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ABSTRACT
Feature selection is the preprocessing step in machine learning
which tries to select the most relevant features for the subsequent
prediction task. Effective feature selection could help reduce dimen-
sionality, improve prediction accuracy and increase result compre-
hensibility. It is very challenging to find the optimal feature subset
from the subset space as the space could be very large. While much
effort has been made by existing studies, reinforcement learning
can provide a new perspective for the searching strategy in a more
global way. In this paper, we propose a multi-agent reinforcement
learning framework for the feature selection problem. Specifically,
we first reformulate feature selection with a reinforcement learning
framework by regarding each feature as an agent. Then, we obtain
the state of environment in three ways, i.e., statistic description,
autoencoder and graph convolutional network (GCN), in order to
make the algorithm better understand the learning progress. We
show how to learn the state representation in a graph-based way,
which could tackle the case when not only the edges, but also the
nodes are changing step by step. In addition, we study how the co-
ordination between different features would be improved by more
reasonable reward scheme. The proposed method could search the
feature subset space globally and could be easily adapted to the
real-time case (real-time feature selection) due to the nature of
reinforcement learning. Also, we provide an efficient strategy to
accelerate the convergence of multi-agent reinforcement learning.
Finally, extensive experimental results show the significant im-
provement of the proposed method over conventional approaches.
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1 INTRODUCTION
Feature selection aims to select an optimal subset of relevant fea-
tures for a downstream predictive task [2, 34]. Effective feature
selection can help to reduce dimensionality, shorten training times,
enhance generalization, avoid overfitting, improve predictive ac-
curacy, and provide better interpretation and explanation. In this
paper, we study the problem of automated feature subspace explo-
ration for improving downstream predictive tasks.

Prior studies in feature selection can be grouped into three cate-
gories: (i) filter methods (e.g., univariate feature selection [5, 33],
correlation based feature selection [10, 34]), in which features are
ranked by a specific score; (ii) wrapper methods (e.g., evolution-
ary algorithms [11, 31], branch and bound algorithms [13, 20]), in
which optimal feature subset is identified by a search strategy that
collaborates with predictive tasks; (iii) embedded methods (e.g.,
LASSO [29], decision tree [26]), in which feature selection is part
of the optimization objective of predictive tasks. However, these
studies have shown not just strengths but also some limitations. For
example, filter methods ignore the feature dependencies and inter-
actions between feature selection and predictors. Wrapper methods
have to search a very large feature space of 2N feature subspace
candidates, where N is the feature number. Embedded methods
are subject to the strong structured assumptions of predictive mod-
els. As can be seen, feature selection is a complicated process that
requires (i) strategic design of feature significance measurement,
(ii) accelerated search of near-optimized feature subset, and (iii)
meaningful integration of predictive models.

Reinforcement learning can interact with environments, learn
from action rewards, balance exploitation and exploration, and
search for long-term optimal decisions [17, 35]. These traits pro-
vide great potential to automate feature subspace exploration. Ex-
isting studies [4, 14] create a single agent to make decisions. In

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

207

https://doi.org/10.1145/3292500.3330868
https://doi.org/10.1145/3292500.3330868
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3292500.3330868&domain=pdf&date_stamp=2019-07-25


these models, the single agent has to determine the selection or
deselection of all N features. In other words, the action space of
this agent is 2N . Such formulation is similar to the evolutionary
algorithms [6, 11, 31], which are NP-hard and can merely obtain
local optima. In this paper, we intend to propose a better solution
using reinforcement learning for feature selection. However, several
challenges arise toward this goal.

First, how can we reformulate the problem so that the action
space could be limited? We reformulate the problem with multi-
agent reinforcement learning. We assign an agent to each feature,
the actions of these feature agents are to select or deselect their cor-
responding features, and the state of environment is characteristics
of the selected feature subspace. One key challenge in multi-agent
learning is to coordinate the interactions between agents. The inter-
actions can be from two aspects: (i) cooperation and (ii) competition
between agents, which can be quantified by feature-feature mutual
information in our case. We propose to integrate feature-feature
mutual information with predictive accuracy as the reward scheme.
In this way, we guide the cooperation and competition between
agents for effective feature exploration.

