
ResFusion: A Residual Learning Based
Fusion Framework for CTR Prediction

Junmei Bao1, Yangguang Ji1, Yonghui Yang1, Le Wu1,2(B), and Ruiji Fu2

1 School of Computer Science and Information Engineering,
Hefei University of Technology, Hefei 230009, China

hfut.baojunmei@gmail.com, jyguang1997@gmail.com, yyh.hfut@gmail.com,
lewu.ustc@gmail.com

2 State Key Laboratory of Cognitive Intelligence,
iFLYTEK, Hefei, People’s Republic of China

rjfu@iflytek.com

Abstract. CTR prediction tasks deal with the problem of evaluating
the probability of users clicking on products, and have been widely
deployed in many online recommendation and advertising platforms.
Mainstream CTR models can be divided into two categories: the tra-
ditional machine learning models (e.g., GBDT [7]) that learn the lin-
ear feature combinations for prediction, and deep learning based algo-
rithms (such as DeepFM [9]) for modeling the complex and sparse fea-
ture correlations. Some recent works proposed to fuse these two kinds of
models for prediction. These fusion models either feed the intermediate
results learned by one model into the second category or rely on the
ensemble techniques to fuse two independently trained model outputs.
In this paper, we propose a residual learning based fusion framework
for CTR prediction. The key idea is that, we first train a model (e.g.,
GBDT), and let the second model (e.g., DeepFM) learn the residual part
that can not be accurately predicted by the first model. The soundness
of this framework is that: as the prediction power of these two kinds of
models is complementary, it is easier to let the second model learn the
residual output that can not be well captured by the first model. We
show that our proposed framework is flexible and it is easier to train
with faster convergence. Extensive experimental results on three real-
world datasets show the effectiveness of our proposed framework.

Keywords: CTR prediction · Gradient Boosting Decision Tree
(GBDT) · Deep Neural Network (DNN) · Models fusion

1 Introduction

With the prevalence of intelligent mobile devices, a huge volume of online trans-
actions and browsing data has become available. Given huge number of items,
Click Rate Prediction (CTR) has become a dominant element on these plat-
forms. Specifically, CTR prediction focuses on predicting the likelihood of a user
c© Springer Nature Switzerland AG 2020
Z. Dou et al. (Eds.): CCIR 2020, LNCS 12285, pp. 29–41, 2020.
https://doi.org/10.1007/978-3-030-56725-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56725-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-56725-5_3

30 J. Bao et al.

clicking an item, and the predicted items with larger probability can be displayed
for users.

As CTR prediction is usually deemed as a classification problem in CTR pre-
diction [4,8,9,11,14,16], current solutions could be divided into two categories:
traditional machine learning based models [3,6,21] and deep learning based mod-
els [5,9,13,17,22]. As one of the proved most effective models among traditional
machine learning based approaches, GBDT [7] constructs a tree structure by
iteratively selecting the feature with the most significant statistical information
gain, which is more conducive to automatically combining some dense numeri-
cal features, but it is impossible to learn very well for high-dimensional sparse
category features [16]. Recently, DeepFM [9], as a representative deep learning
based models, models the complex and hidden correlations between features for
prediction, nevertheless, it’s learning performance for dense digital features is
not good enough. In fact, these two kinds of models are complementary, and
jointly considering them would facilitate learning both the linear and non-linear
features, in order to further enhance performance of either model.

The current solutions for combining the different models can be mainly clas-
sified into two categories: [1,11,18,24,25]: either to feed the intermediate results
learned by one model into the second category [11,18,24,25], or to rely on the
ensemble techniques to fuse two independently trained model outputs [1,18].
These models show the advantages of modeling both the linear and non-linear
features together, and lead to better performance in practice. However, we argue
that: since different models capture different characteristics of the data, instead
of fusing them simplely, could we design a better fusion model that more explic-
itly utilizes the different prediction power of these two kinds of models? Consid-
ering the above characteristics, exploring how to use the respective advantages
of GBDT and NN, and merging the two types of models effectively to solve the
one-sided problem in feature learning seem critical.

