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ABSTRACT
Inmany recommender systems, users express item opinions through
two kinds of behaviors: giving preferences and writing detailed
reviews. As both kinds of behaviors reflect users’ assessment of
items, review enhanced recommender systems leverage these two
kinds of user behaviors to boost recommendation performance. On
the one hand, researchers proposed to better model the user and
item embeddings with additional review information for enhancing
preference prediction accuracy. On the other hand, some recent
works focused on automatically generating item reviews for rec-
ommendation explanations with related user and item embeddings.
We argue that, while the task of preference prediction with the
accuracy goal is well recognized in the community, the task of gen-
erating reviews for explainable recommendation is also important
to gain user trust and increase conversion rate. Some preliminary
attempts have considered jointly modeling these two tasks, with
the user and item embeddings are shared. These studies empirically
showed that these two tasks are correlated, and jointly modeling
them would benefit the performance of both tasks.

In this paper, we make a further study of unifying these two
tasks for explainable recommendation. Instead of simply correlating
these two tasks with shared user and item embeddings, we argue
that these two tasks are presented in dual forms. In other words,
the input of the primal preference prediction task p(R|C) is exactly
the output of the dual review generation task p(C|R), with R and
∗Corresponding author.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380164

C denote the preference value space and review space. Therefore,
we could explicitly model the probabilistic correlation between
these two dual tasks with p(R,C)=p(R|C)p(C)=p(C|R)p(R). We
design a unified dual framework of how to inject the probabilistic
duality of the two tasks in the training stage. Furthermore, as the
detailed preference and review information are not available for
each user-item pair in the test stage, we propose a transfer learn-
ing based model for preference prediction and review generation.
Finally, extensive experimental results on two real-world datasets
clearly show the effectiveness of our proposed model for both user
preference prediction and review generation.
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1 INTRODUCTION
Collaborative Filtering (CF) based recommendation provides per-
sonalized item suggestions to users based on their historical pref-
erence, and has been widely studied in the past with high rec-
ommendation accuracy [11, 21, 24]. However, CF suffers from the
cold-start problem. Therefore, many auxiliary data, such as review
information [4, 30, 45], social networks [5, 37], and knowledge
graph [32, 33], are leveraged with CF to enhance recommendation
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performance. Among them, reviews are very common in most plat-
forms, which express the users’ detailed feelings to the items with
rich semantic information. In essence, writing reviews and giving
preferences are two facets of showing users’ opinions to items.
Therefore, review enhanced recommender systems are studied for
better recommendation with the consideration of these two kinds
of users’ behaviors [14, 30].

Currently, given the user preference space R and review space
C, the solutions for review enhanced recommendation can be clas-
sified into two categories. First, to alleviate the data sparsity in CF,
researchers proposed to take reviews as input for better user and
item embedding learning, such that the preference prediction task
could be improved [4, 30, 45]. These models predict the conditional
distributionp(R|C;θ ), with θ is the parameter set that contains user
and item embeddings, as well as other parameters. For example,
as reviews are concerned with both users and items, DeepCoNN
learned the hidden user and item representations with two parallel
CNN based models [45]. In summary, this line of research focuses
on how to inject the review semantic information into CF, and
greatly improves recommendation accuracy.

Second, reviews are also widely used as training data to train an
explainable recommendation model which can provide semantic ex-
planations. Explanations would help to gain trust between users and
the systems, and encourage users to make decisions [12, 35, 36, 43].
While some researchers proposed to identify and extract detailed
sentiments for recommendation explanation [45], these models
could not tackle the situation when an item has very few reviews.
In the meantime, neural network based language generation models
have shown state-of-the-art performance in many natural language
generation areas, such as language translation [29], image cap-
tion [39] and text representation [41]. As such, a more natural
choice is to automatically generate reviews for explainable rec-
ommendations [7, 30]. Attribute to sequence models have been
proposed for producing review generation, with the attributes are
associated with user and item latent embeddings, user profiles and
item features [13, 46]. These models predicted the conditional dis-
tribution p(C|R;φ), with φ is the parameter set that contains user
and item embeddings, as well as other model parameters.

In fact, the two tasks of predicting user preference for item
recommendation and generating reviews for the recommended
items are not isolated but correlated. Both tasks rely on the related
user’s and item’s embeddings based on the same candidate user-
item pair. Based on this intuition, there are some recent works that
jointly modeled these two tasks toward accurate and explainable
recommendation [14, 30]. Specifically, the user embeddings and
item embeddings are shared among the two tasks. Then, a joint
optimization function is proposed to linearly combine the loss of
preference prediction and language generation. Different models
vary in the detailed formulation of the two conditional likelihood
of the two tasks (i.e., p(R |C), p(C |R)). These models have shown
superior performance by considering these two tasks in a unified
model, empirically showing the mutual reinforcement relationship
between these two tasks.

In this paper, we further study the jointly modeling problem. In-
stead of simply correlating these two tasks with shared parameters,
we argue that these two tasks are presented in dual forms, and have
intrinsic probabilistic connections between them. Specifically, in

review based recommender systems, with user preference predic-
tion as p(R|C;θ ), and review generation as p(C|R;φ), we find the
input of either task is exactly the output of the remaining task. Dual
learning has emerged in many real-world machine learning sce-
narios, such as image translation, machine translation, and image
classification and generation [8, 38].

Dual learning based theories are designed to tackle the corre-
lation between dual tasks with probabilistic correlation. By treat-
ing the two tasks in review enhanced recommendation as dual
tasks, the following probabilistic correlation are better satisfied:
p(R,C) = p(R|C)p(C) = p(C|R)p(R). Therefore, in this paper, we
would like to correlate these two tasks under the dual learning
framework for jointly predicting user preference and generating
review explanations. In practice, we turn the probabilistic duality
as a constraint for correlating these two tasks. Without the dual
learning framework, previous works optimized the correlation of
the two tasks with shared parameters, and could not guarantee the
probabilistic duality constraint. In contrast, by explicitly modeling
the duality constraint, the two tasks are explicitly correlated, and
the learning process of the two tasks could be strengthened with
each other, pushing the learning of the two tasks towards the right
direction.

