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ABSTRACT
Precise user and item embedding learning is the key to building a
successful recommender system. Traditionally, Collaborative Filter-
ing (CF) provides a way to learn user and item embeddings from the
user-item interaction history. However, the performance is limited
due to the sparseness of user behavior data. With the emergence
of online social networks, social recommender systems have been
proposed to utilize each user’s local neighbors’ preferences to al-
leviate the data sparsity for better user embedding modeling. We
argue that, for each user of a social platform, her potential embed-
ding is influenced by her trusted users, with these trusted users
are influenced by the trusted users’ social connections. As social
influence recursively propagates and diffuses in the social network,
each user’s interests change in the recursive process. Nevertheless,
the current social recommendation models simply developed static
models by leveraging the local neighbors of each user without sim-
ulating the recursive diffusion in the global social network, leading
to suboptimal recommendation performance. In this paper, we pro-
pose a deep influence propagation model to stimulate how users
are influenced by the recursive social diffusion process for social
recommendation. For each user, the diffusion process starts with
an initial embedding that fuses the related features and a free user
latent vector that captures the latent behavior preference. The key
idea of our proposed model is that we design a layer-wise influ-
ence propagation structure to model how users’ latent embeddings
evolve as the social diffusion process continues. We further show
that our proposed model is general and could be applied when the
user (item) attributes or the social network structure is not available.
Finally, extensive experimental results on two real-world datasets
clearly show the effectiveness of our proposed model, with more
than 13% performance improvements over the best baselines for
top-10 recommendation on the two datasets.

CCS CONCEPTS
• Information systems→ Social recommendation; Personal-
ization; • Human-centered computing → Social networks.
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1 INTRODUCTION
By providing personalized item suggestions for each user, recom-
mender systems have become a cornerstone of the E-commerce
shopping experience [2, 23, 41]. Among all recommendation al-
gorithms, learning low dimensional user and item embeddigs is a
key building block that have been widely studied [20, 31]. With
the learned user and item embeddings, it is convenient to approxi-
mate the likelihood or the predicted preference that a user would
give to an item by way of a simple inner product between the
corresponding user embedding and item embedding.

Many efforts have been devoted to designing sophisticated mod-
els to learn precise user and item embeddings. In the typical collabo-
rative filtering scenario with user-item interaction behavior, the la-
tent factor based approaches have received great success [20, 31, 32].
However, the recommendation performance is unsatisfactory due
to the sparseness of user-item interaction data. As sometimes users
and items are associated with features, factorization machines gen-
eralize most latent factor models with an additional linear regres-
sion function of user and item features [31]. Recently, researchers
also designed more advanced neural models based on latent factor
models and FMs [9, 12]. E.g., NeuMF extends over latent factor
based models by modeling the complex relationships between user
and item embedding with a neural architecture [12]. These deep em-
bedding models advance the performance of previous shallow em-
bedding models. Nevertheless, the recommendation performance
is still hampered by the sparse data.

Luckily, with the prevalence of online social networks, more
and more people like to express their opinions of items in these
social platforms. The social recommender systems have emerged
as a promising direction, which leverage the social network among
users to alleviate the data sparsity issue and enhance recommen-
dation performance [7, 16, 25, 35]. These social recommendation
approaches are based on the social influence theory that states
connected people would influence each other, leading to the similar
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interests among social connections [3, 4, 22]. E.g., social regulariza-
tion has been empirically proven effective for social recommenda-
tion, with the assumption that connected users would share similar
latent embeddings [15, 16, 25]. TrustSVD++ extended the classic
latent factor based models by incorporating each user’s trusted
friends’ feedbacks to items as the auxiliary feedback of the active
user [7]. Despite the performance improvement by considering the
first-order local neighbors of each user, we argue that, for each user,
instead of the interest diffusion from a user’s neighbors to this user
at one time, the social diffusion presents a dynamic recursive effect
to influence each user’s embedding. In detail, as the social influ-
ence propagation process begins (i.e., the diffusion iteration k = 1),
each user’s first latent embedding is influenced by the initial em-
beddings of her trusted connections. With the recursive influence
diffuses over time, each user’s latent embedding at k-th iteration
is influenced by her trusted neighbors at the (k − 1)-th iteration.
Therefore, the social influence recursively propagates and diffuses
in the social network. Correspondingly, each user’s interests change
in the recursive process. Precise simulating the recursive diffusion
process in the global social network would better model each user’s
embedding, thus improve the social recommendation performance.

In this paper, we propose DiffNet: an Influence Diff usion neural
network based model to stimulate the recursive social influence
propagation process for better user and item embedding modeling
in social recommendation. The key idea behind the proposed model
is a carefully designed layer-wise influence diffusion structure for
users, which models how users’ latent embeddings evolve as the
social diffusion process continues. Specifically, the diffusion process
starts with an initial embedding for each user on top of the fusion
of each user’s features and a a free user latent vector that captures
the latent behavior preference. For the item side, as items do not
propagate in the social network, each item’s embedding is also
fused by the free item latent embedding and the item features. With
the influence diffuses to a predefined K-th diffusion step, the K-th
layer user interest embedding is obtained. In fact, with the learned
user and item embedddings, DiffNet can be seamlessly incorporated
into classical CF models, such as BPR and SVD++, and efficiently
trained using SGD.

We summarize the contributions of this paper as follows:

• We propose a DiffNet model with a layer-wise influence
propagation structure to model the recursive dynamic social
diffusion in social recommendation. Besides, DiffNet has
a fusion layer such that each user and each item could be
represented as an embedding that encompasses both the
collaborative and the feature content information.

• We show that the proposed DiffNet model is time and storage
efficient in comparison to most embedding based recommen-
dation models. The proposed model is a generalization of
many related recommendation models and it is flexible when
user and item attributes are not available.