In this paper, we propose a fusion framework learning strategy, based on the
idea of ResNet [10], to improve the CTR prediction in real world data. The key
idea is that, we first train a model (e.g., GBDT), and let the second model (e.g.,
DeepFM) learn the residual part that can not be accurately predicted by the first
model. In fact, our proposed framework is an extension of the residual learning
in the deep architecture design into model fusion for CTR prediction. Then,
we analyze the soundness of this framework: as the prediction power of these
two kinds of models is complementary, it is easier to let the second model learn
the residual output that can not be well captured by the first model. We also
show that our proposed framework is flexible and it is easier to train with faster
convergence. Finally, extensive experimental results on three real-world datasets
clearly show the effectiveness of our proposed model for the CTR prediction
tasks.

ResFusion for CTR Prediction 31

2 Problem Definition and Related Works

2.1 Problem Definition

In a CTR prediction system, usually we can obtain the users’ historical click
records D = {(xi, yi)} about the products. Let xi ∈ R

d denote each sample with
d features including numerical features and categorical features, and yi = {0, 1}
denote observed label representing whether user clicks item. The CTR prediction
task can be formulated as a supervised classification problem as follows:

Definition 1 (Click-Through Rate Prediction). Given the training data-
sets Dtrain = {(xtrain, ytrain)}, our goal is to learn a mapping function f(x) that
satisfies ŷtrain = f(xtrain) reaching as much closer to ytrain as possible. Then,
for test datasets Dtest = {xtest}, we compute ŷtest = f(xtest) for user xtest to
denote whether users will click on items.

2.2 Related Works

In this section, we will mainly introduce the related works of the current CTR
prediction tasks from the following three aspects: Traditional Machine Learning
Models, Deep Neural Network Models and current Fusion Models.

Traditional Machine Learning Models. Logistic Regression is a general-
ized CTR prediction model that linearly combines each feature, it has been
widely used in large-scale classification tasks due to its simplicity and low time
complexity [20]. Apart from the linear combination of individual features, Fac-
torization Machine (FM) [19] enumerates extra second-order cross information
of all features and sends them into the model on the basis of LR. Field-aware
Factorization Machines (FFM) [13] introduces the concept of field and assumes
that each feature has different feature embeddings respectively for the different
cross fields. Some other prevalent CTR prediction models derive from ensemble
approaches. These approaches lie in three aspects: 1). Boosting works for the
under-fitting models with high bias and low variance. For instance, AdaBoost
[6] algorithm is one earliest classical implementation of the boosting algorithms,
which is essentially a strong classifier constructed by a linear combination of
multiple weak classifiers. Subsequently, some more effective gradient boosting
methods, like GBDT [7], have been proposed as the promotion of AdaBoost
algorithm by optimizing the loss function based on a negative gradient descent
method. 2). Bagging approaches work for the instance of data with high vari-
ance but low bias. And Bagging could alleviate the high variance problems by
bootstrap sampling from data. 3). Stacking could instead work for both variance
and bias problems. It introduces a meta learner for aggregating heterogeneous
component strong classifiers, which distinguishes the most from the former two
approaches.

32 J. Bao et al.

Deep Neural Network Models. Recently, many deep learning based CTR
models have been proposed [5,9,17]. These models, focusing on how to more
effectively model non-linear feature interactions, have been successfully applied
to many industrial scenarios. Among them, Wide & Deep [5] can jointly learn
by both the wide linear models and deep neural networks, which captures the
low-order and high-order cross features. Besides, DeepFM [9] exceeds FM in
extracting high-order combined features learnt by additional DNN parts, which
can automatically combine high-order features without manual intervention in
an end-to-end manner. Last but not least, xDeepFM [17] introduces a significant
structure of the compressed interactive network (CIN) to generate feature inter-
actions in an explicit fashion. Graph Convolutional Networks (GCNs) [2,23]
iteratively encode graph structure and node features for node representation,
which could capture the hidden feature interactions for CTR prediction.

Fusion Models. Since GBDT and NN models are suitable respectively for
numerical features and categorical features, a growing number of methods emerge
about how to fuse these two kinds of models for higher accuracy in prediction.
These fusion models can be divided into the following two categories:

1) Feature Fusion. This kind of fusion models utilize the first model’s results
as additional features to train the second model. There are some fusion works
directly combining the GBDT with NN on the feature level. In other words,
they use one model’s learning output results as additional feature inputs to
feed into a second model with the same original data. For instance, we can
extract leaf nodes of a pre-trained GBDT as a series of features input and
then put them into a new model. Many works [11,18,25] have proved the
effectiveness of this method, such as GBDT+LR [11] model which uses leaf
nodes information trained by GBDT as combined features for LR training
and GBDT2DNN [18] is a cascading fusion model that first trains a GBDT
model, and the predicting score of GBDT is fed as an input feature into the
DNN model. So this kind of fusion methods can be understood as a cascade
process of feature engineering plus model learning.