However, dual modeling of the two tasks for recommendation is
non-trivial due to the following two challenges: First, in the training
process, how to push the duality forms of the two tasks in the
modeling process? Second, in the test stage, for each candidate user-
item pair, we do not have either the preference information or the
review data. How to make recommendations in the test stage when
the input data is not available? To tackle these two challenges, we
first propose a unified dual model to inject the probabilistic duality
of the two tasks in the training stage, with each probability function
is well designed. Furthermore, to tackle the unavailable preference
and review in the test stage, we propose a transfer learning based
model to simulate the review representation of each user-item pair,
which could be approximated for preference prediction and review
generation. In summary, the main contribution of this paper is
summarized as follows:

• In this paper, we argue that two tasks of user preference
prediction and review generation are naturally presented in
dual forms. By forming the duality between them, we pro-
pose to jointly model these two tasks with with probabilistic
dual correlation.

• We propose a dual learning based joint model for user prefer-
ence prediction and review generation. Our main technical
contribution lies in designing detailed probability modeling
of each task in the training process with duality constraints.
Besides, we design a transfer learning based model in the
test stage to solve the unavailable preference and review
problem.

• We conduct extensive experiments on two real-world datasets.
The experimental results clearly show the effectiveness of
our proposed model for user preference prediction and re-
view generation compared to state-of-the-art models.

2 RELATEDWORK
Traditionally, CF models relied on user-item historical behavior for
learning user and item representations in a low collaborative latent
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space, and received success in the past [11, 21, 24]. E.g., Probabilistic
Matrix Factorization (PMF) adopted matrix factorization to achieve
this goal [21]. However, CF suffered from the data sparsity issue,
as many users have a few historical records. Reviews are common
in most recommender systems and have been widely applied to
enhance recommendation accuracy [1, 4, 17, 19, 26, 45]. Some ear-
lier works focused on how to boost the performance by treating
reviews as side information, such as modeling items’ preferences
with LDA topic model[1], or regularizing the matrix factorization
training process with reviews[17], or treating the reviews as fea-
tures with Factorization Machines [23]. With the huge success of
deep learning in NLP, researchers proposed to align better review
content embedding into the user and item embedding modeling
process [4]. DeepCoNN is a state-of-the-art deep learning based
recommendation model with two parallel CNN based content em-
bedding modules, with the reviews associated to the users and items
as input [45]. Different models varied in the detailed choices of the
state-of-the-art text embedding methods [18, 25], and the design
of attention networks for selecting important semantic informa-
tion [4, 26]. Researchers have found for each user-item pair, the
review from the user to the item is the most valuable for predicting
preferences. However, the detailed review is not available in the
test stage. TransNet is proposed to approximate the review repre-
sentation of the user-item pair, and showed better performance in
practice [3].

Besides utilizing reviews to enhance recommendation accuracy,
reviews have also been applied for explainable recommendation.
Some works focused on extraction techniques, such as modeling
item’s and users’ embeddings based on the aspects [9, 43], selecting
valuable sentences for recommendation with either attention mod-
eling [4] or reinforcement modeling techniques [34]. While directly
using extraction basedmodels may suffer from the copyright related
issues and limited reviews, a more popular approach is to borrow
the advances in natural language generation to generate reviews for
explainable recommendation [2, 29]. The state-of-the-art models
for natural language generation models follow an encoder-decoder
structure, with encoding all related information, and decoding a
sentence. Natural language generation has been widely studied in
domains such as machine translation [2], image captioning [39],
dialogue systems [27], and so on. Researchers proposed an attribute
to sequence model to learn to generate reviews for products, where
the encoder part includes users’ profiles, items’ attributes and users’
preferences to the items [46]. Researchers also leveraged auxiliary
sources to enhance text generation performance, e.g., the auxil-
iary item information associated with items [42, 44], user persona
language styles [13]. In summary, these models either assumed
the user related content or the user embedding is available for
the generation tasks, and suffered from two limitations for recom-
mendation. First, these generation tasks failed for the platforms
that do not have any user profile. Second, the user embedding is
usually learned from users’ preferences, and separating the task
of user preference learning and review generation would lead to
suboptimal performance.

Recently, there are several attempts that proposed to jointly learn
user preferences and generate reviews with a multi-task learning
framework [7, 14, 16, 30]. The key ideas of these models are com-
posed of two tasks: a user preference learning task with user and

item embeddings as input, and a review generation task that also
takes user and item embeddings in the encoder. Therefore, the user
and item embeddings are shared among these two tasks. E.g., re-
searchers proposed a Multimodal Review Generation (MRG) model
for these two tasks with shared user and item latent embeddings[30].
Besides, the multimodal information of items is encoded for better
review generation. After that, a joint optimization function with
shared embeddings is proposed to combine both preference predic-
tion error and review generation error for multi-task learning [30].
Different models varied in the detailed implementations with aux-
iliary data, i.e., the tips information that are abstractions of re-
views [14], the associated knowledge base information of items [30],
or the fine-grained image semantics that are specifically designed
for fashion recommendation [6, 16]. We differ greatly from these
works as we do not put emphasis on how to design more sophisti-
catedmodels for either preference prediction and review generation,
and our main contribution lies in correlating these two tasks under
a dual form, such that the probabilistic correlation of these two
tasks are modeled in the multi-task learning process. In fact, our
proposed dual learning framework is flexible and could be easily
extended to any of the above models with consideration of duality
constraints.

Our work is also closely related to the theories in dual learning.
Many machine learning tasks present in dual forms, such as dual-
ity in machine translation between two languages, image caption
task and image generation task in image processing. Dual learning
leverages the symmetric (primal-dual) structure of two tasks to
enhance learning process [8]. Duality learning can be presented
in the unsupervised setting [8], and the supervised setting [38].
For dual unsupervised learning, we could only observe the duality
between two domains without the exact each pair correlation, such
as unpaired image translation [47] and unpaired machine transla-
tion [38]. With one model for the primal task and another model
for the dual task, these two tasks would teach each other for mu-
tual reinforcement. Our work is more closely related to the dual
supervised learning [38], with the correlation between each prefer-
ence and review pair is available. In dual supervised learning, the
correlation between two tasks is modeled with dual probabilistic
correlation, and usually is turned to a data dependent regularization
term for optimization. Please refer to the original paper for more
details [38]. To the best of our knowledge, we are one of the first
few attempts that leverage the duality between user preference
prediction and review generation for better learning of the two
tasks.