• Experimental results on two real-world datasets clearly show
the effectiveness of our proposedmodel. DiffNet outperforms
more than 13.5% on Yelp and 15.5% on Flickr for top-10
recommendation compared to the the baselines with the
best performance.

2 PRELIMINARIES
In a social recommender system, there are two sets of entities: a
user set U ( |U | =M ), and an item set V ( |V | = N ). As the implicit
feedback (e.g., watching an movie, purchasing an item, listening to
a song ) are more common in, we also consider the recommendation
scenario with implicit feedback [32]. Let R ∈ RM×N denote users’
implicit feedback based rating matrix, with rai = 1 if user a is
interested in item i , otherwise it equals 0. The social network can be
represented as a user-user directed graph G = [U , S ∈ RM×M ], with
U is the user set and S represents the social connections between
users. If user a trusts or follows user b, sba = 1, otherwise it equals
0. If the social network is undirected, then user a connects to user
b denotes a follows b, and b also follows a, i.e., sab = 1 ∧ sba = 1.
Then, each user a’s ego social network, i.e., is the i-th column (sa )
of S. For notational convenience, we use Sa to denote the userset
that a trusts, i.e., Sa = [b |sba = 1].

Besides, each user a is associated with real-valued attributes (e.g,
user profile), denoted as xa in the user attribute matrix X ∈ Rd1×M .
Also, each item i has an attribute vector yi (e.g., item text representa-
tion, item visual representation) in item attribute matrix Y ∈ Rd2×N .
Then, the social recommendation problem can be defined as:

Definition 2.1 (SOCIAL RECOMMENDATION). Given a rating ma-
trix R, a social network S, and associated real-valued feature matrix
X and Y of users and items, our goal is to predict users’ unknown
preferences to items as: R̂ = f (R, S,X,Y), where R̂ ∈ RM×N denotes
the predicted preferences of users to items.

Given the problem definition, we introduce the preliminaries
that are closely related to our proposed model.

Classical Embedding Models. Given the user-item rating ma-
trix R, the latent embedding based models embed both users and
items in a low latent space, such that each user’s predicted prefer-
ence to an unknown item turns to the inner product between the
corresponding user and item embeddings as[20, 31, 32]:

r̂ai = vTi ua, (1)
where ua is the embedding of a, which is the a-th column of the user
embedding matrix U. Similarly, vi represents item i’s embedding in
the i-th column of item embedding matrix V.

SVD++ is an enhanced version of the latent factor based mod-
els that leveraged the rated history items of each user for better
user embedding modeling [19]. In SVD++, each user’s embedding
is composed of a free embedding as classical latent factor based
models, as well as an auxiliary embedding that is summarized from
her rated items. Therefore, the predicted preference is modeled as:

r̂ai = vTi (ua +
1

|Ra |

∑
j ∈Ra

yj ) (2)

where Ra = [j : raj = 1] is the itemset that a shows implicit feedback,
and yj is an implicit factor vector.

As sometimes users and items are associated with attributes, the
feature enriched embedding models give the predicted preference
r̂ai of user a to item i is:

r̂ai = wT [xa, yi] + vTi ua, (3)
where the first term captures the bias terms with the feature engi-
neering, and the second term models the second-order interaction
between users and items.
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Different embedding based models vary in the embedding matrix
formulation and the optimization function. E.g., Bayesian Personal-
ized Ranking (BPR) is one of the most successful pair-wise based
optimization function for implicit feedback [32]. In BPR, it assumes
that the embedding matrices U and V are free embeddings that
follow a Gaussian prior, which is equivalent to adding a L2-norm
regularization in the optimization function as:

min
[W,U,V]

L =

M∑
a=1

∑
(i , j )∈Da

σ (r̂ai − r̂aj ) + λ( | |U | |2F + | |V | |2F ), (4)

where σ (x) = 1
1+exp(−x ) is a logistic function that transforms the

input into range (0, 1). Da = {(i , j) |i ∈ Ra∧j ∈ V −Ra } is the training
data for a with Ra the itemset that a positively shows feedback,
and j ∈ V − Ra denotes the items that a does not show feedback in
the training data.

Social RecommendationModels Social influence occurswhen
a persons’s emotions, opinions or behaviors are affected by oth-
ers [1, 24, 34]. In a social platform, social scientists have converged
that social influence is a natural process for users to disseminate
their preferences to the followers in the social network, such that
the action (preference, interest) of a user changes with the influence
from his/her trusted users [13, 17, 21, 22]. Therefore, as the social
diffusion process continues, the social correlation phenomenon exits,
with each user’s preference and behavior are similar to her social
connections [3, 22].

The social influence and social correlation among users’ in-
terests are the foundation for building social recommender sys-
tems [7, 25, 34]. Due to the superiority of embedding based models
for recommendation, most social recommendation models are also
built on these embedding models. These social embedding mod-
els could be summarized into the following two categories: the
social regularization based approaches [15, 16, 25, 42] and the user
behavior enhancement based approaches [7, 8]. Specifically, the
social regularization based approaches assumed that connected
users would show similar embeddings under the social influence
diffusion. As such, besides the classical collaborative filtering based
loss function (e.g, Eq.(4)), an additional social regularization term
is incorporated in the overall optimization function as:

M∑
i=1

M∑
j=1

si j | |ui − uj | |2F = U(D − S)UT , (5)

where D is a diagonal matrix with daa =
∑M
b=1 sbb .