2) Prediction Fusion. Another kind of fusion models usually intuitively com-
bine the two model predictions by learning ensemble weights. In this way,
DNN + GBDT [18] proposes to take a weighted average of prediction scores
learnt separately from DNN and GBDT models sharing common training data
and outputs the final probability score after an activation function. Another
model named MTRecS-DLT [1] directly fuses the output scores of two single
models in the ratio of 1:1 without using the sigmoid function.

In summary, traditional machine learning based models can accomplish linear
feature combinations, and NN models use embedding strategy to solve complex
feature intersections. Nevertheless, when they are faced with large-scale, hetero-
geneous data, one single model is no more effective because of their respective
weaknesses. In addition, the existing fusion methods also have some notable
shortcomings. For feature fusion models, only a single model is used as a feature

ResFusion for CTR Prediction 33

extraction process, failing to directly combine the complementary advantages of
the two types of models. Besides, in terms of prediction fusion models, an addi-
tional ensemble frame is needed to fuse the results of two single models. The
quality of the final prediction results depends excessively on the fusion ability
of the additional ensemble frame. Therefore, based on the above characteristics,
we propose a residual learning based fusion framework to alleviate the limitation
of existing fusion methods. Figure 1 shows the differences between the existing
fusion models and the ResFusion framework which we proposed.

Fig. 1. The differences between our model and other fusion model

3 The Proposed Framework

In this section, we would introduce our proposed ResFusion framework for CTR
prediction tasks in detail. We begin with the integral architecture, followed by the
details of model components. At the end of this section, we would demonstrate
the model training process and the discussion of our ResFusion framework.

3.1 Overall ResFusion Framework Architecture

The Fig. 2 shows the integral architecture of the ResFusion. By taking a feature
set X(x1, x2, x3......xd) as input, it outputs the probability ŷ that user would like
to click the item (e.g., web pages or ads). The overall architecture of our model
contains two main parts: the GBDT component and the DeepFM component.
Specifically, by taking the related inputs, the GBDT outputs probability ŷt.

34 J. Bao et al.

Then we can calculate the residual between the true label y and the predicted
value of GBDT ŷt, and we called this value as rest, which is the key of our model.
Next, the residuals are sent into the DeepFM component as the new learning
target, with the same input features as GBDT’s. Then the DeepFM part would
output residual prediction value ŷD, for complementary of GBDT component.
The model will finally get the predicted value, which can be expressed as: ŷ =
ŷD + ŷt. We detail each part used in our fusion model as follows:

Fig. 2. The overall architecture of ResFusion

GBDT. GBDT is a decision tree algorithm based on the gradient boosting
framework and can be seen on the right of the Fig. 2. “Gradient boost” means
that each iteration process is to reduce the residual of the previous iteration,
and a new weak classifier model is established in the direction of the gradient of
the residual reduction. So the essence of GBDT algorithm can be expressed as
the boosting method based decision tree:

FM (x) =
M∑

m=1

T (x, γm) (1)

Where T (x, γm) represents the decision tree, γm represents the parameter of the
tree, and M is the number of trees. And strong classifier FM (x) can be composed
of multiple weak classifiers T (x, γm) linear added. And by training a GBDT, we
can get the prediction score ŷt.

Then we can compute the residual as:

rest = y − ŷt (2)

ResFusion for CTR Prediction 35

DeepFM. DeepFM is a neural network-based factorization machine (FM).
Moreover, the model structure can be found in the right of the Fig. 2. This
method contains two inner parts: FM part and DNN part. The FM part learns
mainly from primary and second-order cross features as low-order features, while
the deep part is a feed-forward neural network to extracts high-order cross fea-
tures. FM and DNN share the standard features’ input by linking with the
common input layers and embedding layers. Finally, we combine the results of
DNN yDNN and FM yFM and send them into an activate function. The final
prediction result of DeepFM component is summed as:

ŷD(xn) = yDNN (xn) + yFM (xn) (3)

Then we sum the output of two components: ŷt, ŷD, and obtain the final pre-
diction score ŷ = ŷt + ŷD.

