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Abstract. Air quality prediction is an important task benefiting both
individual outdoor activities and urban emergency response. To account
for complex temporal factors that influence long-term air quality,
researchers have formulated this problem using an encoder-decoder frame-
work that captures the non-linear temporal evolution. Besides, as air
quality presents natural spatial correlation, researchers have proposed to
learn the spatial relation with either a graph structure or an attention
mechanism. As well supported by atmospheric dispersion theories, air
quality correlation among different monitoring stations is dynamic and
changes over time due to atmospheric dispersion, leading to the notion
of dispersion-driven dynamic spatial correlation. However, most previous
works treated spatial correlation as a static process, and nearly all mod-
els relied on only data-driven approaches in the modeling process. To this
end, we propose to model dynamic spatial influence for air quality predic-
tion with atmospheric prior. The key idea of our work is to build a dynamic
spatial graph at each time step with physical atmospheric dispersion mod-
eling. Then, we leverage the learned embeddings from this dynamic spatial
graph in an encoder-decoder model to seamlessly fuse the dynamic spatial
correlation with the temporal evolution, which is key to air quality predic-
tion. Finally, extensive experiments on real-world benchmark data clearly
show the effectiveness of the proposed model.
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1 Introduction

With the fast pace of urbanization and industrialization, air pollution has been
an endemic threat to human health and the environment, especially in metropoli-
tan cities. Air pollution generally refers to the release of pollutants into the air,
which is detrimental to human health and the planet as a whole. To prevent
human beings from long-term exposure of pollution and reduce air pollution,
accurately predicting future air quality is essential. For example, policy mak-
ers can properly choose guides or policies, such as temporary traffic control or
production ban for heavy-polluting factories, according to the future air quality
trend in order to reduce the severity of local pollution levels.

Precisely predicting air quality, often in terms of the major pollutant PM2.5
value, is non-trivial. This is due to the fact that air quality depends on mul-
tiple complex factors, such as meteorology, road networks, and point of inter-
ests (POIs), and evolves over time. While previous works carefully designed
sophisticated static features and temporal features for air quality prediction,
recent studies have begun to use recurrent neural networks (RNNs) to capture
the non-linear temporal evolution. In particular, researchers proposed to use an
encoder-decoder framework, with the encoder fusing heterogeneous features and
the decoder predicting long-term PM2.5 values [21].

Besides temporal correlation, PM2.5 values among different air quality mon-
itoring stations naturally exhibit spatial autocorrelation, with nearby stations
having similar PM2.5 values. Researchers have proposed to incorporate spatial
correlation by including nearby stations’ features in the input space [12,14] or
by further considering the Pearson correlation of geo-context features between a
target station and its neighboring stations [4,23]. Instead of having nearby sta-
tions defined by spatial distance contribute equally to a target station, attention
mechanisms have been increasingly used to differentiate the weights of different
monitoring stations, where the attentive weights are either static over time [5] or
dynamic (i.e., having different weights at different time steps) [13]. Researchers
have also proposed to leverage a graph structure to capture the higher-order
spatial correlations among stations and to learn the graph structure to facili-
tate weather prediction [19]. These attempts have demonstrated that modeling
spatial correlations among stations can boost air quality prediction performance.

In view of the importance of spatial correlation for air quality prediction,
we argue that the current solutions for spatial modeling are still far from sat-
isfactory. In fact, the well-established and widely-used atmospheric dispersion
models [2,17] have pointed out that air quality correlation among different mon-
itoring stations is inherently dynamic and changes over time. In particular, how
air pollutants disperse from a station to another relies on not only their spatial
distance and direction, but also other dynamic factors, such as wind direction
and speed, leading to the notion of dispersion-driven dynamic spatial correla-
tion. Atmospheric dispersion modeling provides a mathematical simulation of
how air pollutants disperse in the ambient atmosphere, and is built on top of
expert knowledge. For example, in the Gaussian plume model, the concentra-
tion of pollutant downwind from a source is treated as spreading outward from
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the centerline of the plume following a Gaussian statistical distribution in both
vertical and horizontal directions [1]. These physical models provide us a solid
theoretical foundation to guide air quality prediction. By far, atmospheric dis-
persion models are still the dominant models used in air quality policy making.
However, most related works adopted only static spatial correlation modeling
methods. What’s worse, almost all of these works relied on a purely data-driven
approach, which may introduce unnecessary noise and violate well-established
dispersion theories due to the black box nature of deep learning models.