Second, how can we accurately describe the state representa-
tion in multi-agent reinforcement learning? We regard the selected
feature subspace as the state of environment. To construct state rep-
resentations, traditional methods are to extract descriptive statistics
(e.g., mean, variance) of the state distribution. However, in feature
subspace exploration, the number of selected features changes over
time during the exploratory process. If we also extract the mean
and variance of each selected feature to describe the state, length
of the state representation vector will change over time. But, the
policy networks in multi-agent reinforcement learning require a
fixed-length state representation. To tackle this challenge, we de-
velop three different methods: (i) meta descriptive statistics, (ii)
auto-encoder based deep representation, (iii) dynamic graph based
graph convolutional network (GCN). In Method i, after extracting
the first round descriptive statistics of each selected feature, we
extract the second-round descriptive statistics of these first-round
descriptive statistics as the state representation vector, so that the
state length will not change along with the varying number of
selected features. In Method ii, since the number of rows are static
in the selected feature subspace, we construct a row-row similar-
ity graph, namely static subspace graph, to describe the state. An
autoencoder method is applied to learn the state representation.
In Method iii, we construct a feature-feature similarity graph to
describe the state. Since nodes are features, the number of nodes
changes over time. We exploit GCN to learn state representations
from dynamic graphs.

Third, how can we improve the robustness of our framework
against a vastly different state distribution, while accelerating the
exploration of optimal features? Traditionally, we can use expe-
rience replay [18, 19] to train our multi-agent framework. In the
experience replay, an agent takes samples from the agent’s memory
that stores different types of training samples to train the model. In
automatic control area, reinforcement learning usually considers
all of the samples in the memory, because all possible states need
to be evaluated. However, in feature selection, noise, outliers, or
low-rewarded data samples can lead to inaccurate understanding of

a feature and feature-feature correlations, and, thus, jeopardize the
accuracy of feature selection. Can we create a sampling strategy to
select sufficient high-quality samples and avoid low-quality sam-
ples? An intuitive method is to oversample high-quality samples
by increasing their sampling probabilities. But, this method can not
guarantee the independences of samples between different training
steps, as it is equivalent to reduce the memory size. To address this
issue, we develop a gaussian mixture model (GMM) based genera-
tive rectified sampling strategy. Specifically, we first train a GMM
with high-quality samples. The trained GMM is then used to gen-
erate a sufficient number of independent samples from different
mixture distribution components for reinforcement learning.

In summary, in this paper, we develop an enhanced multi-agent
reinforcement learning framework for feature subspace exploration.
Specifically, our contributions are as follows: (1) We reformulate
feature subspace exploration with a multi-agent reinforcement
learning framework and integrate the interactions between features
into a new reward scheme. (2) We develop three different methods:
meta descriptive statistics, autoencoder based deep representation,
and dynamic graph based graph convolutional network (GCN), to
derive accurate state representation. (3) We develop a GMM-based
generative rectified sampling method to improve the training and
exploration. (4) We conduct extensive experiments to demonstrate
the enhanced performances of our method.

2 PROBLEM FORMULATION
We study the problem of feature subspace exploration, which is
formulated as a multi-agent reinforcement learning task. Figure
1 shows an overview of our proposed multi-agent reinforcement
learning based feature exploration framework. Given a set of fea-
tures to be explored, we first create a feature agent for each feature.
This feature agent is to decide whether its associated feature is
selected or not. The selected feature subset is regarded as the en-
vironment, in which feature agents interact with each other. The
correlations between features are schemed by reward assignment.
Specifically, the components in ourmulti-agent reinforcement learn-
ing framework includes agents, state, environment, reward, reward
assignment strategy, and agent actions.
Multi-Agent. Assuming there are N features, we define N agents
for theN features. For one agent, it is designed tomake the selection
decision for the corresponding feature.
Actions. For the i-th feature agent, the feature action ai = 1 in-
dicates the i-th feature is selected, and ai = 0 indicates the i-th
feature is deselected.
Environment. In our design, the environment is the feature sub-
space, representing a selected feature subset. Whenever a feature
agent issue an action to select or deselect a feature, the state of
feature subspace (environment) changes.
State. The state s is to describe the selected feature subset. To ex-
tract the representation of s , we explore three different strategies,
i.e., meta descriptive statistics, autoencoder based deep representa-
tion and dynamic graph based graph convolutional network (GCN).
We will elaborate these three state representation techniques in
Section 3.3.
Reward. We design a measurement to quantify the overall reward
R generated by the selected feature subset, which is defined the
weighted sum of (i) predictive accuracy of the selected feature
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Figure 1: From traditional feature selection to multi-agent reinforcement learning based feature subspace exploration.
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Figure 2: The demonstration of reward assignment process.
The feature agent 1 and 2 issue an action to select the

feature 1 and feature 2. The feature agent 3 issues an action
to disselect the feature 3.