3.2 Model Training

As our model contains two components, we first train a strong classifier called
GBDT through the process of fitting the residuals by multiple iterations. The
loss function for optimizing the tree model in every iteration process is:

γm = arg min
γ

N∑

n=1

L(yn, Fm−1(xn) + T (xn, γ)) (4)

and the prediction score of GBDT ŷt is used to calculate the residual with the
true label y, and then the DeepFM try to fit this residual by optimizing the
following formula:

W = arg min
W

N∑

n=1

L(yn, s(ŷD(xn) + ŷt(xn))) (5)

where s(x) is a sigmoid function, above two loss we all use logloss function to
complete a binary classification task. γ and W represent the model parameters of
GBDT and DeepFM. In practice, we use the LightGBM [15] to train a GBDT
model, then we implement the DeepFM model with Pytorch1 to train model
parameters with mini-batch Adam.

3.3 Discussions

In this section, We would discuss our proposed framework from three aspects:
convergence speed, model generalization ability and model flexibility.

Rapid Convergence. Our proposed model is trained on the basis of comple-
mentary of two single models. By fitting a new model on the remaining residuals
between the true label and another model’s output to learn what the former
1 https://www.pytorch.org.

https://www.pytorch.org

36 J. Bao et al.

model failed to learn, the new model merely needs to learn less content until
reaching convergence with relatively faster speed.

Model Generalization. ResFusion is designed under the problem setting with
the input of the combination feature matrix F . When GBDT and DeepFM learn
separately with the same input, they would focus on different content even in
the same data according to their different learning methods. ResFusion’s learning
ability is no longer single and one-sided, and it can learn the hidden information
more generally under the input data. Through the repeated joint learning of two
completely different learning mechanisms, the optimal solution of the model can
be obtained. So our fusion model finally proves to have better generalization and
scalability.

Model Flexibility. ResFusion can also be understood as a result fusion model.
Distinguished from other result fusion methods mentioned above, our model
doesn’t rely on the additional external fusion aggregation model for learning,
rather, it’s artfully sequentially links the two model as the fuse process during
the model training process. So ResFusion can also be extended with feature
fusion methods, which highlights the superior flexibility of our model.

In general, distinct from the plain feature fusion models, ResFusion uses the
different learning capabilities of the two types of models more directly utilizing
both the advantages from the models. Additionally, In our model, the latter (e.g.,
DeepFM) learns the remaining residual parts based on what the former (e.g.,
GBDT) has not learned, thus the speed of model convergence will be relatively
accelerated. Specially, ResFusion has better generalization ability. Compared
with the result fusion models, we fuse two methods naturally as an integral joint
learning process and do not depend on the specific external aggregation method.
Therefore ResFusion is also very flexible and can also be used in combination
with other fusion methods mentioned formerly.

4 Experiments

In this section, we conduct extensive experiments on three real-world datasets
to evaluate the effectiveness of our proposed fusion models.

Table 1. The statistics of the three datasets

Dataset Total instances Train Test Numerical features Categorical features

Avazu 40 M 36 M 4 M 0 23

Cretio 45 M 40.5 M 4.5 M 13 26

ZhiHu 2 M 1.8 M 0.2 M 131 18

ResFusion for CTR Prediction 37

4.1 Experimental Settings

Datasets. To evaluate the effectiveness of our proposed fusion model, we con-
duct experiments on three public datasets: Avazu, Criteo and ZhiHu datasets:
1) Avazu. Avazu2 comes from kaggle CTR prediction competition [12,14]. It
consists of 40 M click logs arranged in chronological order along ten days.
2) Criteo. Criteo3 as a famous and accessible benchmarking dataset widely
used in CTR model evaluation [9,12]. It includes 45 M click records
3) ZhiHu. ZhiHu4 derives from ZhiYuan 2019 artificial intelligence competition.
The provided data consists of 2M instances of inviting users to answer questions.
For the above three datasets, we first filled the null values in numerical features
with 0 and categorical features with −1. After data pre-processing, we randomly
split all records into train and test with the ratio of 9:1. The number of numerical
features and categorical features for different datasets and other detailed dataset
statistics are shown in Table 1.

Evaluation Metrics. We adopt two widely used evaluation metrics in exper-
iments: AUC (Area Under ROC) and Logloss(cross entropy). AUC is used to
evaluate the probability of ranking positive samples to be front while Logloss is
used to measure the difference between predictions and true labels.