Input

Model

Output

User, Item IDs and Review

𝑝(ℛ|𝒞; 𝜃) 𝑝(𝒞|ℛ; 𝜑)

𝐶+,-𝑟̂,-

𝑎, 𝑖, 𝐶,-
User, Item IDs and Rating

𝑎, 𝑖, 𝑟,-

Figure 1: An illustration of the duality between the prefer-
ence prediction task and review generation task.
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3 THE PROPOSED FRAMEWORK
In this section, we design DualPC: a Dual learning based framework
with both Preference prediction and review Content generation
in review based recommender systems. We would first give the
overall framework of DualPC, followed by the submodules in the
framework. After that, we describe the training process of DualPC,
and how to test our model when the candidate user-item preference
and review content are not available.

3.1 Overall Framework of DualPC
In a review based recommender system, the training set is X =
(U,V,R,C), whereU andV are the user set and item set respec-
tively. R is the preference set, with each preference value can be
explicit numerical preferences or implicit feedback. C is the review
set, with each review is a sentence written by a user to an item.
Given the training set X, we have a preference prediction task
p(R|C;θ ) that predicts user preference based on the reviews with
parameters θ , and a review generation task p(C|R;φ) that takes
user-item related preference as input for review generation with
parameters φ.

Given each training record of as a quad of x=(a, i, rai ,Cai ), in
which a is a user and i is an item, rai and Cai are the prefer-
ence and review of a to i . The preference prediction task aims
to find a function f : a, i,Cai → rai , which is used to maximize
the conditional probability p(rai |a, i,Cai ;θ ) of the real preference
rai . As for the review generation task, it aims to find a function
д: a, i, rai → Cai , which is used to maximize the conditional proba-
bility p(Cai |a, i, rai ;φ) of the real review Cai . These two tasks can
be formulated as follows:

f (a, i, Cai ; θ ) ≜ argmaxp(R |C; θ ) = argmax
∏
x∈X

p(rai |a, i, Cai ; θ ),

д(a, i, rai ;φ) ≜ argmaxp(C |R;φ) = argmax
∏
x∈X

p(Cai |a, i, rai ;φ)]

where θ and φ are the trainable parameter sets of preference predic-
tion model f and review generation model д. Please note that, with-
out confusion, we would omit the term of (a, i) (e.g., p(rai |a, i,Cai )
is denoted as p(rai |Cai )).

By many standard learning tasks, the preference prediction
model f is learned by minimizing the empirical risk between pre-
dicted preference and the training data as:

min
θ

1
|X |

∑
x∈X

l1(f (a, i, Cai ; θ ), rai ); (1)

and the review content generation model д is similarly learned
by:

min
φ

1
|X |

∑
x∈X

l2(д(a, i, rai ;φ), Cai ). (2)

In fact, as shown in Fig.1, these two tasks are presented in dual
forms. Therefore, we associate these two tasks with dual learning.
In the following, we treat the preference prediction task as the
primal task and review content generation as the dual task. If the
learned primal and dual models are perfect, the probabilistic duality
between them are better satisfied:

p(X) =
∏
x∈X

p(a, i, rai , Cai ) (3)

=
∏
x∈X

p(Cai )p(rai |Cai ; θ ) =
∏
x∈X

p(rai )p(Cai |rai ;φ)

By combining the probabilistic duality correlation between the
two tasks in Eq.3 with the empirical losses of the two tasks (i.e.,
Eq.1 and Eq.2), we optimize the following objective optimization
function as:

ob ject ive1 : min
θ

1
|X |

∑
x∈X

l1(f (a, i, Cai ; θ ), rai ),

ob ject ive2 : min
φ

1
|X |

∑
x∈X

l2(д(a, i, rai ;φ), Cai ),

s.t.
∏
x∈X

p(Cai )p(rai |Cai ; θ ) =
∏
x∈X

p(rai )p(Cai |rai ;φ)

where p(rai ) and p(Cai ) are the marginal distributions.
As directly putting the probabilistic constraints (Eq.3) into the

two objectives are not feasible in practice, we convert the duality
correlation as a regularization term:

lduality =
∑
x∈X

[loдp(rai ) + loдp(Cai |rai ;φ)

− loдp(Cai ) − loдp(rai |Cai ; θ )]2 .
(4)

Therefore, the probabilistic correlation of the two tasks are mod-
eled by the above duality based regularization term. Under the
DualPC framework, for each task, we could reformulate the opti-
mization goal by the weighted combination between the original
loss function and the above duality based regularization term:

objective1:min
θ

1
|X |

∑
x∈X

(l1 + λ1lduality ), (5)

objective2:min
φ

1
|X |

∑
x∈X

(l2 + λ2lduality ), (6)

where λ1 and λ2 are the weights of the duality terms that need to
be tuned in practice. They control the gradient from the duality
loss when optimizing θ and ϕ respectively. With larger values of
them, the duality regularization terms play more important roles
in correlating these two tasks with probabilistic constraints.

However, the objective functions are different from the following
one:

min
θ

1
|X |

∑
x∈X

(l1 + l2 + (λ1 + λ2)lduality )

as the coefficient of the gradient from the duality loss term is a
fixed value (λ1+λ2).

In the following, we would like to show the sub modules of
DualPC framework with preference prediction (Eq.5) and review
generation (Eq.6). Specifically, we would first show how to compute
the original losses introduced by the preference prediction function
f ( Eq.1) and the review generation function д (Eq.2). After that, we
model the duality loss (Eq.4) by introducing the calculation of the
marginal distributions. We then give the model training process.

3.2 Preference Prediction Module of DualPC
In this subsection, we design a submodule for DualPC for the pri-
mary preference prediction task given the review data. In other
words,wemodel the predicted preference of r̂ai as: r̂ai=f (a, i,Cai ;θ )
with parameter set θ (Eq.1). We show the structure of the preference
prediction in Fig.2, which includes the embedding layers, the fusion
layer, the Multi-layer Perceptions (MLPs).