subset Acc , (ii) redundancy of the selected feature subset Rv , and
(iii) relevance of the selected feature subset Rd .
Reward Assignment Strategy. We develop a strategy to allocate
the overall reward to each feature agent. The assignment of the
overall reward to each agent, indeed, shows the coordination and
competition relationship among agents. In principle, we should
recognize and reward all of the participated feature agents. Figure
2 shows an example of reward assignment. There are four features
with four corresponding feature agents. In the previous iteration,
the feature 1, 2, 3 are selected, and the feature 4 is unselected. In the
current iteration, feature agent 1 and feature agent 2 issue actions
to select feature 1 and feature 2; feature agent 3 issues an action to
deselect feature 3; feature agent 4 does not participate and issue
any action to change the status of feature 4. In summary, there are
only three feature agents (FA1, FA2, FA3) that participate and issue
actions. Therefore, the current reward R is equally shared by these
three agents.

3 PROPOSED METHOD
We first present the multi-agent reinforcement learning framework
for automated feature subspace exploration. Later, we discuss how
to measure reward, how to improve state representation, and how
to accelerate feature subspace exploration.

3.1 Framework Overview
Figure 3 shows our proposed framework consists of many feature
subspace exploration steps. Each exploration step includes two
stages, i.e., control stage and training stage.

In the control stage, each feature agent takes actions based on
their policy networks, which take current state as input and output
recommended actions and next state. The select/deselect actions of
each feature agent will change the size and contents of the selected
feature subset, and thus, lead to a new selected feature subspace. We
regard the selected feature subset as environment. The state repre-
sents the statistical characteristics of the selected feature subspace.
We derive a comprehensive representations of the state through
three different methods, i.e., descriptive statistics, autoencoder and
GCN (refer to Section 3.3). Meanwhile, the actions taken by fea-
ture agents generate an overall reward. This reward will then be
assigned to each of the participating agents.

In the training stage, agents train their policy via experience
replay independently. For agent i , at time t , a newly-created tuple
{sti , a

t
i , r

t
i , s

t+1
i }, including the state (sti ), the action (ati ), the reward

(r ti ) and the next state (st+1i ), is stored into each agent’s memory.
We then propose a GMM-based generative rectified sampling (refer
to Section 3.4) to derive mini-batches from memories. The agent
i uses its corresponding mini-batch samples to train its Deep Q-
Network (DQN), in order to obtain the maximum long-term reward
based on the Bellman Equation [27]:

Q(sti ,a
t
i |θt ) = r

t
i + γ max Q(st+1i ,a

t+1
i |θt+1) (1)

where θ is the parameter set of Q network, and γ is the discount.
The exploration of feature subspace continues until convergence

or meeting several predefined criteria.

3.2 Measuring Reward
We propose to combine the predictive accuracy Acc , the feature
subspace relevance Rv , and the feature subspace redundancy Rd as
the reward R of actions.
Predictive Accuracy.Our goal is to explore and identify a satisfac-
tory feature subset, which will be used to train a predictive model
in a downstream task, such as classification and outlier detection.
We propose to use the accuracy Acc of the predictive model to
quantify the reward. Specifically, if the predictive accuracy is high,
the actions that produce the selected feature subset should receive
a high reward; if the predictive accuracy is low, the actions that
produce the selected feature subset should receive low rewards.
Feature Subspace Characteristics.Aside from exploiting the pre-
dictive accuracy as reward, we propose to take into account the
characteristics of the selected feature subset. Specifically, a qualified
feature subset is usually of low information redundancy and of high
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information relevance to the predictive labels (responses). Both the
information relevance and redundancy can be quantified by the
mutual information, denoted by I . Formally, I by:

I (x ;y) =
∑
i, j

p(xi ,yj )loд(
p(xi ,yj )

p(xi )p(yj )
) (2)

where xi , yi is the i-th and j-th feature, p(x ,y) is the joint distribu-
tion of x and y, while p(x) and p(y) are marginal distribution of x
and y.
• The information redundancy of a feature subset, denoted
by Rd , can be quantified by the sum of pairwise mutual
information among features. Formally, Rd is given by:

Rd =
1
|S |2

∑
xi ,xj ∈S

I (xi ;xj) (3)

where S is the feature subset, xi is the i-th feature,
• The information relevance of a feature subset, denoted by
Rv , can be quantified by the mutual information between
features and labels. Formally, Rv is given by:

Rv =
1
|S |

∑
xi ∈S

I (xi ;c) (4)

where c is the label vector.