Baselines. We compare our proposed model with several state-of-the-
art baselines for CTR prediction. We split all baselines into four groups:
1)Traditional machine learning models: LR [20], FM [19] and GBDT [7];
2) Deep learning based models: DeepFM [9]; 3) Feature fusion models:
GBDT+LR [11], GBDT2DNN [18], GBDT2DeepFM [18]; 4) Prediction fusion
models: GBDT + DeepFM [1].

4.2 Overall Comparisons

In this section, we compare the overall performances of our proposed framework
with other baselines. Specifically, Table 2 summarizes the AUC and Logloss val-
ues of various models on three datasets. We firstly analyze the single-models:
LR only considers each feature’s linear combination for CTR prediction, FM
exceeds LR by combining the two features and obtaining the information of
the second-order cross feature. GBDT can capture effective features and feature
linear combinations efficient than LR by combining multiple weak classifiers.
DeepFM performs better than FM, showing the effectiveness of the combination
of DNN and FM. We find that DeepFM shows a better performance than GBDT
on the Avazu dataset but not on the Cretio and ZhiHu datasets. The reason is,
as we mentioned before, that shallow model is more suitable for dense numerical

2 https://www.kaggle.com/c/avazu-ctr-prediction.
3 https://www.kaggle.com/c/criteo-display-ad-challenge.
4 https://biendata.com/competition/zhihu2019.

https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/criteo-display-ad-challenge
https://biendata.com/competition/zhihu2019

38 J. Bao et al.

Table 2. AUC and Logloss comparisons for different models

Models Avazu Cretio ZhiHu

AUC Logloss AUC Logloss AUC Logloss

LR 0.5453 0.4554 0.5690 0.5650 0.6122 0.5613

FM 0.7759 0.3820 0.7674 0.5052 0.7319 0.4102

GBDT 0.7608 0.3895 0.8009 0.4495 0.8390 0.3706

DeepFM 0.7852 0.3779 0.7959 0.4569 0.7712 0.3787

GBDT+LR 0.7634 0.3877 0.8025 0.4423 0.8405 0.3700

GBDT2DNN 0.7858 0.3761 0.8031 0.4417 0.8409 0.3699

GBDT2DeepFM 0.7863 0.3741 0.8037 0.4412 0.8417 0.3702

GBDT + DeepFM 0.7860 0.3767 0.8022 0.4367 0.8411 0.3707

NNres+GBDT 0.7872 0.3726 0.8030 0.4379 0.8420 0.3702

GBDTRes+NN 0.7921 0.3720 0.8065 0.4348 0.8676 0.3679

features and deep model is more suitable for sparse categorical features. Further-
more, we can find the difference on three datasets, the Avazu dataset has only
categorical features. Then, we compare our model with other fusion models: for
GBDT+LR, we take the output leaf nodes of GBDT as extra feature of data set
to feed in LR; GBDT2DNN and GBDT2DeepFM are fed GBDT’s predictions as
extra features into DNN and DeepFM respectively. The three fusion models fuse
GBDT with other models on feature-level and all exceed GBDT. Different from
fusion on feature-level, GBDT + DeepFM model fuses GBDT and DeepFM on
output-level by learning the weight parameters for two outputs for final predic-
tions. Compared with other fusion models, our GBDTRes+NN model which is
based on ResFusion framework consistently achieves best performance on both
evaluation metrics. On ZhiHu dataset, our model improves best fusion baselines
by 2.59% and 0.2% on AUC and Logloss, respectively. Based on the analysis
of above experimental results, we could empirically conclude that our proposed
ResFusion framework outperforms all baselines.

4.3 Detailed Model Analysis

In this subsection, we would like to give a detailed analysis of our proposed
ResFusion framework and show the effectiveness of our fusion strategy.

Convergence Speed Analysis. We logged the convergence process of our
GBDTRes+NN and other NN (DeepFM)-based models to verify that our model
has faster convergence speed. Figure 3 shows the convergence process of AUC
and Logloss values on the Avazu dataset. We find that our model achieves con-
vergence at the second epoch. Compared with the deepFM model, which mainly
requires nearly six epochs to converge, it is faster by nearly four epochs. Com-
pared with the other two fusion models, our model is also faster by about two
epochs. The reason is that our fusion model is based on residual learning, the

ResFusion for CTR Prediction 39

DeepFM module only needs to fit the residual part which GBDT did not learn
very well, so it can achieve convergence rapidly.