Instead of the social regularization term, some researchers ar-
gued that the social network provides valuable information to en-
hance each user’s behavior. TrustSVD is such a model that shows
state-of-the-art performance [7, 8]. By assuming the implicit feed-
backs of a user’s social neighbors’ on items could be regarded as
the auxiliary feedback of this user, TrustSVD models the predicted
preference as:

r̂ai = vTi (ua +
∑
b ∈Sa

ub
|Sa |

) (6)

where ub denotes the latent embedding of user b, who is trusted
by a. As such, a’s latent embedding is enhanced by considering
the influence of her trusted users’ latent embeddings in the social
network.

We notice that nearly all of the current social recommendation
models leveraged the observed social connections (each user’s social
neighbors) for recommendation with a static process at once. How-
ever, the social influence is not a static but a recursive process, with
each user is influenced by the social connections as time goes on.
At each time, users need to balance their previous preferences with
the influences from social neighbors to form their updated latent
interests. Then, as the current user interest evolves, the influences
from social neighbors changes. The process is recursively diffused
in the social network. Therefore, current solutions neglected the
iterative social diffusion process for social recommendation. What’s
worse, when the user features are available, these social recommen-
dation models need to be redesigned to leverage the feature data
for better correlation modeling between users [16]. In the following
section, we would show how to tackle the above issues with our
proposed DiffNet model.

3 THE PROPOSED MODEL
3.1 Model Architecture
We show the overall neural architecture of DiffNet in Fig 1. By
taking an user-item pair < a, i > as input, it outputs the probability
r̂ai that u would like item i . The overall neural architecture of
DiffNet contains four main parts: the embedding layer, the fusion
layer, the layer-wise influence diffusion layers, and the prediction
layer. Specifically, by taking related inputs, the embedding layer
outputs free embeddings of users and items. For each user (item),
the fusion layer generates a hybrid user (item) embedding by fusing
both a user’s ( an item’s) free embedding and the associated features.
The fused user embedding is then sent to the influence diffusion
layers. The influence diffusion layers are built with a layer-wise
structure to model the recursive social diffusion process in the social
network, which is the key idea of the DiffNet. After the influence
diffusion process reaches stable, the output layer generates the final
predicted preference. We detail each part as follows:

Embedding Layer. Let P ∈ RD×M and Q ∈ RD×N represent the
free embeddings of users and items. These free embeddings capture
the collaborative latent representations of users and items. Given
the one hot representations of user a and item i , the embedding
layer performs an index operation and outputs the free user latent
vector pa and free item latent vector qi from user free embedding
matrix P and item free embedding matrix Q.

Fusion Layer. For each user a, the fusion layer takes pa and
her associated feature vector xa as input, and outputs a user fusion
embedding h0a that captures the user’s initial interests from different
kinds of input data. We model the fusion layer as a one-layer fully
connected neural network as:

h0a = д(W
0 × [xa , pa ]), (7)

whereW0 is a transformation matrix, and д(x) is a non-linear func-
tion. Without confusion, we omit the bias term in a fully-connected
neural network for notational convenience. This fusion layer could
generalize many typical fusion operations, such as the concate-
nation operation as h0a = [xa, pa ] by setting W0 as an identity
matrix.
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Figure 1: The overall architecture of our proposed model. The four parts of DiffNet are shown with orange background.

Similarly, for each item i , the fusion layer models the item em-
bedding vi as a non-linear transformation between its free latent
vector qi and its feature vector yi as:

vi = σ (F × [qi , yi ]). (8)

InfluenceDiffusion Layers. By feeding the output of each user
a’s fusion embedding h0a from the fusion layer into the influence
diffusion part, the influence diffusion layers model the dynamics
of users’ latent preference diffusion in the social network S. As
information diffuses in the social network from time to time, the
influence diffusion part is analogously built with a multi-layer struc-
ture. Each layer k takes the users’ embeddings from the previous
layers as input, and output users’ updated embeddings after the
current social diffusion process finishes. Then, the updated user
embeddings are sent to the (k+1)-th layer for the next diffusion pro-
cess. This process is recursively operated until it the social diffusion
process reaches stable.

For each user a, let hka denote her latent embedding in the k-th
layer of the influence diffusion part. By feeding the output of the
k-th layer into the (k + 1)-th layer, the influence diffusion operation
at the (k + 1)-th social diffusion layer updates each user a’s latent
embedding into hk+1a . Specifically, the updated embedding hk+1a
is composed of two steps: diffusion influence aggregation (AGG)
from a’s trusted users from the k-th layer, which transforms all the
social trusted users’ influences into a fixed length vector hk+1Sa :

hk+1Sa = Pool(hkb |b ∈ Sa ), (9)

where the Pool function could be defined as an average pooling
that performs a mean operation of all the trusted users’ latent
embedding at the k-th layer. The Pool can also be defined as a max
operation that select the maximum element of all the trusted users’
latent embedding at the k-th layer to form hk+1Sa .

Then, a-th updated embedding h(k+1)a is a combination of her
latent embedding hka at the k-th layer and the influence diffusion
embedding aggregation hk+1Sa from her trusted users. Since we do
not know how each user balances these two parts, we use a non-
linear neural network to model the combination as:

hk+1a = s (k+1)(Wk × [hk+1Sa , hka ]), (10)

where sk (x) is non-linear transformation function.
With a predefined diffusion depthK , for each usera, the influence

diffusion layer starts with the layer-0 user embedding h0a (Eq.(7)),
i.e., the output of the fusion layer, and the layer-wise influence
diffusion process then diffuses to layer 1, followed by layer 1 diffuses
to layer 2. This influence diffusion step is repeated for K steps to
reach the diffusion depth K , where each user a’s latent embedding
at the K-th layer is hKa .

Please note that, DiffNet only diffuses users’ latent vectors in the
influence diffusion part without any item vector diffusion modeling.
This is quite reasonable as item latent embeddings are static and
do not propagate in the social network.