Embedding Layer. Each input record is associated with a user
ID a, an item ID i , and review Cai that is consists of T words
(C0

ai ,C
1
ai ,C

2
ai , ...,C

t
ai , ...,C

T−1
ai ). Similar as many CF based models,
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Figure 2: The overall structure of the preference prediction
module with review input: f (a, i,Cai ;θ ).

we first turn the user ID and item ID into embeddings with free
user embedding matrix U ∈ RD×|U | and free item embedding
matrix V ∈ RD×|V | . Therefore, user a’s embedding vector is the
ath column ofU, denoted as ua . Similarly, item i’s embedding vector
vi is the ith column of V.

For reviews, since the focus of this paper is not to design more so-
phisticated models for review embedding, we select the pre-trained
LSTM to get review embedding[28], which has been widely used in
many language modeling tasks with state-of-the-art performance.
Thus, each review can be represented with the pre-trained LSTM
as follows:

hTai = LSTM (Cai ), (7)

Specifically, at each time t , the hidden state of the LSTM structure
is htai = LSTM(ht−1ai , e

t−1
ai ;θLSTM ), with θLSTM is the trainable

parameters set of the LSTM structure. et−1ai is the word embedding
of the (t-1)th word in Cai . In fact, each word embedding could be
pretrained from the word embedding matrix E. We treat the last
hidden state hTai of the LSTM as the representation of the input
review (T is the number of words in the review).

Fusion Layer. The fusion layer fuses the input embeddings as:
m0
ai = [hTai , ua ◦ vi ], (8)

where ua ◦ vi is the element-wise product that models the collab-
orative interaction between each user-item pair.

MLP Layers. By feeding the output of the fusion layer into MLP
layers, this layer-wise structure models the complex interactions
between the collaborative signals and review semantics. Suppose
there are L layers of MLPs, we have

ml
ai = ReLU (W(l−1) ×m(l−1)

ai + bl−1), l = 1, ..., L. (9)

Preference Prediction Layer. By feeding the output of MLPs,
i.e., mL

ai , into the preference layer, we have:
r̂ai = w′ ×mL

ai + b, (10)

where w′ is the vector parameter, and b is a bias term that needs
to be learned.

After obtaining the predicted preferences, similar as many prefer-
ence prediction tasks, we assume the likelihood of each preference
record rai follow a Gaussian distribution, with the mean of the pre-
dicted preference r̂ai and variance of σ 2 [21]. Then, the likelihood
of the conditional preference distributions is modeled as:

p(R |C ; θ ) =
∏
x∈X

N(rai |r̂ai , σ 2) =
∏
x∈X

1
√
2πσ 2

exp(
−(rai − r̂ai )2

2σ 2 ).

(11)
where σ 2 is a hyperparameter that needs to be tuned.
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Figure 3: The overall structure of the review generationmod-
ule with preference input: д(a, i, rai ;φ).

Given the above likelihood function, maximizing the above con-
ditional likelihood function is equivalent to minimizing the log-
likelihood optimization function (Eq.1) as:

min
θ

1
|X |

∑
x∈X

l1(f (a, i, Cai ; θ ), rai )

=min
θ

1
|X |

∑
x∈X

loд(
√
2πσ 2) +

(rai − r̂ai )2

2σ 2 . (12)

3.3 Review Generation Module of DualPC
In this subsection, we design a model for the review generation task
given the preference data. In other words, we model the generated
review as Ĉai = д(a, i, rai ;φ) with parameter set φ (Eq.2). The
structure of the review generation is shown in Fig.3. It can be
treated as an encoder-decoder structure.

Encoder Part. Each input record is associated with a user ID,
an item ID, and the preference of rai . The encoder part includes
an embedding layer to transform all related attributes into vectors,
followed by a fusion layer to combine all the vectors. Specifically,
the embedding layer embeds the user and item related attributes,
including user embeddings, item embeddings, as well as the senti-
ment reflected in the preference. Let P ∈ RD×|U | and Q ∈ RD×|V |

denote the parameters of the free user and item embedding matrices
in the review generation task. Then, user a’s embedding vector is
the ath column of P, denoted as pa . Similarly, item i’s embedding
vector is qi , i.e., the ith column of Q.

Each preference presents in discrete values, by treating each pref-
erence rai as this user’s sentiment towards items, we use one-hot
encoding to convert the preferences into vectors. We use e(rai ) ∈
{0, 1}K as the representation of the vectorized preference, with the
vector length K equals the number of discrete values. E.g., in an
explicit preference system with user preferences range from 1 to
5, K equals 5. And in implicit feedback based systems with user
browsing behavior, add to cart behavior and the buying behavior,
K=3. Each element of e(rai ) ∈ {0, 1}K denotes whether this user
performs the corresponding action to the item. After that, we fuse
all the embeddings as the output of the encoder as:

a = [e(rai ), pa ◦ qi ]. (13)

Decoder Part. The decoder part is built upon LSTM units, since
it could better handle long sequences. Specifically, an LSTM uses a
vector to represent information for the current step, and recursively
updates the next hidden vector based on the previous hidden vector

841



as well as the current input. Let ktai denote the k
th hidden state

of the LSTM structure, with the initial hidden state k0ai=a is the
output of the encoder part in Eq.13. At each time t , the LSTM takes
the previous hidden state kt−1ai , the t th word representation of the
review Cai as input, and updates the current state ktai as:

ktai = LSTM (kt−1ai , e
t
ai ;φLSTM ), (14)

where φLSTM is the trainable parameters set of the LSTM structure,
etai is the word embedding of the t th word in Cai . etai can be ob-
tained by using word Ct

ai to retrieve the word embedding matrix E.
The word embedding matrix E is the same as the pre-trained word
embeddings in the preference prediction part.

To get the conditional probability of each word at time t , we first
map the output of the LSTM to the vocabulary space. Then, we use
a softmax function to model the distribution of the output word
Ct
ai=w as:

p(C t
ai |C

<t
ai , rai ;φ) = sof tmaxCt

ai
(F · ktai ), (15)

where F ∈ R( |V |×d ) is the trainable parameters, and with |V | is the
size of the vocabulary, and d=|k|tai is the dimension of the hidden
state of the LSTM. The ground truth word Ct

ai corresponds to the
wth word in the vocabulary and the conditional probability of Ct

ai
is p(Ct

ai |C
<t
ai , rai ;φ).