3.3 Improving State Representation
Assuming there is aM∗N datasetD, which includesM data samples
and N features. Let nj be the number of selected features at the j-th
exploration step. Then,M ∗nj is the dimension of the selected data
matrix S , which varies over exploration steps. However, the policy
network and target network inDQN require the state representation
vector s to be a fixed-length vector at each exploration step. We
thus, need to derive a fixed-length state vector s from the selected
data matrix S , whose dimensions change over time.

To derive accurate state representation with fixed length, we
develop three different methods, including (i) meta descriptive sta-
tistics of feature subspace; (ii) static subspace graphs based au-
toencoder; (iii) dynamic feature-feature similarity graphs based
graph convolutional network (GCN). The commonness between
these three methods is that they all first learn representations for

each feature, and then aggregate them to get a state representation.
The differences between them lie on the representation learning
algorithms and aggregation strategies.
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Figure 4: Meta descriptive statistics. We extract descriptive
statistics twice from the feature subspace to obtain a

fixed-length state vector.

Method 1: Meta Descriptive Statistics of Feature Subspace.
Figure 4 shows howwe extract the meta data of descriptive statistics
from the selected data matrix through a two step procedure.

Step 1: We extract descriptive statistics of the selected data ma-
trix S , including the standard deviation, minimum, maximum and
Q1 (the first quartile), Q2 (the second quartile), and Q3 (the third
quartile). Specifically, we extract the seven descriptive statistics of
each feature (column) in S , and thus, obtain a descriptive statistics
matrix D with size of 7 ∗ nj .

Step 2: We extract the seven descriptive statistics of each row
in the descriptive statistics matrix D, and obtain a meta descriptive
statistics matrix D

′
with a size of 7 ∗ 7.

Finally, we link each column D
′
together into the state vector s

with a fixed length of 49.
Method 2: Autoencoder Based Deep Representation of Fea-
ture Subspace. Autoencoder has been widely used for represen-
tation learning by minimizing the reconstruction loss between an
original input and a reconstructed output [1]. An autoencoder con-
tains an encoder that maps the input into a latent representation,
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and an decoder that reconstructs the original input based on the
latent representation.

Figure 5 shows a two-step algorithm to learn the state vector.
Step 1: Assuming at the j-th exploration step, S is the selected

data matrix, and nj is the number of selected features. For each
feature (column) in S , we apply an autoencoder to convert each
feature column into a k-length latent vector, and thus, obtain a
latent matrix L with a dimension of k ∗ nj . However, L cannot
represent the state, because the size of L is not static and still varies
over number of selected features nj at the j-th exploration step.

Step 2:We apply another auto-encoder to map each row of L into
a o-length latent vector, and obtain a static encoded matrix L

′
with

a fixed dimension of k ∗ o.
Finally, we link each column in L

′
together into the state vector

s with a fixed length of k ∗ o.
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Figure 5: Autoencoder based deep representations. We use
two auto-encoders to map the feature subspace into a

fixed-length state vector.

Method 3: Dynamic-Graph Based Graph Convolutional Net-
work (GCN). Method 1 and method 2 extract explicit and latent
representations of each feature. In this method, we consider not
just a feature’s individual representations, but also the correlations
among features. Figure 6 shows how the GCN works. To better cap-
ture the relationship among features, we first convert the selected
data matrix S into a dynamic complete graph G, where a node is
a feature column in S . With the feature correlation graph G, any
graph node embedding techniques could be used for node latent
representation by exploiting the correlation among features. As
the focus of this paper is not to design more sophisticated node
embedding models, we choose GCN as it is a state-of-the-art graph
embedding models and shows competing effectiveness in many
graph based tasks.