In this paper, we focus on modeling the dynamic spatial influence for air
quality prediction with atmospheric prior. This is particularly challenging as it
is still unknown how to leverage atmospheric prior to model dynamic spatial
correlation among stations and integrate these well-established theories into a
data-driven air quality prediction process. To tackle these challenges, we first
build a dynamic spatial graph at each time step with the simple yet effective
Gaussian plume model, which can well capture the dynamic higher-order spatial
correlations among monitoring stations. Then, we incorporate the embeddings
learned from dynamic spatial graphs using graph convolutional networks (GCNs)
into an encoder-decoder model to seamlessly fuse the dynamic spatial correlation
with the temporal evolution. The key technical contribution of this paper lies
in combining knowledge-driven atmospheric dispersion models with data-driven
deep learning techniques for air quality prediction in an elegant way. Finally,
experimental results on real-world benchmark datasets clearly demonstrate the
superiority of our proposed model over the state-of-the-art methods.

2 Related Work

Air quality prediction has been a long-standing research problem with practical
importance. Existing methods roughly fall into two categories: classical physical
models and data-driven models. Physical models have been widely used in the
early stage of air quality prediction research. They explicitly simulate the actual
physical dispersion process of air pollutants and feature a rigorous mathematical
foundation. Gaussian plume models [2] and Street Canyon models [17] are most
widely-used physical models that estimate future pollutants’ concentration by
considering a few important factors, such as meteorological conditions, source
term, emissions or release parameters, and terrain elevations. While these phys-
ical models work well in relatively simple conditions, they lack the capability of
learning from more complex urban big data involving a large number of external
factors, and fall short of expectations in practice. In this paper, we propose a
novel method to integrate such atmospheric prior into a data-driven approach,
resulting in better performance.

With the availability of more urban big data that can be used for air
quality prediction, data-driven models have gained increasing attention. Some
early studies consider Gaussian processes as a nonparametric method to predict
the average pollution level [6,10]. A semi-supervised method is used to make
PM2.5 inference based on an PM2.5 affinity graph structure [7]. Another semi-
supervised method focuses on the spatial correlation between a target area and
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its top-k nearest neighbors [4]. Multi-task learning based strategies are also used
to incorporate spatio-temporal smoothness [22].

More recent research addresses the air quality prediction problem by deep
learning techniques. Modeling the temporal and/or spatial correlation is key to
air quality prediction because air pollutant dispersion is inherently a spatio-
temporal process. A simple idea is to directly aggregate the air quality read-
ings, spatial features (e.g., POIs, road networks) and meteorological data from
neighboring stations to improve accuracy [23]. More advanced spatial partition
and aggregation methods are also introduced to better model spatial correla-
tion [20,24]. Attention mechanisms are another popular way of capturing spatial
correlations. Cheng et al. [5] introduce an attention mechanism to learn the
contributions of different monitoring stations to a target station’s PM2.5 value.
Liang et al. [13] further learn different attentive weights for different stations
at different time steps while considering the geospatial similarities between sta-
tions. In a slightly different application, Wilson et al. [19] propose to capture
the higher-order spatial correlations of monitoring stations by graph convolution
operations. In contrast, our paper considers a novel type of dispersion-driven
dynamic spatial correlation that betters prediction accuracy.

As to temporal correlation, RNNs have been a widely-used choice. For exam-
ple, Li et al. [12] employ a stacked long short-term memory (LSTM) network
to extract features from historical air quality data and other auxiliary data. To
support long-term air quality prediction, encoder-decoder networks are used to
model the non-linear temporal evolution [14,21].

There are also some very recent studies [8,16] that address the air quality
prediction problem by considering social media information (e.g., tweets) as an
auxiliary data source. Our contributions are orthogonal to them and can be used
to further improve their performance.

3 Problem Formulation

Similar to previous studies [5,21], we consider the problem of air quality pre-
diction based on multi-source heterogeneous data. We brief the data sources
below.

