance the corresponding

performance. The fifth row shows that it is necessary to consider

both the dynamic and static user interests for better modeling

users’ preferences. Finally, if we model the dynamic interest and

static interest with two attention networks, the expressiveness of

our proposed ARSE model reaches the best performance. These

results clearly show the effectiveness of each module in ARSE, and

modeling them together could largely improve the recommendation

performance.

6 CONCLUSION
In this paper, we proposed an ARSE model for temporal social rec-

ommendation under the recurrent neural network structure. We

argued that users’ preferences over time are driven by their tempo-

ral complex dynamic interests and the static interests, and modeled

these two kinds of interests by leveraging social influence among

users with two attention networks. Specifically, in the dynamic

preference modeling process, we designed a temporal attention
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network to model the temporal social influence over time, and pro-

posed a dynamic social aware recurrent neural network to capture

users’ complex latent interests over time. In the general static pref-

erence modeling process, we augmented each user’s static interest

part by introducing a static social attention module to model the

stationary social influence among users. Extensive experimental

results on two real-world datasets clearly showed the improvement

of our proposed model, e.g., the improvement of our proposed ARSE

model over the best baseline is more than 11% on Epinions dataset

with the HR metric.
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