Let S be the selected data matrix with a dimension ofM ∗N ,Z be
the representation matrix of nodes (features) with a dimension of
k ∗N , k is the length of updated representation. The neural network
layer in GCN is given by:

H (l+1) = f (H (l ),A) (5)

whereH (0) = S ,H (L) = Z , L is the layer number,A is the adjacency
matrix of graph G. The regular GCN can be reduced into a simpli-
fied version by considering the node’s own representation (rather
than merely the neighbor structures) and performing symmetric
normalization [12]:

f (H (l ),A) = σ (D̂−
1
2 ÂD̂−

1
2H (l )W (l )), (6)

where Â = A + I with I being an identity matrix, D̂ is the diagonal
node degree matrix of Â.

By solving GCN, we obtain the latent representations Z of each
feature. We average the representation of each feature into the
k-legnth state representation vector.
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Figure 6: Dynamic-graph based GCN. We denote the
feature subspace by a dynamic graph and use GCN to

update representations of each node.

3.4 Accelerating Feature Subspace Exploration
via Generative Rectified Sampling

Experience replay is widely used to improve training efficiency of
neural networks in reinforcement learning [18, 19]. After taking
each action, the latest sample, in the form of a tuple that consists of
the action (a), the reward (r ), the state (s) and the next state (s

′

), is
stored into thememory to replace the oldest sample. In training step,
a mini-batch of samples are picked to update the policy network.

In the task of feature subspace exploration, we are particularly
interested in exploiting high-quality samples to accelerate the ex-
ploration speed. Prior studies tackle this problem by increasing the
sampling probabilities of high-quality samples [24, 30]. However,
such strategy create a new problem: the sampler repeatedly select a
very limited number of high-quality samples. Consequently, prior
studies can not guarantee the independences of selected samples
between different training steps, and can not cover a comprehensive
space in the unknown high-quality sample population.

To deal with this problem, we propose a gaussian mixture model
(GMM) based generative rectified sampling algorithm. For each
agent, as shown in algorithm 1, we take a set of memory samples
T = {< a, r , s, s

′

>} as inputs. We firstly cluster the memory sam-
ples into two groups:T0 andT1. Samples with the selected action
(a = 0) are assigned to groupT0, while samples with the deselected
action (a = 1) are assigned to groupT1. Later, we rank the memory
samples inT in terms of reward (r ) and select the top p proportion
of high-reward samples in each group as high-quality samples. The
selected high-quality samples are then used to train two GMM
based generative models for their corresponding groups via an ex-
pectation maximization (EM) algorithm [3]. After that, for each
group, we use its corresponding well-trained GMM model to gener-
ate simulated samples to replace the 1−p proportion of low-reward
samples in the corresponding group. In this way, we create two
high-reward, large-size, yet independent memory sample sets for
the select-action and deselect-action groups. We combine the two
simulated memory sample sets into a new high-quality dataset. The
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agent will take a mini-batch of samples from the new high-quality
dataset for accelerating training.

Algorithm 1: The GMM-Based Generative Rectified Sampling
Algorithm
Input :Memory datasetT .
Output :A mini-batch of samples B.

1 p← high-quality sample proportion ofT .
2 StratifyT into two groups. Samples with a = 0 are assigned to

groupT0 and samples with a = 1 are assigned to groupT1.
3 for i = 0 to 1 do
4 Ni ← sample number ofTi .
5 Ki ← component number of GMM model Gi .
6 Rank samples inTi by their reward r , then select top Ni ∗p

samples fromTi to form the high-quality dataset Hi .
7 Use Hi to train the GMM Gi =

∑Ki
1 ϕiN(µi , Σi ) via EM

algorithm.
8 Generate Ni ∗ (1 − p) samples fromGi to form the

generated datasetGi .
9 JoinHi andGi to create high-quality dataset of action i ,T

′
i .

10 end
11 JoinT

′
0 andT

′
1 to get high-quality datasetT

′
.