(a) AUC of different models (b) Logloss of different models

Fig. 3. The convergence speed comparison on various fusion models

Table 3. AUC and Logloss comparisons with different number of iterations K.

Residual iteration Avazu Cretio ZhiHu

AUC Logloss AUC Logloss AUC Logloss

K = 0 0.7608 0.3895 0.8011 0.4495 0.8390 0.3706

K = 1 0.7921 0.3720 0.8069 0.4350 0.8676 0.3679

K = 2 0.7925 0.3717 0.8073 0.4341 0.8684 0.3679

K = 3 0.7922 0.3720 0.8071 0.4351 0.8680 0.3680

Model Generalization Analysis. In this part, We verify the generalization of
our proposed framework by setting different number of residual learning K. The
experiment results can be observed in Table 3. In the verification experiment,
we choose GBDT as the initial model so our fusion model can be seen as a
single GBDT model when K = 0. Then the results of K = 1 mean that we
use the DeepFM to fit the residual values of real-labels and the predictions of
GBDT, called GBDTRes+NN. The improvement of AUC over the single model
(GBDT) is 3.13%. After that, we feed the predictions of the first fusion model
GBDTRes+NN’s into the GBDT to fit the residual again when K = 2. We
can do residual learning in an iterative way at different K. According to the
experimental results, when K = 2, our strategy reaches the best, which means
that through the first two residual learning, each model has already fully learned
the residual part that another model does not learn. So as K increases to 3 from
2, the performance of the fusion model can no longer be improved, and may even
result in over-fitting which leads to suboptimal results.

40 J. Bao et al.

5 Conclusion

In order to alleviate the challenge that the existing CTR models cannot fully
learn from data with both sparse category and dense numerical features, we
propose a ResFusion framework which integrates GBDT and NN together by
residual learning. It gains performance improvement for these advantages: 1)
Compared with existing fusion models, it can directly utilize the complementary
advantages of the component models; 2) In the process of fusion, it does not
depend on the specific fusion method, so it is more generalized; 3) Residual-
based fusion methods can boost model convergence. We finally conduct exten-
sive experiments on three real-world datasets and prove the effectiveness and
efficiency of our model over current state-of-the-art models on the two main
evaluations of AUC and Logloss.

Acknowledgement. This work was supported in part by the National Natural Sci-
ence Foundation of China (Grant No. 61972125, U19A2079), the Fundamental Research
Funds for the Central Universities (Grant No. JZ2020HGPA0114), Zhejiang Lab (No.
2019KE0AB04) and the Foundation of Key Laboratory of Cognitive Intelligence, iFLY-
TEK, P.R., China (Grant No. COGOS-20190002).

References

1. Abedalla, A., et al.: MTRecS-DLT: multi-modal transport recommender system
using deep learning and tree models. In: 2019 SNAMS, pp. 274–278. IEEE (2019).
https://doi.org/10.1109/SNAMS.2019.8931864

2. Chen, L., Wu, L., Hong, R., Zhang, K., Wang, M.: Revisiting graph based col-
laborative filtering: a linear residual graph convolutional network approach. In:
AAAI2020, vol. 34, pp. 27–34 (2020)

3. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: KDD2016,
KDD 2016, p. 785–794. Association for Computing Machinery, New York (2016).
https://doi.org/10.1145/2939672.2939785

4. Cheng, H., Cantú-Paz, E.: Personalized click prediction in sponsored search. In:
WSDM (2010). https://doi.org/10.1145/1718487.1718531

5. Cheng, H.T., et al.: Wide & deep learning for recommender systems. https://doi.
org/10.1145/2988450.2988454

6. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. In: Proceedings of the Second European Confer-
enceon Computational Learning Theory (1995). https://doi.org/10.1006/jcss.1997.
1504

7. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat., 1189–1232 (2001). https://doi.org/10.1214/aos/1013203451

8. Graepel, T., Borchert, T., Herbrich, R.: Web-scale Bayesian click-through rate
prediction for sponsored search advertising in microsoft’s bing search engine (2010).
https://doi.org/10.5555/3104322.3104326

9. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based
neural network for CTR prediction. https://doi.org/10.24963/ijcai.2017/239

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

https://doi.org/10.1109/SNAMS.2019.8931864
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/1718487.1718531
https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.5555/3104322.3104326
https://doi.org/10.24963/ijcai.2017/239
https://doi.org/10.1109/CVPR.2016.90