Prediction Layer. Given each user a’s embedding hKa at the
K-th layer after the iterative diffusion process, each item i’s fusion
vector vi , we model the predicted preference of user a to item i as:

ua = hKa +
∑
i∈Ra

vi
|Ra |

, (11)

r̂ai = vTi ua , (12)

where Ra is the itemset that a likes. In this equation, each user’s
final latent representation ua is composed of two parts: the embed-
dings from the output of the social diffusion layers as hKa , and the
preferences from her historical behaviors as:

∑
i ∈Ra

vi
|Ra |

. Specifi-
cally, the first term captures the user’s interests from the recursive
social diffusion process in the social network structure. The sec-
ond term resembles the SVD++ model that leveraged the historical
feedbacks of the user to alleviate the data sparsity of classical CF
models [19], which has shown better performance over the classical
latent factor based models. Thus, the final user embedding part is
more representative with the recursive social diffusion modeling
and the historical feedbacks of the user. After that, the final pre-
dicted rating is still measured by the inner produce between the
corresponding user final latent vector and item latent vector.
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3.2 Model Training
As we focus on implicit feedbacks of users, similar to the widely
used ranking based loss function in BPR [32], we also design a
pair-wise ranking based loss function for optimization:

min
Θ

L(R, R̂) =
M∑
a=1

∑
(i , j )∈Da

σ (r̂ai − r̂aj ) + λ | |Θ1 | |
2 (13)

where σ (x) is a sigmoid function. Θ = [Θ1, Θ2], with Θ1 = [P, Q],
and Θ2= [F, [Wk ]

K−1
k=0 ]. λ is a regularization parameter that controls

the complexity of user and item free embedding matrices. Da =

{(i , j) |i ∈ Ra∧ j ∈ V − Ra } denotes the pairwise training data for a
with Ra represents the itemset that a positively shows feedback.

All the parameters in the above loss function are differentiable.
In practice, we implement the proposed model with TensorFlow1 to
train model parameters with mini-batch Adam. We split the mini-
batch according to the userset, i.e., each user’s training records are
ensured in the samemini-batch. This mini-batch splitting procedure
avoids the repeated computation of each user a’s latent embedding
hKa in the iterative influence diffusion layers.

As we could only observe positive feedbacks of users with huge
missing unobserved values, similar asmany implicit feedbackworks,
for each positive feedback, we randomly sample 10 missing unob-
served feedbacks as pseudo negative feedbacks at each iteration
in the training process [39, 40]. As each iteration the pseudo nega-
tive samples change, each missing value gives very weak negative
signal.

3.3 Discussion
3.3.1 Complexity. Space complexity. As shown in Eq.(13), the
model parameters are composed of two parts: the user and item
free embeddings Θ1= [P, Q], and the parameter set Θ2= [F, [Wk ]

K−1
k=0 ].

Since most embedding based models (e.g., BPR [32], FM [31]) need
to store the embeddings of each user and each item, the space
complexity of Θ1 is the same as classical embedding based models
and grows linearly with users and items. For parameters in Θ2,
they are shared among all users and items, with the dimension of
each parameter is far less than the number of users and items. This
additional storage cost is a small constant that could be neglected.
Therefore, the space complexity of DiffNet is the same as classical
embedding models.

Time complexity. Since our proposed loss function resembles
the BPR model with the pair-wise loss function that is designed for
implicit feedback, we compare the time complexity of DiffNet with
BPR. The main additional time cost lies in the layer-wise influence
diffusion process. The dynamic diffusion process costs O (MKL),
whereM is the number of users, and K denotes the diffusion depth
and L denotes the average social neighbors of each user. Similarly,
the additional time complexity of updating parameters is O (MKL).
Therefore, the additional time complexity is O (MKL). In fact, as
shown in the empirical findings as well as our experimental results,
DiffNet reaches the best performance when K = 2. Also, the average
social neighbors per user are limited with L ≪ M . Therefore, the
additional time complexity is acceptable and the proposed DiffNet
could be applied to real-world social recommender systems.
1https://www.tensorflow.org

3.3.2 Model Generalization. The proposed DiffNet model is de-
signed under the problem setting with the input of user feature ma-
trix X, item feature matrix Y, and the social network S. Specifically,
the fusion layer takes users’ (items’) feature matrix for user (item)
representation learning. The layer-wise diffusion layer utilized the
social network structure S to model how users’ latent preferences
are dynamically influenced from the recursive social diffusion pro-
cess. Next, we would show that our proposed model is generally
applicable when different kinds of data input are not available.

When the user (item) features are not available, the fusion layer
disappears. In other words, as shown in Eq.(8), each item’s latent
embedding vi degenerates to qi . Similarly, each user’s initial layer-0
latent embedding h0=pa (Eq.(7)). Similarly, when either the user
attributes or the item attributes do not exist, the corresponding
fusion layer of user or item degenerates.

The key idea of our proposed model is the carefully designed
social diffusion layers with the input social network S. When the
recommender system does not contain any social network infor-
mation, the social diffusion layers disappear with hKa = h0a . Under
this circumstances, as shown in Eq. (12) our proposed model de-
generates to an enhanced SVD++ model [19] for recommendation,
with the user and item latent embeddings contain the fused free
embeddings and the associated user and item features.

3.3.3 Comparisons to Graph Convolutional based Models. In our
proposed DiffNet, the designed layer-wise diffusion part (Eq.(9)
and Eq.(10)) presents similar idea as the Graph Convolutional Net-
works (GCN), which are state-of-the-art representation learning
techniques of graphs [11, 18, 36]. GCNs generate node embeddings
in a recursive message passing or information diffusion manner
of a graph, where the representation vector of a node is computed
recursively from aggregation features in neighbor nodes. GCNs has
shown theoretical elegance as simplified version of spectral based
graph models [18]. Besides, GCNs are time efficient and achieve
better performance in many graph-based tasks.