12 Sample a mini-batch of samples B fromT
′
.

4 EXPERIMENTAL RESULTS
We evaluate the proposed method in feature selection with real-
world data.
4.1 Data Description
The experiments are conducted on a publicly available cartographic
dataset from Kaggle 1. There are 15120 samples with 54 features that
describe the characteristics of different wilderness areas. The class
labels are categorical values that range from 1 to 7, and represent
seven forest cover types (the predominant kind of tree cover) in the
areas. Among the 54 features, 10 of them are continuous, and the
remaining 44 are categorical.
4.2 Evaluation Metrics
To show the effectiveness of the proposed method, we use the
following metrics for evaluation.
Overall Accuracy is the ratio of number of correct predictions to
number of all predictions. Formally, the overall accuracy is given
by T P+T N

T P+T N+F P+FN , where TP , TN , FP , FN are true positive, true
negative, false positive and false negative for all classes. We use
this metric to measure the accuracy of a classifier on test dataset
for all cover types. The latter three metrics measure classification
performance of each cover type from different aspects.
Precision is given by T Pk

T Pk+F Pk
which represents the ratio of true

positive to true positive plus false positive with respect to the k-th
(k ∈ [1, 7]) type of cover.
Recall is given by T Pk

T Pk+FNk
which represents the ratio of true

positive to true positive plus false negative with respect to the k-th
(k ∈ [1, 7]) type of cover.

1https://www.kaggle.com/c/forest-cover-type-prediction/data

F-measure considers both precision and recall in a single metric
by taking their harmonic mean. Formally, F-measure is given by
2∗P ∗R/(P +R), where P and R are precision and recall respectively.
4.3 Baseline Algorithms
We compare performance of our proposed Multi-Agent Reinforce-
ment Learning Feature Selection (MARLFS) against the following
six baseline algorithms, where K-Best Selection and mRMR belong
to filter methods; LASSO and Recursive Feature Elimination (RFE)
belong to embedded methods; Genetic Feature Selection (GFS) and
Single-Agent Reinforcement Learning Feature Selection (SARLFS)
belong to wrapper methods.
(1) K-Best Selection. The K-Best Selection [33] firstly ranks fea-
tures by their χ2 scores with the target vector (label vector), and
then selects the K highest scoring features. In the experiments, we
make K equal to the number of selected features in MARLFS.
(2) mRMR. The mRMR [21] firstly ranks features by minimizing
feature’s redundancy, while maximizing their relevance with the
target vector (label vector), and then selects the K highest ranking
features. In the experiments, we make K equal to the number of
selected features in MARLFS.
(3) LASSO. LASSO [29] conducts feature selection and shrinkage
via l1 penalty, which drops the feature variables whose coefficients
are 0. The hyper parameter in LASSO is its regularization weight λ,
which is set to 1.0 in the experiments.
(4) Recursive Feature Elimination (RFE). RFE [7] selects fea-
tures by recursively selecting smaller and smaller feature subsets.
Firstly, the predictor is trained by all features and the importance
of each feature are scored by the predictor. After that, the least im-
portant features are deselected. This procedure process recursively
until the desired number of features are selected. In the experiments,
we set the selected feature number half of the feature space.
(5) Genetic Feature Selection (GFS). Genetic Feature Selection
[15] selects features by firstly calculating the fitness level for each
feature and then generates better feature subsets via crossover and
mutation. In the experiments, we set crossover probability to 0.5,
mutation probability to 0.2, crossover independent probability to
0.5 and mutation independent probability to 0.05.
(6) Single-Agent Reinforcement Learning Feature Selection
(SARLFS). In SARLFS [14], the agent learns a KWIK (Knows What
It Knows) model, which is represented by a dynamic Bayesian
network, deduces a minimal feature set from this network, and
computes a policy on this feature subset using dynamic program-
ming methods. In the experiments, the two accuracy thresholds in
the KWIK are set to ϵ = 0.15, δ = 0.10.
4.4 Overall Performances
We compare our method MARLFS with baseline methods in terms
of overall accuracy as well as precision, recall and F-measure of the
seven classes on the real-world data. In the experiments, for all deep
networks, we set mini-batch size to 32 and use AdamOptimizer with
a learning rate of 0.01. For all experience replays, we set memory
size to 2000. We set the Q network in our methods as a two-layer
ReLU with 64 and 8 nodes in the first and second layer. The high-
quality proportion in GMM sampling is 0.20. Unless specified, we
use GCN method as the representation learning algorithm in the
experiments, whose network is a two-layer ReLU with 128 and
32 nodes in the first and second layer. The predictor we use is a

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

212



Table 1: Overall accuracy of feature selection algorithms on
different predictors.