Air Quality Data. It contains hourly readings of multiple pollutants (e.g.,
PM2.5, PM10, O3, NO2, CO, SO2, etc.) from each air quality monitoring station
si ∈ S, where S is the entire set of stations under consideration. We denote all
stations’ air quality data by M.

Weather Data. The weather data of a station si at time t is denoted by wt
i . It

contains multiple weather attributes, such as temperature, humidity, wind speed
and wind direction. We consider both historical weather data of all stations,
denoted by W, and forecast weather data, denoted by W.

Geospatial Topology Data. We consider the geospatial topology of all sta-
tions, which is denoted by T . It contains the latitude and longitude of each
station, and thus allows to calculate the distance and direction (i.e., bearing)
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Fig. 1. Architecture overview of the proposed model

between two stations. The geospatial topology data itself is static, but we com-
bine it with the above data sources to compute the stations’ dynamic spatial
correlation at each time step.

Geo-Context Data. The geo-context data ci ∈ C of station si includes infor-
mation about road networks and point of interests (POIs) extracted from si’s
affecting area (i.e., the area surrounding si). Note that this type of data does
not change over time.

Now we are ready to present the problem definition.

Problem Definition. Consider a target station si ∈ S, a historical time window
T , and a forecast time window γ. Given all stations’ air quality data M =
{Mt}T

t=1, historical weather data W = {Wt}T
t=1, forecast weather data W =

{Wt}T+γ
t=T+1, geospatial topology data T , and geo-context data C, the goal is to

predict the PM2.5 values of station si in the next γ hours, denoted by ŷ =
(ŷT+1, ŷT+2, · · · , ŷT+γ). That is, we aim to learn a prediction function f such
that

ŷ = f(M,W,W , T , C, Θ), (1)

where Θ denotes the set of parameters of f to learn.

4 Proposed Method

In this section, we elaborate our proposed method that makes use of atmospheric
dispersion theories to model the dynamic spatial correlations among monitoring
stations in order to improve air quality prediction. The overall architecture of
the proposed method is illustrated in Fig. 1.
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4.1 Feature Representation

To predict the PM2.5 values of station si in the next γ hours, we construct three
types of features as explained below.

Local Features. This set of features includes station si’s air quality data, his-
torical and forecast weather data, and geo-context data. Air quality data and
weather data are observed or forecasted each hour, and naturally form time
series. Thus, they lay the foundation for temporal correlation modeling.

Global Features. This set of features includes the local features of all nearby
stations, defined by the Euclidean distance. While the air quality data and
weather data of the neighboring stations change over time, global features fail
to capture the dynamic spatial influence of neighboring stations on the target
station si due to air dispersion, which is critical to achieve better prediction
performance.

Dynamic Spatial Features. This is a set of novel features driven by atmo-
spheric dispersion. Guided by atmospheric dispersion models, dynamic spatial
features explicitly measure the spatial influence of neighboring stations by con-
sidering multiple external factors at each time step. We detail how to generate
dynamic spatial features in the next section.

4.2 Dynamic Spatial Graph Construction

At time step t, we represent the dispersion-driven dynamic spatial influence of all
other stations on a target station si by a weighted directed graph Gt

i = (S, Et
i ),

where an edge eij ∈ Et
i gives the dynamic spatial influence of station sj on the

target station si as per atmospheric dispersion modeling. Note that normally
the dynamic spatial influence of station si on station sj is different from that
of sj on si as shown in Fig. 2. In the following, we omit the superscript t as

(a) time t (b) time t+ j

Fig. 2. Illustration of the dynamic spatial influence. s1, s2 and s3 are the associated
stations of the star as the northwest wind in time t, and changed to s1 and s5 in time
t + j as the northeast wind
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all discussions are for time t. Previous studies normally consider the geographic
proximity between stations as the key factor to model their spatial correlations.
For example, the top-k nearest neighbors’ features are used to predict a target
station’s PM2.5 value. Wilson et al. [19] propose to use a graph structure to
explicitly model the spatial correlations. All elements in the adjacency matrix
of the spatial graph are model parameters that need to be learned from training
data. However, the adjacency matrix is assumed to be static, that is, it is fixed
at different time steps. This assumption directly violates the well-established
dispersion models. In addition, considering all elements in the adjacency matrix
as trainable parameters substantially increases the model complexity. Therefore,
Wilson et al. [19] further assume that the adjacency matrix is either sparse or
low rank to mitigate the number of parameters. However, this assumption is not
backed up by any theoretical ground. To this end, we propose a novel domain
knowledge driven method that not only allows to dynamically learn a different
adjacency matrix at each time step, but also fully uses atmospheric dispersion
theories to mitigate model complexity.