Due to the success of GCNs, several models have attempted
to transfer the idea of GCNs for the recommendation tasks. By
transferring these models to the recommendation scenario, the
main components are how to construct a graph and further exploit
the uniqueness of recommendation properties. Among them, the
most closely related works are GC-MC [36] and PinSage [36].

GC-MC: It is one of the first few attempts that directly applied
the graph convolutions for recommendation. GC-MC defines a
user-item bipartite graph from user-item interaction behavior [36].
Then, each user embedding is convolved as the aggregation of the
embeddings of her rated items. Similarly, each item embedding is
convolved as the aggregation of the embeddings of the rated users’
embeddings. However, the graph convolution is only operated with
one layer of the observed links between users and items, neglecting
the layer-wise diffusion structure of the graph.

PinSage: It is designed for similar item recommendation from a
large recommender system. By constructing an item-item correla-
tion graph from users’ behaviors, a data-efficient GCN algorithm
PinSage is developed [44]. PinSage could incorporate both the item
correlation graph as well as node features to generate item em-
beddings. The main contribution lies in how to design efficient
sampling techniques to speed up the training process. Instead of
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Table 1: The statistics of the two datasets.

Dataset Yelp Flickr
Users 17237 8358
Items 38342 82120

Total Links 143765 187273
Ratings 204448 314809

Link Density 0.048% 0.268%
Rating Density 0.031% 0.046%

message passing on item-item graph, our work performs the re-
cursive information diffusion of the social network, which is more
realistic to reflect how users are dynamically influenced by the so-
cial influence diffusion. Applying GCNs for social recommendation
is quite natural and to the best of our knowledge, has not been
studied before.

4 EXPERIMENTS
In this section, we conduct experiments to evaluate the performance
of DiffNet on two datasets.
4.1 Experimental Settings
Datasets. Yelp is an online location-based social network. Users
make friends with others and express their experience through the
form of reviews and ratings. As each user give ratings in the range
[0, 5], similar to many works, we transform the ratings that are
larger than 3 as the liked items by this user. As the rich reviews are
associated with users and items, we use the popular gensim tool2
to learn the embedding of each word with Word2vec model [26].
Then, we get the feature vector of each user (item) by averaging all
the learned word vectors of the user(item).

Flickr is a who-trust-whom online image based social sharing
platform. Users follow other users and share their preferences to
images to their social followers. Users express their preferences
through the upvote behavior. For research purpose, we crawl a large
dataset from this platform. Given each image, we have a ground
truth classification of this image on the dataset. We send images to
a VGG16 convolutional neural network and treat the 4096 dimen-
sional representation in the last connected layer in VGG16 as the
feature representation of the image [33]. For each user, her feature
representation is the average of the image feature representations
she liked in the training data.

In the data preprocessing step, for both datasets, we filtered
out users that have less than 2 rating records and 2 social links,
and removed the items which have been rated less than 2 times.
We randomly select 10% of the data for the test. In the remaining
90% data, to tune the parameters, we select 10% from the training
data as the validation set. The detailed statistics of the data after
preprocessing is shown in Table 1.

Baselines and Evaluation Metrics.We compare DiffNet with
various state-of-the-art baselines, including the classical pair-wise
based recommendation model BPR [32], feature enhanced latent
factor model FM [30], a state-of-the-art social recommendation
model TrustSVD [7], a context-aware social recommendation model
ContextMF that utilized the same input as our proposed model
for recommendation [16]. Besides, we also compare our proposed
model with two graph convolutional based recommendation mod-
els: GC-MC [36] and PinSage [44]. As the original PinSage focuses

2https://radimrehurek.com/gensim/

on generating high-quality embeddings of items, we generalize
this model by constructing a user-item bipartite for recommenda-
tion [44]. Both of these two convolutional recommender models
utilized the user-item bipartite and the associated features of users
and items for recommendation.

As we focus on recommending top-N items for each user, we
use two widely adopted ranking based metrics: Hit Ratio (HR) and
Normalized Discounted Cumulative Gain(NDCG) [34]. Specifically,
HR measures the number of items that the user likes in the test data
that has been successfully predicted in the top-N ranking list. And
NDCG considers the hit positions of the items and gives a higher
score if the hit items in the top positions. For both metrics, the
larger the values, the better the performance. Since there are too
many unrated items, in order to reduce the computational cost, for
each user, we randomly sample 1000 unrated items at each time and
combine them with the positive items the user likes in the ranking
process. We repeat this procedure 10 times and report the average
ranking results.

Parameter Setting. For all the models that are based on the
latent factor models, we initialize the latent vectors with small
random values. In the model learning process, we use Adam as
the optimizing method for all models that relied on the gradient
descent based methods with an initial learning rate of 0.001. And
the batch size is set as 512. In our proposed DiffNet model, we try
the regularization parameter λ in the range [0.0001, 0.001, 0.01, 0.1],
and find λ = 0.001 reaches the best performance. For the aggrega-
tion function in Eq.(9), we have tried the max pooling and average
pooling. We find the average pooling usually shows better per-
formance. Hence, we set the average pooling as the aggregation
function. Similar to many GCN models [18, 44], we set the depth
parameter K = 2. With the user and item free embedding size D, in
the fusion layer and the following influence diffusion layers, each
layer’s output is also set asD dimension. For the non-linear function
д(x) in the fusion layer, we use a sigmoid function that transforms
each value into range (0, 1). And we set the non linear functions of
[sk (x)]K−1

k=0 with the ReLU function to avoid the vanishing gradient
problem. After the training of each layer, we use batch normaliza-
tion to avoid the internal covariate shift problem [14]. There are
several parameters in the baselines, we tune all these parameters to
ensure the best performance of the baselines for fair comparison.
Please note that as generating user and item features are not the
focus of our paper, we use the feature construction techniques as
mentioned above. However, our proposed model can be seamlessly
incorporated with more advanced feature engineering techniques.