Predictors
RF LASSO DT SVM XGBoost

A
lg
or
ith

m
s

K-Best 0.7943 0.8246 0.8125 0.8324 0.8076
mRMR 0.8042 0.8124 0.8096 0.8175 0.8239
LASSO 0.8426 0.8513 0.8241 0.8131 0.8434
RFE 0.8213 0.8236 0.8453 0.8257 0.8348
GFS 0.8423 0.8318 0.8350 0.8346 0.8302
SARLFS 0.8321 0.8295 0.8401 0.8427 0.8450
MARLFS 0.8690 0.8424 0.8583 0.8542 0.8731

random forest with 100 decision trees. Figure 7 shows that our
method exceeds all of the baseline methods in the task of exploring
a qualified feature subset.
4.5 Robustness Check
The predictive accuracy relies on not just feature selection, but also
predictors. We apply our method to different predictors in order to
investigate whether our explored feature subset are consistently
stable and can consistently outperform other baseline methods on
various predictors. In this way, we can examine the robustness
of our methods. Aside from the random forest (RF) predictor, we
use (i) LASSO; (ii) Decision Tree (DT); (iii) SVM with a rbf kernel,
and (iv) XGBoost as predictors for this experiment. Table 1 shows
that our MARLFS outperforms the baselines methods over almost
all of the predictors. However, when we use LASSO to perform
both feature selection and target prediction, the accuracy of our
method is slightly lower than LASSO. This might be explained by
the reason that both feature section and prediction optimization
are integrated and unified in a single model framework. However,
when we use LASSO to perform feature selection, and use other
classification models for prediction, our method outperform such
type of baselines.
4.6 Study of Reward Function
We study the impacts of the reward function design in our method.
We consider four cases: (i) Acc that only considers accuracy in the
reward function; (ii) Rv that only considers relevance in the reward
function; (iii) Rd that only considers redundancy in the reward
function; (iv) Acc+Rv+Rd that considers accuracy, relevance and
redundancy in the reward function.

Figure 8 shows that Acc is the second best reward function, since
it leads the exploration to the direction of improving accuracy. Rv
and Rd are less satisfactory. This is because both are unsupervised
indicators of rewards and are not directly relevant to prediction
accuracy. Acc+Rv+Rd achieve the best performances since it con-
siders both supervised indicator and unsupervised indicator into
account. Specifically, Figure 8(a) shows the comparisons of overall
accuracy over exploration steps. Figure 8(b), 8(c) and 8(d) show
the comparisons of precision, recall and F-measure over different
classes with 3000 exploration steps.
4.7 Study of State Representation Learning
We compare the performances different representation learning
methods. We consider five cases, i.e., (i) MDS: meta descriptive
statistics, which uses the meta data of descriptive statistics of fea-
ture subspace to represent the state; (ii) AE: auto-encoder based

deep representation, which uses deep auto-encoder to encode fea-
ture subspace twice to obtain state representation; (iii) GCN: uses
Dynamic-Graph Based GCN; (iv)MDS+AE: combines the variables
of (i) and (ii) to represent the state; (v) MDS+AE+GCN: combines
the variables of (i), (ii), and (iii) to represent the state.

Figure 9 shows GCN outperform MDS and AE. This is because
GCN could better capture the relationship between features in the
feature subspace. After taking the two combined methods into
account, MDS+AE achieves the best performance, since it considers
both explicit and implicit information from the selected features. An
interesting observation is that MDS+AE+GCN doesn’t have better
performance than MDS+AE+GCN. This might be explained by the
fact that there is potential training loss in the training phrase of AE
and GCN. In other words, integrating AE and GCN might possibly
introduce more model biases. Specifically, Figure 9(a) shows the
comparisons of overall accuracy over exploration steps. Figure
9(b), 9(c) and 9(d) show the comparisons of precision, recall and
F-measure over different classes with 3000 exploration steps.

4.8 Study of GMM based Generative Rectified
Sampling

We study the impacts of GMM-based generative rectified sampling,
where the high-quality proportion p ∈ [0.1, 0.2, 0.3, 0.4, 1] respec-
tively. Here, when p = 1, our GMM based method will be reduced
into the traditional sampling strategy, where samples are consid-
ered as high-quality. We call the method with p = 1 as the non
GMM method.