As the conditional probability of review Cai can be calculated
with

∏ |Cai |
t=1 p(Ct

ai |C
<t
ai , rai ;φ), maximizing the likelihood of all the

training reviews is equivalent to minimizing the Negative Likeli-
hood Loss (NLL) equation (Eq.2) as:

l2 = −
∑
x∈X

p(Cai |rai ;φ) = −
∑
x∈X

|Cai |∑
t=1

loд(p(C t
ai |C

<t
ai , rai ;φ). (16)

3.4 Model Training
In this section, we introduce how to train our proposed dual learning
basedDualPC framework of twomodules: preference prediction and
review generation. However, according to Eq.5 and Eq.6 of the two
optimization functions, both functions have the duality loss (Eq.4).
As the conditional probabilities of p(rai |Cai ) and p(Cai |rai ) have
been modeled in the preceding two subsections, we first focus on
the marginal preference distribution and review distribution. Then,
we give a detailed training algorithm.

Marginal Distribution.Without the review data as input, we
use a classical collaborative filtering model: Probabilistic Matrix
Factorization (PMF) [21] to model the marginal distribution. Specif-
ically, given users’ historical preference records R, we train a PMF
model first, then we adopt the learned PMF model to calculate
the empirical marginal distribution of the real preferences. Let
PMF (a, i) denotes the predicted preference of a user-item pair (a, i)
under the PMF model with training data R, the marginal distribu-
tion of the preference data is:

p(R) =
∏
x∈X

N(rai |PMF (a, i), σ 2)

=
∏
x∈X

1
√
2πσ 2

exp(
−(rai − PMF (a, i))2

2σ 2 ),

(17)

where σ 2 is a hyperparameter that needs to be tuned.
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Figure 4: The structure of TransNet for review representa-
tion for review representation at test stage.

For the training data of reviews, we resort to LSTM to approxi-
mate themarginal distribution of reviews. Themarginal distribution
of the review distribution is modeled as

p(C) =
∏
x∈X

|Cai |∏
t=1

p(C t
ai |C

<t
ai ), (18)

where Ct
ai is the t

th word in Cai , |Cai | denotes the number of
words in Cai , and the index < i indicates 1, 2, ..., t − 1.

After modeling the marginal distribution, the duality loss in Eq.4
can be computed in detail as:

lduality =
∑
x∈X

[loдp(rai ) +
|Cai |∑
t=1

loдp(C t
ai |C

<t
ai , rai ;φ)

−

|Cai |∑
t=1

loдp(C t
ai |C

<t
ai ) − loд(p(rai |Cai ; θ ))]2 . (19)

Please note that, in the duality loss, both the marginal distributions
of preferences and reviews are computed in advance, and are not
involved in the model training process of the DualPC framework.
In fact, the computation of the marginal distributions is modeled
to regularize the duality based loss, such that the conditional prob-
abilities are better learned in the modeling process.

With the pre-computedmarginal distributions, we combine Eq.12
and Eq.19 to obtain the optimization functions of preference pre-
diction as follows:

min
θ

lP = l1 + λ1lduality

=
1
|X |

∑
x∈X

[loд(
√
2πσ 2) +

(rai − r̂ai )2

2σ 2 + λ1lduality ], (20)

where θ = [U,V, [Wl , bl ]Ll=1,w
′,b,θLSTM ].

Similarly, the optimization function of review generation is ob-
tained by combining the conditional review generation loss Eq.16,
and the duality loss in Eq.19:

min
φ

lC = l2 + λ2lduality

=
1
|X |

∑
x∈X

[−

|Cai |∑
t=1

loд(p(C t
ai |C

<t
ai , rai ;φ) + λ2lduality ], (21)

where φ = [P,Q, F,φLSTM ]. We show the detailed algorithm of
the DualPC in Algorithm 1.

3.5 How to Test the DualPC Framework
In the training stage, wemodel the preference function r̂ai=f (a, i,Cai ;θ )
with the associated review, and the review function Ĉai=д(a, i, rai ;φ),
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Algorithm 1:Model Training of DualPC Framework.
Require:

The training dataset X = [U, V, R, C] ;
Ensure:
1: Initialize all trainable parameters of preference prediction θ and

review generation φ ;
2: Precompute the marginal preference distribution with PMF and the

marginal review distribution with LSTM;;
3: repeat
4: Get a mini-batch ofm user-item pairs, and corresponding

preferences and reviews;
5: for Each pair of input (a, i, Cai , rai ) in the mini-batch do
6: Compute the conditional loss l1 (Eq.12) and l2 (Eq.16);
7: Compute the duality loss lduality ( Eq.19);
8: Compute the objective function of preference prediction in Eq.20

and review generation in Eq.21;
9: end for
10: Optimize θ to minimize preference prediction loss;
11: Optimize φ to minimize review generation loss;
12: until Convergence of parameters.

and learn the parameter set θ and φ. In the test stage, for each can-
didate user-item pair (a, i), we do not have either the preference
information or the review data. In this subsection, we would show
how to predict the preferences and generate reviews during the
testing process. Specifically, we would first borrow the key ideas of
TransNet, a review based preference prediction model [3]. TransNet
learns to transform the historical reviews of users and items, into
a pair-wise user-item review representation at the test time when
the user-item review is not available. Based on TransNet, we would
first predict users’ preferences at the test stage with the pair-wise
user-item review representation. Then, the predicted preferences
would be approximated as users’ preferences and feed into the re-
view generation function for review generation at the test time. In
the following, we would give a brief introduction of TransNet, and
show how the key ideas of TransNet can be used in our DualPC
framework for the model test.