4.2 Overall Comparison
In this section, we compare the overall performance of all mod-
els on two datasets. Specifically, Table 2 shows the HR@10 and
NDCG@10 results for both datasets with varying latent dimension
size D. Among all the baselines, BPR only considered the user-item
rating information for recommendation, FM and TrustSVD improve
over BPR by leveraging the node features and social network in-
formation. PinSage takes the same kind of input as FM and shows
better performance than FM, showing the effectiveness of model-
ing the information passing of a graph. ContextMF is the baseline
that uses the user and item features, as well as the social network
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Table 2: HR@10 and NDCG@10 comparisons for different dimension size D.

Models
Yelp Flickr

HR NDCG HR NDCG
D=16 D=32 D=64 D=16 D=32 D=64 D=16 D=32 D=64 D=16 D=32 D=64

BPR 0.2443 0.2632 0.2617 0.1471 0.1575 0.155 0.0851 0.0832 0.0791 0.0679 0.0661 0.0625
SVD++ 0.2581 0.2727 0.2831 0.1545 0.1632 0.1711 0.0821 0.0934 0.1054 0.0694 0.0722 0.0825
FM 0.2768 0.2835 0.2825 0.1698 0.1720 0.1717 0.1115 0.1212 0.1233 0.0872 0.0968 0.0954

TrustSVD 0.2853 0.2880 0.2915 0.1704 0.1723 0.1738 0.1372 0.1367 0.1427 0.1062 0.1047 0.1085
ContextMF 0.2985 0.3011 0.3043 0.1758 0.1808 0.1818 0.1405 0.1382 0.1433 0.1085 0.1079 0.1102
GC-MC 0.2876 0.2902 0.2937 0.1657 0.1686 0.174 0.1123 0.1155 0.1182 0.0883 0.0945 0.0956
PinSage 0.2952 0.2958 0.3065 0.1758 0.1779 0.1868 0.1209 0.1227 0.1242 0.0952 0.0978 0.0991
DiffNet 0.3366 0.3437 0.3477 0.2052 0.2095 0.2121 0.1575 0.1621 0.1641 0.1210 0.1231 0.1273

Table 3: HR@N and NDCG@N comparisons for different top-N values.

Models
Yelp Flickr

HR NDCG HR NDCG
N=5 N=10 N=15 N=5 N=10 N=15 N=5 N=10 N=15 N=5 N=10 N=15

BPR 0.1713 0.2632 0.3289 0.1243 0.1575 0.1773 0.0657 0.0851 0.1041 0.0607 0.0679 0.0737
SVD++ 0.1868 0.2831 0.3492 0.1389 0.1711 0.1924 0.0827 0.1054 0.1257 0.0753 0.0825 0.0895
FM 0.1881 0.2835 0.3463 0.1359 0.1720 0.1895 0.0918 0.1233 0.1458 0.0845 0.0968 0.1046

TrustSVD 0.1906 0.2915 0.3693 0.1385 0.1738 0.1983 0.1072 0.1427 0.1741 0.0970 0.1085 0.1200
ContextMF 0.2045 0.3043 0.3832 0.1484 0.1818 0.2081 0.1095 0.1433 0.1768 0.0920 0.1102 0.1131
GC-MC 0.1932 0.2937 0.3652 0.1420 0.1740 0.1922 0.0897 0.1182 0.1392 0.0795 0.0956 0.1002
PinSage 0.2099 0.3065 0.3873 0.1536 0.1868 0.2130 0.0925 0.1242 0.1489 0.0842 0.0991 0.1036
DiffNet 0.2276 0.3477 0.4232 0.1679 0.2121 0.2331 0.1210 0.1641 0.1952 0.1142 0.1273 0.1384

structure. It performs better than most baselines. Our proposed
model consistently outperforms ContextMF, showing the effective-
ness of modeling the recursive social diffusion process in the social
recommendation process.

When comparing the results of the two datasets, we observe that
leveraging the social network structure and the social diffusion pro-
cess contributes more on Flickr compared to Yelp. On both datasets,
PinSAGE is the best baseline that leverages the node features with-
out the social network information. E.g., DiffNet improves over
PinSAGE about 13% on Yelp, and nearly 30% on Flickr. We guess a
possible reason is that, the Flickr is a social based image sharing
platform with a stronger social influence diffusion effect. In con-
trast, Yelp is a location based social network, and users’ food and
shopping preferences are not easily influenced in the social plat-
form. Last but not least, we find the performance of all models does
not increase as the latent dimension size D increases from 16 to 64.
Some models reach the best performance when D = 32 (e.g., BPR)
while other models reach the best performance when D = 64 (e.g.,
DiffNet). In the following experiment, we set the proper D for each
model with the best performance in order to ensure fairness.

Table 3 shows the HR@N and NDCG@N on both datasets with
varying top-N recommendation size N. From the results, we also
find similar observations as Table 2, with our proposed model
DiffNet always shows the best performance. Based on the overall
experiment results, we could empirically conclude that our pro-
posed DiffNet model outperforms all the baselines under different
ranking metrics and different parameters.

4.3 Performance under Different Data Sparsity
The data sparsity issue is a main challenge for most CF based
recommender systems. In this part, we would like to show the
performance of various models under different sparsity.