The first step is to select an appropriate atmospheric dispersion model
that can be seamlessly integrated into a data-driven approach. Eulerian and
Lagrangian models are used to predict air pollution in urban areas, which assume
pollutants to be evenly distributed within the boundary [3]. Computational fluid
dynamic (CFD) models are used to better understand fluid dispersion, but can
also be used in urban air quality prediction [9]. The Gaussian plume model is
one of the most widely-used models to assess the impacts of emission sources on
local and urban air quality [2]. The dispersion of pollutants can be described in
both horizontal and vertical directions by a Gaussian distribution, which well
suits our setting. As such, we choose the Gaussian plume model as the domain
model for modeling dispersion-driven dynamic spatial correlation. The spatial
dynamics of pollutant dispersion in a Gaussian model can be described by the
following equation [15]:

c(r, s) =
Q

2πσyσzū
exp

(
−1

2

(
Y

σy

)2
)

exp

(
−1

2

(
he − zr

σz

)2
)

, (2)

where c(r, s) is the concentration at point r = (xr, yr, zr) due to the emissions
at point s = (xs, ys, zs), Q is the emission rate, Y is the crosswind distance
between r and s, σy and σz are the Gaussian plume dispersion parameters,
which are a function of the downwind distance X, ū is the average horizontal
wind speed, and he is the effective emission height (i.e., he = zs + Δh, and
Δh is the emission plume rise, which is a function of emission parameters and
meteorological conditions).

Based on the available data (see the experiment section for more details),
we adapt Eq. (2) as follows. First, since emission sources are unavailable in
the dataset, we consider other stations as the second-hand pollutant sources for
the target station [20]. Second, since all stations in the data are point sources
(i.e., without elevation information), we ignore all items related to height in Eq.
(2). Third, we propose to use a data-driven method to learn a function φ(X)
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to determine σy. Then the dispersion-driven spatial influence of station sj on
target station si at time t can be formulated as:

c(si, sj) =
Qj

2πφ(X)ūj
exp

(
−1

2

(
Y

φ(X)

)2
)

, (3)

where Qj is the air quality of station sj , ūj is the horizontal wind velocity at
sj , and X and Y are the downwind and crosswind distances between si and sj ,
respectively. Here we model φ(·) as a linear function, that is, φ(X) = γX, where
γ is a learnable scalar. We can also model φ(·) as a more complicated function
that can be learned by a multi-layer perceptron (MLP). But our experiments
indicate that a linear formulation already strikes a reasonable trade-off between
performance and model complexity.

We further normalize the influence of station sj on target station si among
all other stations:

aij =
c(si, sj)∑

sk∈(S−si)
c(si, sk)

. (4)

aij is the weight of the edge eij . All aij values form the adjacency matrix Ai of
the dynamic spatial graph Gi for target station si.

It can be seen that with the help of atmospheric dispersion theories, we
successfully reduce the number of learnable parameters of a dynamic spatial
graph from O(|S|2), where |S| is the number of stations, to O(1). Note that the
learnable parameter γ is shared among all time steps.

4.3 Dynamic Spatial Graph Embedding

After constructing the dynamic spatial graph Gi for target station si at time
t, we need a way to convert Gi into a low dimensional space so that its spatial
information can be effectively fused with the temporal correlation in an encoder-
decoder network. We omit the subscript i when it is clear from the context. We
consider graph convolutional networks (GCNs) [11] for this purpose due to its
flexibility and good performance. For a K-layer graph convolutional network,
the output of the l-th layer can be represented as Hl ∈ R

|S|×d(l)
. Each row in Hl

represents the embedding of a station whose dimension is d(l). The embedding
of a station after the (l + 1)-th layer will be computed as the aggregation of its
connected stations’ embeddings from the l-th layer. This operation performed in
a GCN layer can be formulated as:

H(l+1) = σ(AH(l)W(l)), (5)

where σ(·) is a non-linear activation function, A is the adjacency matrix of the
dynamic spatial graph G, and W(l) ∈ R

d(l)×d(l+1)
is a layer-specific trainable

transformation matrix for the l-th layer. The target station si’s embedding in
HK is used as part of the input to encoder-decoder network.
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4.4 Encoder-Decoder Based Spatio-Temporal Fusion

To support long-term air quality prediction, we use an encoder-decoder LSTM
model [18] to fuse spatial and temporal information and infer future PM2.5 val-
ues. Let el,t

i and eg,t
i denote station si’s local feature embeddings and global

feature embeddings at time t, where eg,t
i =

∑
sj∈(S−si)

el,t
j . Let ed,t

i denote the
embedding learned from the GCN over the dynamic spatial graph Gt

i . We con-
catenate el,t

i , eg,t
i and ed,t

i , and feed it into the LSTM cell for time t in the encoder
part. For ease of presentation, we drop all the subscripts. Then the hidden state
ht can be learned by

ht = LSTM(el,t ‖ eg,t ‖ ed,t, ht−1), (6)

where ‖ means the concatenation operation, and ht−1 is the hidden state at time
t − 1. The resultant hidden state ht is regarded as the latent representation of
the air quality status of si at time t.

The last hidden state hT produced from the encoder part encapsulates the
information of all historical data and serves as the initial hidden state of the
decoder. The input to an LSTM cell for time t in the decoder consists of the
forecast weather data at station si, denoted by w̄t, and the predicted PM2.5
value of station si at time t − 1, denoted by ŷt−1. Similarly, we concatenate w̄t

and ŷt−1, and calculate the hidden state ht at time t as

ht = LSTM(w̄t ‖ ŷt−1, ht−1). (7)

4.5 Model Learning

Since we are tasked with a regression problem, we employ the mean squared error
(MSE) as the objective function, which measures the average of squared distances
between predicted PM2.5 values and the actual ones. We apply L2 regularization
to mitigate overfitting. Formally, the objective function L we optimize is:

L =
1
M

M∑
i=1

(yi − f(xi, Θ))2 + λ ‖Θ‖2 , (8)

where M is the number of training instances, xi is a training instance, Θ is the
set of trainable parameters in our proposed model, and λ is the regularization
parameter. Early stopping is also used to reduce overfitting.

Recall that Θ = {Θ1, Θ2} consists of two subsets of parameters, where Θ1 =
{γ, {W(l)}K

l=1} includes the parameters to learn the embeddings from a dynamic
spatial graph, and Θ2 includes the parameters of forget gates, input gates, and
output gates in the encoder-decoder LSTM network.

5 Experiments

In this section, we conduct a comprehensive experimental study to demonstrate
that our proposed method outperforms the state-of-the-art competitors. In addi-
tion, we provide a case study to intuitively show the benefits of dispersion-driven
dynamic spatial modeling.
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5.1 Datasets

We utilize the following real datasets in the experiments, which are commonly
used in extensive literature.

Air Quality Data. We collect air quality data, including AQI, PM2.5, PM10,
O3, NO2, CO, SO2, from all 35 ground-based air quality monitoring stations in
Beijing.1 Since PM2.5 is the major pollutant widely used by government agencies
for public communication, we predict the PM2.5 values in the experiments. We
use linear interpolation to fill in missing values that occur within 3 h. Continuous
missing data spanning over 3 h are discarded [21].

Meteorological Data. Following the previous study [21], we consider grid-based
weather data obtained from the Global Data Assimilation System (GDAS).2 The
spatial resolution of the grid data is 0.25◦. We extract the region with latitudes
between 39.5◦ and 40.75◦ and longitudes between 115.75◦ and 117.25◦, which cov-
ers all the monitoring stations in Beijing. We select five weather attributes: tem-
perature, humidity, wind speed, and wind directions (including wind-u and wind-v
in GDAS). As suggested in [21], we conduct a temporal linear interpolation to con-
vert the 3-hourly raw data to hourly data.