LetCa denotes all the historical reviews of user a in the training
data, and Ci denotes all the historical reviews of item i . For each
user-item pair (a, i), as the real user-item review Cai is the most
important for predicting the preference r̂ai , TransNet is proposed to
approximate the real user-item review representation with a trans-
formation structure [3]. For each user-item reviewCai , it is first sent
to LSTMs to get the review semantic representation hTai as shown
in Eq.7. Therefore, for each user-item pair (a, i), TransNet needs to
learn a function ẑai=s(a, i,Ca ,Ci ) to approximate the real review
representation hTai . We show the overall structure of TransNet in
Fig. 4. Specifically, to mimic hTai , TransNet first takes user i’s re-
views and item i’s reviews in the training data and get the review
semantic representation sa and si as:

sa =
1

|Ca | − 1

∑
k :[rak=1,k,i ]

LSTM (Cak ),

si =
1

|Ci | − 1

∑
b :[rbi=1,b,a]

LSTM (Cbi ),
(22)

where the LSTM is the same as the one in preference prediction
part so that there are no additional parameters. We have to note
that, the current reviewCai is omitted for both user and item review

representation to avoid the leakage of the optimization goal during
testing. Next, we concatenate sa and si and send the result to MLPs
for the representation zLai as :

z0ai = [sa, si ]

zlai = ReLU (Wl
M zl−1ai ), l = 1, .., L. (23)

The output of MLPs, i.e., zLai , is designed to approximate the true
review representation hTai . Therefore, the optimization function is
defined as:

ltrans = (zLai − hTai )
2 . (24)

And in TransNet, the trainable parameters ϕ=[Wl
M ]Ll=1.

Algorithm 2: TransNet part for model prediction.
Require:

The training dataset X=[U, V, R, C] ;
Parameter set of θ with θLSTM .

Ensure:
Initialize the parameter set ϕ of TransNet.

1: repeat
2: Get a mini-batch ofm user-item pairs, and corresponding reviews;
3: for Each pair of input (a, i, Cai ) in the mini-batch do
4: Compute the real review representation hTai ;
5: Compute the approximated review representation zLai (Eq.23);
6: Update the TransNet loss in Eq.24
7: end for
8: Optimize the parameter set of ϕ ;
9: until Convergence of model parameters.

Model Prediction. In the test stage, for each candidate user-
item pair (a, i), we first use the TransNet to approximate the un-
observed review representation hTai as z

L
ai . Then, the predicted

preference r̂ai is inferred as:

r̂ai = f (a, i, Cai ; θ ) = f (a, i, hTai ; θ ) ≈ f (a, i, zLai ; θ ). (25)

With the predicted preference r̂ai , we first round this value to the
nearest integer round(r̂ai ). Then, we input the triplet (a, i, round(r̂ai ))
to the review generation function to get the generated review as:

Ĉai = д(a, i, rai ;φ) ≈ д(a, i, round (r̂ai );φ). (26)

4 EXPERIMENTAL SETUP
Datasets.We evaluate our proposed method on two datasets: Ama-
zon Books[20] andAmazon Electronics[31] from theAmazon dataset1.
The preferences range from 1 to 5. To reduce the impact of complex
symbols on language modeling, we keep the reviews that only con-
tain symbols of the comma and period. After that, we require users
and items have more than one review, and the frequency of words
should be more than 3. After data preprocessing, we select 85% of
the data for training, 5% for validation and the remaining 10% as
the test data. For each review, we add the ‘SOS’ and ‘EOS’ flags at
the start and end position, respectively. To keep the reviews have
the same length as the longest reviews, we add the ‘PAD’ flags to
the reviews with shorter lengths. The statistics of the datasets are
shown in Table 1.
1http://jmcauley.ucsd.edu/data/amazon/
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Table 1: The statistics of the two datasets.

Dataset Books Electronics
Users 185703 140766
Items 126137 72984

Training preferences 578341 288698
Test preference 58801 25446

preference Density 0.0025% 0.0028%
Words 33806 17132

Reviews Maximum Length 33 32

Implementation Details. We implement DualPC by using Py-
Torch2. The models are trained on NVIDIA GTX1080Ti. The dimen-
sion of the word embedding E is set as 150, and it is pre-trained with
the Gensimword2vec3. The hidden state size of both LSTMmodules
in the preference prediction and review generation is set as 128 for
the Amazon Books and 256 for Amazon Electronics (Eq.7 and Eq.14).
The number of the layers of the MLPs is set as 3 in the preference
prediction (Eq.9) process. Specifically, the hidden state size of each
layer of the MLPs is half of the previous one. In the test stage, the
number of the layers of MLPs is set as 4. In the first 3 layers, the
hidden state size of each layer of the MLPs is half of the dimension
of the previous one. And the last layer of the hidden dimension in
MLP (i.e., zLai )is set as the same size of the hidden state of LSTM (i.e.,
hTai ). To initialize the DualPC model, we randomly inatialize all
parameters such as [U,V, P,Q, [Wl , bl ]3l=1,w

′,b, F, [Wl
M ]4l=1] fol-

lowing a normal distribution with mean as 0 and variance as 0.01.
We set [λ1=0.2, λ2=0.4] and [λ1=0.2, λ2=0.2] for Amazon Books and
Amazon Electronics, respectively. We use Adam optimizer with a
learning rate 0.001, and the regularization coefficient is set as 0.001.
Last but not least, for the variance σ 2 hyperparameter of Gaussian
distribution in Eq.11 and Eq.17, we set the variance parameter as
the squared error of the test preferences learned from PMF.

5 PREFERENCE PREDICTION TASK
Baselines and Evaluations.The baselines can be divided into two
groups:

Preferences Only. The methods in this group only consider the
preference data. Like PMF[21] and NeuMF[10]. PMF is based on the
matrix factorization for user preference prediction, which projects
both user and item into a low latent space. NeuMF advances PMF by
modeling the non-linear interaction between the users and items.

Preferences and Reviews. This methods in this group not only
consider the preference data, but also the reviews data. Like FM[23],
DeepCoNN [45], NARRE[4], TransNet[3] and MRG[30]. FM is a fea-
ture enriched CF model by modeling both user and item interaction
behavior, as well as the user and item features. In review enhanced
recommendation, each user’s (item’s) feature is represented as a
vector of words. For DeepCoNN and NARRE, the preference is
learned by modeling the non-linear interactions between user and
item semantic vector. The difference between them is how to learn
the user and item semantic vector. DeepCoNN uses two parallel
CNN based networks for user and item review semantic embed-
ding. Instead of modeling each user by equally combining the rep-
resentations of each user’s historical reviews, NARRE advances

2https://pytorch.org
3https://radimrehurek.com/gensim/models/word2vec.html

DeepCoNN by attentively selecting important reviews for recom-
mendation. As the target user-item review is not available at test
time, TransNet advances DeepCoNN by introducing an additional
latent layer representing the target user-item pair. MRG is a state-
of-the-art multi-task learning model for both preference prediction
and review generation. The multimodal data are used to better
inform the review generation process. In practice, as we do not
have the multimodal information, we simplify this model with no
additional multimodal input.