Figure 10 all GMM-based sampling methods (p < 1) outperform
the non-GMM method. Among the all these methods, p = 0.2
shows the best performances and can quickly explore a quality
feature space. Specifically, 10(a) shows the comparisons of overall
accuracy over exploration steps. Figure 10(b), 10(c) and 10(d) show
the comparisons of precision, recall and F-measure over different
classes with 3000 exploration steps.

5 RELATEDWORK
Feature Selection. Feature selection can be categorized into three
types, based on how the feature selection algorithm combines with
the machine learning tasks, i.e., filter methods, wrapper methods
and embedded methods [2, 23]. Filter methods rank the features
merely by relevance scores and only top-ranking features are se-
lected. The representative filter methods are univariate feature
selection [5, 33] and correlation based feature selection [10, 34].
With very simply computation complexity, filter methods are very
fast and thus they’re efficient on high-dimensional datasets. How-
ever, they ignore the feature dependencies, as well as interactions
between feature selection and the subsequent predictors. Unlike
filter methods, wrapper methods take advantage of the predictors
and consider the prediction performance as the objective function
[8]. The representative wrapper methods are branch and bound al-
gorithms [13, 20]. Wrapper methods are supposed to achieve better
performance than filter methods since they search on the whole
feature subset space. However, the feature subset space exponen-
tially increases with the number of features, making traversing
the feature subset space a NP-hard problem. Evolutionary algo-
rithms [6, 11, 31] low down the computational cost but could only
promise local optimum results. Embedded methods combine feature
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Figure 7: Performance comparison of different feature selection algorithms.
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Figure 8: Performance comparison of different reward functions.
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Figure 9: Performance comparison of different representation learning methods.
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Figure 10: Performance comparison of different GMM sampling strategies.

selection with predictors more closely than wrapper methods, and
actually they incorporate feature selection as part of predictors. The
most widely used embedded methods are LASSO [29], decision tree
[26] and SVM-RFE [9]. Embedded methods could have supreme
performance on the incorporated predictors, but normally not very
compatible with other predictors.
Multi-Agent Reinforcement Learning. Our work is related to
multi-agent reinforcement learning, where multiple agents share a
complex environment and interact with each other [28]. Stankovic
et al. proposed new algorithms for multi-agent distributed iterative
value function approximation where the agents are allowed to have
different behavior policies while evaluating the response to a single
target policy [25]. Liao et al. proposed Multi-objective Optimization

by Reinforcement Learning (MORL) to solve the optimal power
system dispatch and voltage stability problem, which is undertaken
on individual dimension in a high-dimensional space via a path
selected by an estimated path value which represents the poten-
tial of finding a better solution [16]. Yang et al. developed deep
reinforcement learning algorithms which could handle large scale
agents with effective communication protocol [22, 32]. Lin et al.
proposed to tackle the large-scale fleet management problem using
reinforcement learning, and proposed a contextual multi-agent rein-
forcement learning framework which successfully tackled the taxi
fleet management problem [17]. However, these methods define
their states by handcraft rules instead of by representation learning,
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which may leave out important information provided by the envi-
ronment. And also, as we know the training speed of multi-agent
reinforcement learning is low due to the large action space, but
these methods rarely study how to improve the training efficiency.
Reinforcement Learning in Feature Selection. Existing stud-
ies [4, 14] create a single agent to make decisions. However, this
agent has to determine the selection or disselection of all N fea-
tures. In other words, the action space of this agent is 2N . Such
formulation is similar to the evolutionary algorithms [6, 11, 31],
which are NP-hard problems and can merely obtain local optima.

6 CONCLUSION REMARKS
In this paper, we study the problem of automated feature subspace
exploration. Through this method, we can reduce dimensionality,
shorten training times, enhance generalization, avoid overfitting,
and improve predictive accuracy in order to support downstream
predictive tasks. We formulate the problem of automated feature
subspace exploration as amulti-agent reinforcement learning frame-
work, in which each feature is associated to a feature agent, a feature
agent can decide to select or drop a feature, the reward function
is a combination of accuracy, redundancy, and relevance, and the
environment is the characteristics of the selected feature subspace.
To better represent the environment, we propose three different rep-
resentation learning methods. To accelerating feature exploration,
we develop a GMM-based generative rectified sampling method.
Finally, we present extensive experiments on a real world dataset
to demonstrate the effectiveness of the proposed method.
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