ResFusion for CTR Prediction 41

11. He, X., et al.: Practical lessons from predicting clicks on ads at facebook. In:
Proceedings of the Eighth International Workshop on Data Mining for Online
Advertising, pp. 1–9 (2014). https://doi.org/10.1145/2648584.2648589

12. Huang, T., Zhang, Z., Zhang, J.: FiBiNET: combining feature importance and
bilinear feature interaction for click-through rate prediction. In: Proceedings of the
13th ACM Conference on Recommender Systems, pp. 169–177 (2019). https://doi.
org/10.1145/3298689.3347043

13. Juan, Y., Lefortier, D., Chapelle, O.: Field-aware factorization machines in a real-
world online advertising system. In: Proceedings of the 26th International Con-
ference on World Wide Web Companion, pp. 680–688 (2017). https://doi.org/10.
1145/3041021.3054185

14. Juan, Y., Zhuang, Y., Chin, W.S., Lin, C.J.: Field-aware factorization machines for
CTR prediction. In: Proceedings of the 10th ACM Conference on Recommender
Systems, pp. 43–50 (2016). https://doi.org/10.1145/2959100.2959134

15. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree.
In: Advances In Neural Information Processing Systems, pp. 3146–3154 (2017).
https://doi.org/10.5555/3294996.3295074

16. Ke, G., Xu, Z., Zhang, J., Bian, J., Liu, T.Y.: DeepGBM: a deep learning framework
distilled by GBDT for online prediction tasks. In: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
384–394 (2019). https://doi.org/10.1145/3292500.3330858

17. Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., Sun, G.: xDeepFM: combining
explicit and implicit feature interactions for recommender systems. https://doi.
org/10.1145/3219819.3220023

18. Ling, X., Deng, W., Chen, G., Zhou, H., Cui, L., Feng, S.: Model ensemble for click
prediction in bing search ads (2017). https://doi.org/10.1145/3041021.3054192

19. Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on
Data Mining, pp. 995–1000. IEEE (2010). https://doi.org/10.1109/ICDM.2010.
127

20. Richardson, M., Dominowska, E., Ragno, R.: Predicting clicks: estimating the click-
through rate for new ads. In: Proceedings of the 16th International Conference on
World Wide Web, pp. 521–530 (2007). https://doi.org/10.1145/1242572.1242643

21. Trofimov, I., Kornetova, A., Topinskiy, V.: Using boosted trees for click-through
rate prediction for sponsored search. In: Data Mining for Online Advertising and
Internet Economy, pp. 1–6 (2012)

22. Wang, R., Fu, B., Fu, G., Wang, M.: Deep & cross network for ad click predictions.
https://doi.org/10.1145/3124749.3124754

23. Wu, L., Sun, P., Fu, Y., Hong, R., Wang, X., Wang, M.: A neural influence diffusion
model for social recommendation. In: SIGIR2019, pp. 235–244 (2019)

24. Yang, A.: A recommendation system based on fusing boosting model and DNN
model. https://doi.org/10.32604/cmc.2019.07704

25. YuChin Juan, W.S.C., Zhuang, Y.: 3 Idiots’ Approach for Display Advertising
Challenge (2014). https://github.com/ycjuan/kaggle-2014-criteo/

https://doi.org/10.1145/2648584.2648589
https://doi.org/10.1145/3298689.3347043
https://doi.org/10.1145/3298689.3347043
https://doi.org/10.1145/3041021.3054185
https://doi.org/10.1145/3041021.3054185
https://doi.org/10.1145/2959100.2959134
https://doi.org/10.5555/3294996.3295074
https://doi.org/10.1145/3292500.3330858
https://doi.org/10.1145/3219819.3220023
https://doi.org/10.1145/3219819.3220023
https://doi.org/10.1145/3041021.3054192
https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.1145/1242572.1242643
https://doi.org/10.1145/3124749.3124754
https://doi.org/10.32604/cmc.2019.07704
https://github.com/ycjuan/kaggle-2014-criteo/

	ResFusion: A Residual Learning Based Fusion Framework for CTR Prediction
	1 Introduction
	2 Problem Definition and Related Works
	2.1 Problem Definition
	2.2 Related Works

	3 The Proposed Framework
	3.1 Overall ResFusion Framework Architecture
	3.2 Model Training
	3.3 Discussions

	4 Experiments
	4.1 Experimental Settings
	4.2 Overall Comparisons
	4.3 Detailed Model Analysis

	5 Conclusion
	References