We select the Root Mean Square Error(RMSE) as the evaluation
metrics, wich is calculated as:

RMSE = (
1

|D |

∑
D

(rai − r̂ai )2)
1
2 , (27)

where rai is the real preference and r̂ai is the predicted preference.
D is the test set for evaluation.

Overall Performance Comparison. Table 2 shows the RMSE
results of all models on two datasets with varying dimension size D.
We can observe that our proposed DualPC framework outperforms
all baselines under any dimension D, showing the effectiveness of
correlating these two tasks by duality learning. Among all baselines,
DeepCoNN and NARRE utilize the reviews as auxiliary information
to alleviate the data sparsity problem. Therefore, these two review
enhanced models show better preference prediction accuracy com-
pared to CF baselines of PMF and NeuMF. As the target user-item
review contributes most in recommendation, TransNet advances
DeepCoNN by introducing an additional latent layer to approxi-
mate the representation of the target user-item review. Among all
the baselines, we observer that though MRG jointly models the two
tasks with a multi-task setting, it does not perform better than most
baselines. We speculator that in MRG model with user preference
learning, the predicted preference is onlymodeled with the user free
emebedding and item free embedding without any content enriched
modeling techniques. Therefore, MRG has inferior performance on
preference prediction task. As D increases, the performance of our
DualPC model also increases, and DualPC always show the best
performance. For example, when D=128, DualPC increases the best
baseline about 1.5% on RSME metric, showing the effectiveness of
enhancing preference prediction with duality based loss. Based on
the above analysis, we set D=128 in the following experiments.

6 REVIEW GENERATION TASK
Baselines andEvaluations.We compare our proposedmodel with
the following baselines, Naive LSTM[29], SRGM-s[40], Att2Seq[46],
MRG[30]. All the methods are mainly based on the encoder-decoder
architecture. Naive LSTM reconstructs the input sentence with an
LSTM structure, which is a generalized model and does not take
any personalized information into consideration. SRGM-s advances
the Naive LSTM by modeling the preferences in the review genera-
tion process to guide the generated reviews to be consistent with
preferences. Att2Seq encodes the user latent embedding, item latent
embedding, and the preferences. And MRG is a multi-task learning
model for both user preference prediction and review generation.

Since it is a language generation problem, we select BLEU[22]
and ROUGE[15] to evaluate the model performance. They both
are calculated based on the overlapping content of the candidate
generated reviews and the real reviews with different methods.
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Table 2: Preference prediction task: RMSE comparisons of different dimension size D on two datasets.

Models Amazon Books Amazon Electronics
D=16 D=32 D=64 D=128 D=16 D=32 D=64 D=128

PMF 0.9480 0.9480 0.9470 0.9479 1.0994 1.0996 1.0995 1.0994
NeuMF 0.9354 0.9147 0.8958 0.8665 1.0657 1.0525 1.0297 1.0267
FM 0.9302 0.9161 0.8945 0.8722 1.0429 1.0348 1.0268 1.0155

DeepCoNN 0.9290 0.9132 0.9002 0.8621 1.0333 1.0284 1.0092 0.9903
NARRE 0.9246 0.9082 0.8931 0.8507 1.0281 1.0102 1.0041 0.9819
TransNet 0.9273 0.9107 0.8974 0.8624 1.0327 1.0229 0.9947 0.9828
MRG 0.9380 0.9238 0.9047 0.8751 1.0984 1.0848 1.0613 1.0582

DualPC 0.9093 0.8914 0.8788 0.8376 0.9825 0.9743 0.9672 0.9676

However, the BLEU score is precision-oriented, and ROUGE scores
contain the Precision, Recall, and F-measure parts. Moreover, the
ROUGE has many different strategies to measure the overlapping
content between two sentences. In this experiment, we will report
the results based on Recall, Precision, and F-measure of ROUGE-1,
ROUGE-2, ROUGE-L and ROUGE-SU4 and the BLEU scores.

Overall Performance Comparison. Table 3 and Table 4 show
the overall performance of all models on review generation task.
Based on the results, we have following observations.

First of all, DualPC outperforms all comparison methods on
the two datasets, and achieves best performance on BLEU and
F-measure of ROUGE-1, ROUGE-2, ROUGE-L and ROUGE-SU4
metrics. Among all baselines, we can observe that Naive LSTM
and SRGM-s achieve better performance on ROUGE Recall. We
speculate that the long sentence can be generated more easily with
less external information. However, our proposed DualPC achieves
best performance on ROUGE F-measure, indicating that DualPC
is capable of generating more suitable reviews. We believe that
the possible reasons are tow-fold. On one hand, DualPC encodes
the interaction of user and item, and the preference information,
providing sufficient information for the decoder to generate per-
sonalized reviews that are correlated with items. On the other hand,
the duality constrains of the two tasks make the user and item em-
bedding learning more precise. Therefore, DualPC also outperforms
Att2Seq that also takes similar input, but with the user and item
embedding learning separately from the preference history.

Among all baselines, MRG is the current state-of-the-art method.
It leverages the multi-task learning method and share the user
and item embeddings between two tasks, so that the relationship
between preference prediction and review generation can be better
verified. Different from MRG, our proposed DualPC takes the dual
learning method into consideration, so that we can not only better
analyze the interaction between preference prediction and review
generation, but also enhance the model performance on one of
the task with the results on the other task. Thus, we can observe
that our proposed DualPC achieves the best performance compared
with other baselines.

Case Study. Table 5 shows some examples of reviews generated
with the baseline models based on Amazon Electronics. We don’t
show the results produced by Naive LSTM and SRGM-s since they
don’t take any personalized information into account. The real
cases are from three pairs of user-item, with the real preferences
and reviews are also shown for better understanding. From the
results, we can observe that the reviews generated by DualPC are
more fluent with fewer grammar errors. The bold words in the sen-
tences are the keywords that are related to the real reviews and the

phrases that persuade customers to buy this product. Comparing
with the baseline models, by using the probabilistic correlation du-
ality constraints, the reviews generated by our DualPC framework
looks closer to the real reviews and are more persuasive.
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Figure 5: The influence of the λ1 and λ2 on the two datasets.