Specifically, we bin users into different groups based on the
number of observed feedbacks in the training data. Then we show
the performance of each group with different models on NDCG@10
in Fig 2. In this figure, the horizontal axis shows the user group
information. E.g., [16, 64) means for each user in this group, the
training records satisfy 16 ≤ |Ra | < 64. As can be observed from
this figure, for both datasets, with the increase of the user rating
records, the performance increases quickly for all models. When the
rating records of each user is less than 16, the BPR baseline could
not work well as this model only exploited the very sparse user-
item interaction behavior for recommendation. Under this situation,
all improvement is significant by leveraging various kinds of side
information. E.g., FM, SVD++, and ContextMF improves over BPR
by 9.6%, 15.2% and 20.7% on Yelp, and 34.9%, 50.3%, 58.4% on Flickr.
The improvement of Flick is muchmore significant than that of Yelp,
as Flickr has much more items compared to Yelp. By considering the
iteratively social diffusion process in social recommendation, our
proposed model improves BPR by 34.8% and 97.1% on Flick and Yelp,
which far exceeds the remaining models. With the increase of user
rating records, the performance improvements of all models over
BPR decrease, but the overall trend is that all models have better
performance than BPR. We also observe that when users have more
than 256 records, some methods have similar results as BPR or even
a little worse than BPR. We guess a possible reason is that BPR
could well learn the user interests from enough interaction data.
Withe the additional side information, some noises are introduced
to decrease the performance.

4.4 Detailed Model Analysis
We would analyze the recursive social diffusion depth K , and the
impact of the fusion layer that combines the collaborative free
embedding and associated entity feature vector.

Session 3A: Recommendations 1 SIGIR ’19, July 21–25, 2019, Paris, France

241



[0,16) [16,64) [64,246) [256,)
Num. of Records for Each User (T)

0.10

0.20

0.30

0.40

0.50
N

D
C

G
@

10
BPR
SVD++
FM
TrustSVD
ContextMF
GC-MC
PinSAGE
DiffNet

(a) Yelp

[0,16) [16,64) [64,246) [256,)
Num. of Records for Each User (T)

0.10

0.20

0.30

0.40

N
D

C
G

@
10

BPR
SVD++
FM
TrustSVD
ContextMF
GC-MC
PinSAGE
DiffNet

(b) Flickr

Figure 2: Performance under different sparsity (Better viewed in color.)

Table 4: HR@10 and NDCG@10 performance with different diffusion depth K .

Diffusion Depth K
Yelp Flickr

HR Improve. NDCG Improve. HR Improve. NDCG Improve.
K=2 0.3477 - 0.2121 - 0.1641 - 0.1273 -
K=0 0.3145 -9.54% 0.2014 -5.09% 0.1439 -12.27% 0.1148 -10.0%
K=1 0.3390 -2.50% 0.2981 -1.93% 0.1592 -2.96% 0.1257 -1.22%
K=3 0.3348 -3.72% 0.2005 -5.49% 0.1603 -2.34% 0.1246 -2.22%

Table 5: HR@10 and NDCG@10 of our simplified models on Yelp and Flickr with different fusion inputs. X=Y=0 denotes the
user and item feature vector are not available. P=0 (Q=0) denotes we do not add the free base user (item) latent embedding.

Simplified models Yelp Flickr
HR Improve. NDCG Improve. HR Improve. NDCG Improve.

DiffNet 0.3477 - 0.2121 - 0.1641 - 0.1273 -
X = 0 0.3403 -2.11% 0.2072 -2.32% 0.1582 -3.58% 0.1232 -3.25%
Y = 0 0.3271 -5.92% 0.1951 -8.06% 0.1423 -13.26% 0.1098 -13.73%

X = Y = 0 0.3196 -8.09% 0.1912 -9.89% 0.1360 -17.08% 0.1073 -15.69%
P = 0 0.2461 -29.22% 0.1569 -26.05% 0.1056 -35.66% 0.0863 -32.17%
Q = 0 0.1975 -43.19% 0.658 -69.00% 0.0334 -78.78% 0.022 -82.13%

Table 4 shows the results on DiffNet with different K values. The
column of “Improve” show the performance changes compared to
the best setting of DiffNet, i.e., K = 2. When K = 0, the layer-wise
diffusion part disappears, and our proposedmodel degenerates to an
enhanced SVD++ with entity feature modeling. As can be observed
from this figure, as we leverage the layer wise diffusion process
fromK = 0 toK = 1, the performance increases quickly for for both
datasets. For both datasets, the best performance reaches with two
recursive diffusion depth, i.e., K = 2. When K continues to increase
to 3, the performance drops for both datasets. We hypothesis that,
considering the K-step recursive social diffusion process resembles
the k-hop neighbors of each user. Since the social diffusion dimin-
ishes with time and the distance between each user and the k-hop
neighbors, setting K with 2 is enough for social recommendation.
In fact, other related studies have empirically find similar trends,
with the best diffusion size is set as K = 2 or K = 3 [18, 44].

Table 4 shows the performance on DiffNet with different fusion
inputs. As can be seen from this figure, the performance drops
when the user and (or) item features are not available. We also

notice that it is very important to add the free latent embeddings of
users and items in the modeling process. As can be observed from
this figure, the performance drops very quickly when either the
user free latent embedding matrix P or the item free embedding
matrix Q are not considered. E.g., the performance drops about 80%
on Flickr when the item free embedding is not considered. The
reason is that, the item (user) latent factors could not be captured
by the item (user) features. Therefore, learning the collaborative
effect between users and items with the free embeddings is very
important for the recommendation task.