Sensitivity of Parameters. In DualPC, according to the opti-
mization functions of Eq.20 and Eq.21 for the two tasks, λ1 and
λ2 are two important parameters of the duality based loss terms
that need to be tuned. The larger values of the two parameters, the
more the probabilistic duality terms play roles in the optimization
process. Specifically, when λ1=λ2=0, DualPC degenerates to clas-
sical preference prediction models and review generation models
without any duality constraints.

To investigate the effects of λ1 and λ2, we first tune the λ1 among
[0, 0.2, 0.4, 0.6, 0.8, 1.0] with λ2=0.2. Fig.5 (a) and (b) show the
performance of the preference prediction task with RMSE metric
as λ1 varies. The smaller value of RMSE, the better the preference
prediction performance. For both datasets, as λ1 increases from 0 to
0.2, the preference prediction performance increases. As we further
increases λ1, the performance drops. Therefore, we set λ1=0.2 for
both datasets. Fig.5 (c) and (d) show the performance of the review
generation task as the λ2 varies (λ1=0.2). It is evaluated based on the
BLUE metric, with the larger value means the better performance.
We observe a similar phenomenon that the performance increases
first and then dropswith the increase of λ2.When setting λ1=0.2 and
λ2=0.4, the DualPC performs best on Amazon Books an Amazon
Electronics, respectively. Therefore, we choose [λ1=0.2, λ2=0.4] and
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Table 3: Review generation task: ROUGE and BLEU comparisons on Amazon Books dataset.

Models ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4 BLEUP R F1 P R F1 P R F1 P R F1
Naive LSTM 0.1455 0.1801 0.1810 0.0227 0.0249 0.0224 0.1455 0.1398 0.1438 0.0523 0.0587 0.0512 0.1645
SRGM-s 0.1774 0.1866 0.1744 0.0229 0.0240 0.0222 0.1441 0.1508 0.1409 0.0518 0.0542 0.0493 0.1677
Att2Seq 0.1843 0.1875 0.1784 0.0241 0.0242 0.0229 0.1488 0.1505 0.1433 0.0544 0.0545 0.0508 0.1722
MRG 0.1898 0.1834 0.1793 0.0245 0.0239 0.0234 0.1496 0.1478 0.1435 0.0554 0.0537 0.0511 0.1757
DualPC 0.1910 0.1842 0.1809 0.0255 0.0240 0.0235 0.1537 0.1469 0.1446 0.0568 0.0532 0.0517 0.1796

Table 4: Review generation task: ROUGE and BLEU comparisons on Amazon Electronics dataset.

Models ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4 BLEUP R F1 P R F1 P R F1 P R F1
Naive LSTM 0.1595 0.1839 0.1627 0.0161 0.0186 0.0163 0.1288 0.1480 0.1289 0.0447 0.0530 0.0446 0.1575
SRGM-s 0.1611 0.1724 0.1569 0.0163 0.0175 0.0160 0.1289 0.1376 0.1271 0.0450 0.0484 0.0435 0.1675
Att2Seq 0.1639 0.1714 0.1604 0.0167 0.0173 0.0161 0.1319 0.1374 0.1284 0.0464 0.0484 0.0441 0.1651
MRG 0.1700 0.1706 0.1621 0.0168 0.0167 0.0162 0.1328 0.1360 0.1283 0.0469 0.0475 0.0441 0.1712
DualPC 0.1684 0.1716 0.1635 0.0170 0.0171 0.0163 0.1346 0.1362 0.1299 0.0478 0.0481 0.0449 0.1734

Table 5: Case study of generated reviews based on Amazon Electronics.

Case 1 preference: 1;
Review: I read the description for this product which said it would be compatible with my macbook and upon receiving it. It did not work at all.

Att2Seq This case was easy for my ipad air to the tablet and the keyboard was just right on it.
MRG This case works just fine with the iphone or ipad mini.
DualPC This is not an official apple product that was not compatible with my tablet.

Case 2 preference: 5;
Review: The case is sturdy the keyboard is perfect for my kids to do their studies with and type on the ivery easy to use.

Att2Seq Have been using this for over year and all the buttons are comfortable and accurate.
MRG This is great product. It is very easy to use and very comfortable to use.
DualPC This is great product. It is very durable and protects the ipod perfectly. The quality is great and it is very versitile.

Case 3 preference: 5;
Review: Great picture love the smart tv features. This is great tv for the money. HD picture quality is just as good as have seen around.

Att2Seq Great price and easy to use. Use it for my garmin gps and this can be me for the money.
MRG This is my second cheetah mount. This is my second one and it works well. I have used it to replace the one that came with the tv.
DualPC The picture is very clear and the picture is not the best. But I am not sure about it. But it has worked great with my sony bravia tv.

[λ1=0.2, λ2=0.2] as the default parameters on Amazon Books and
Amazon Electronics, respectively.

We would like to discuss more about different experimental
settings. When both λ1 and λ2 are set to zero, the duality constraints
in the two prediction tasks are missing. Therefore, the two tasks
are trained independently. E.g., no matter what value of λ2, when
λ1=0, preference prediction results would be merely influenced by
l1 loss in Eq.20. Therefore, the preference prediction results are the
same as the leftmost in Fig.5 (a) and (b) with λ1=0 and is worse than
DualPC with λ1=0.2.

When λ1 is non-zero, the duality constraints for preference pre-
diction remain, while the review generation task doesn’t have a
duality regularization term. Then, the performance of review gener-
ation is equal to the leftmost part, as shown in Fig.5 (c) and (d) with
λ2=0. And the preference prediction tasks would perform worse
compared to non-zero λ1 results in Fig.5 (a) and (b). When λ2 is
non-zero, the analysis is similar to the previous analysis.

7 CONCLUSIONS
In this paper, we argued that in review based recommender systems,
the user preference prediction task and the review generation task
are presented in dual forms. To this end, we proposed a dual learning
based framework of DualPC, to model the probabilistic correlation

among these two tasks. Specifically, the duality correlation between
two tasks is turned to a duality based regularization of each task.
We further designed a structure of how to test our model when both
the user-item preference information and the review data are not
available at the test stage. We conducted extensive experimental
results on two real-world datasets to show the effectiveness of our
proposed model for recommendation.
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