5 RELATEDWORK
Collaborative Filtering. Given an user-item rating matrix R, CF
usually projected both users and items in a same low latent space
for comparison [20]. In reality, compared to the explicit ratings, it is
more common for users implicitly express their feedbacks through
action or inaction, such as click, add to cart or consumption [32].
Bayesian Personalized Ranking (BPR) is a state-of-the-art latent
factor based technique for dealing with implicit feedback. Instead
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of directly predicting each user’s point-wise explicit ratings, BPR
modeled the pair-wise preferences with the assumption that users
prefer the observed implicit feedbacks compared to the unobserved
ones [32]. Despite the relatively high performance, the data spar-
sity issue is a barrier to the performance of these collaborative
filtering models. To tackle the data sparsity issue, many models
have been proposed by extending these classical CF models. E.g.,
SVD++ is proposed to combine users’ implicit feedbacks and ex-
plicit feedbacks for modeling users’ latent interests [19]. Besides,
as users and items are associated with rich attributes, Factorization
Machine (FM) is such a unified model that leverages the user and
item attributes in latent factor based models [37]. Recently, some
deep learning based models have been proposed to tackle the CF
problem [12]. As sometimes the user and item features are sparse,
many deep learning based models have been proposed to tackle
how to model these sparse features [9, 37]. In contrast to these
works, we do not consider the scenario of sparse features and put
emphasis on how to model the recursive social diffusion process
for social recommendation.

Social Recommendation Social recommendation leverages
the social network among users to enhance recommendation per-
formance [7, 16, 25]. In fact, social scientists have long converged
that as information diffuses in the social networks, users are influ-
enced by their social connections with the social influence theory,
leading to the phenomenon of similar preferences among social
neighbors [3, 4, 23, 29]. Social regularization has been empirically
proven effective for social recommendation, with the assumption
that similar users would share similar latent preferences under
the popular latent factor based models [15, 25, 42]. SBPR model
is proposed into the pair-wise BPR model with the assumption
that users tend to assign higher ratings to the items their friends
prefer [45]. By treating the social neighbors’ preferences as the
auxiliary implicit feedbacks of an active user, TrustSVD [7, 8] is
proposed to incorporate the trust influence from social neighbors
on top of SVD++ [19]. As items are associated with attribute infor-
mation (e.g., item description, item visual information), ContextMF
is proposed to combine social context and social network under a
collective matrix factorization framework with carefully designed
regularization terms [16]. Social recommendation has also been
extended with social circles [28], temporal context [34], and visual
item information [38]. Instead of simply considering the local so-
cial neighbors of each user, our work differs from these works in
explicitly modeling the recursive social diffusion process to better
model each user’s latent preference in the global social network.

GraphConvolutional Networks andApplications.Our pro-
posed model with recursive social diffusion process borrows the
recent advances of graph convolutional networks (GCN) [11, 18, 36].
GCNs have shown success to extend the convolution operation from
the regular Euclidean domains to non-Euclidean graph domains.
Spectral graph convolutional neural network based approaches
provide localized convolutions in the spectral domain [5, 6]. These
spectral models usually handle the whole graph simultaneously, and
are difficult to parallel or scale to large graphs. Recently, Kipf et al.
designed a graph convolutional network (GCN) for semi-supervised
learning on graph data, which can be motivated based on the spec-
tral graph convolutional networks [10, 11, 18, 36]. The key idea
of GCNs is to generate node embeddings in a message passing or

information diffusion manner of a graph, which advanced previous
spectral based models with much less computational cost.

Researchers also exploited the possibility of applying spectral
models and GCNs to recommender systems. As in the collaborative
setting, the user-item interaction could be defined as a bipartite
graph, some works adopted the spectral graph theory for recom-
mendation [27, 46]. Nevertheless, these models showed high compu-
tational cost and it is non-trivial to incorporate user (item) features
in the modeling process. As GCNs showed improved efficiency and
effectiveness over the spectral models [18], a few research works
exploited GCNs for recommendation [36, 43, 44]. These models
all share the commonality of applying the graph convolution op-
eration that aggregates the information of the graph’s first-order
connections. GC-MC is one of the first few attempts that directly
applied the graph convolutions on the user-item rating graph [36].
However, the graph convolution is only operated with one layer of
the observed links between users and items, neglecting the higher
order structure of the graph. GCMC is proposed for bipartite edge
prediction with inputs of user-item interaction matrix [43]. This
model is consisted of two steps: constructing a user-user graph and
item-item graph from the user-item interaction matrix, then updat-
ing user and item vectors are based on the convolutional operations
of the constructed graphs. Hence, the performance of GCMC relies
heavily on the user-user and item-item construction process, and
the two step process is not flexible compared to the end-to-end
training process. By constructing an item correlation graph, re-
searchers developed a data-efficient GCN algorithm PinSage, which
combines efficient random walks and graph convolutions to gener-
ate embeddings of nodes that incorporate both graph structure as
well as node feature information [44]. Our work differs from them
as we leverage the graph convolution operation for the recursive
social diffusion in the social networks, which is quite natural. Be-
sides, our proposed model is general and could be applied when
the user (item) attributes or the social network structure is not
available.

6 CONCLUSIONS
In this paper, we proposed a DiffNet neural model for social recom-
mendation. Our main contribution lies in designing a layer-wise
influence diffusion part to model how users’ latent preferences are
recursively influenced by the her trusted users. We showed that
the proposed DiffNet model is time and storage efficient. It is also
flexible when the user and item attributes are not available. The
experimental results clearly showed the flexibility and effectiveness
of our proposed models. E.g., DiffNet improves more than 15% over
the best baseline with NDCG@10 on Flickr dataset. In the future,
we would like to extend our model for temporal social recommen-
dation, where the temporal changes of users’ interests are implicitly
reflected from their temporal feedback patterns.
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