POIs. POI types and density in a region directly affect its air quality. Similar
to [23], we consider 12 types of POIs from Amap of Beijing,3 and compute the
number of POIs in each category within the affecting region of a station as a fea-
ture.

Road Networks. We download the road network data of Beijing from Open-
StreetMap (OSM).4 There are five types of roads, namely primary road, sec-
ondary road, tertiary road, residential road and footway road. Similarly, we cal-
culate the number of each type of roads as a feature.

In addition, similar to the previous study [21], we extract 3 time features,
including hour of day, day of week, and month, from the timestamp of each data
point.

5.2 Experimental Settings

We process air quality data and meteorological data from January 1st, 2016 to
January 31st, 2018, together with POI and road network data. The portions of
training, validation, and test data are split by the ratio 8:1:1. In particular, training
data and test data are split in temporal order in order to avoid data leakage. The
historical time window T is set to 48, and we aim to predict the PM2.5 values in the
next 24 h. We use 64 hidden units (i.e., the dimension of a hidden state) in an LSTM
cell for feature representation, and optimize the objective function using the Adam
1 http://beijingair.sinaapp.com.
2 https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-

assimilation-system-gdas.
3 https://lbs.amap.com/api/webservice/download.
4 https://www.openstreetmap.org/.

http://beijingair.sinaapp.com
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-system-gdas
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-system-gdas
https://lbs.amap.com/api/webservice/download
https://www.openstreetmap.org/
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Table 1. Performance comparisons of different models

1–6 h 7–12 h 13–18 h 19–24 h

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Naive approach 14.87 26.33 26.00 43.16 32.21 50.70 35.45 54.79

LSTM 14.17 20.91 25.88 33.83 32.67 40.23 37.03 44.08

Seq2seq 14.13 21.39 23.99 32.59 30.14 38.55 33.61 41.89

DeepAir [20] 19.18 25.15 23.13 29.64 25.20 31.88 28.43 35.37

GeoMAN [13] 14.03 19.10 19.42 25.06 22.95 29.31 24.23 32.14

WGC-LSTM [19] 12.78 18.24 18.05 23.59 18.92 28.00 25.42 29.74

MGED-Net [21] 13.44 17.35 18.05 22.83 20.95 26.01 21.91 26.88

Our method 10.82 15.71 16.54 21.10 17.52 24.54 19.13 24.91

Table 2. Performance comparison of different spatial correlation modeling methods

1–6 h 7–12 h 13–18 h 19–24 h

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Without dynamic spatial 15.52 23.53 20.02 25.81 21.13 30.71 24.80 32.66

Fixed A 15.30 19.99 19.63 24.71 22.03 29.97 25.07 32.12

Shared A [19] 12.78 18.24 18.05 23.59 18.92 28.00 25.42 29.74

Our method 10.82 15.71 16.54 21.10 17.52 24.54 19.13 24.91

optimizer with learning rate 0.001. To address overfitting, we use L2 regularization
with the regularization coefficient of 0.0001, and employ early stopping according
to the validation error. Our code is implemented in PyTorch.

5.3 Compared Methods

We compare our proposed model with a wide range of representative approaches
described below.

– Naive approach uses the PM2.5 value of the current time step as the pre-
dicted values for all future hours.

– LSTM uses a typical LSTM model to predict the 24 h’ PM2.5 values.
– Seq2seq is an encoder-decoder network with stacked LSTMs in both encoder

and decoder.
– DeepAir [20] is a distributed fusion network, which consists of 5 subnets

powered by a FusionNet structure. Then, these subnets are merged to generate
prediction results according to their weights.

– GeoMAN [13] is based on an encoder-decoder architecture with a multi-
level attention mechanism. External factors are fused with the output of the
encoder as the input to the decoder.

– WGC-LSTM [19] is a weighted graph convolutional LSTM network, which
considers the adjacency matrix of the spatial graph as model parameters. The
adjacency matrix is static and shared among all time steps.
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– MGED-Net [21] is a multi-group encoder-decoder network with multiple
encoders and a single decoder. All features are divided into different groups
by correlation and merged by the encoder fusion strategy.

5.4 Experimental Results

Following the previous studies [13,21], we use two widely-used evaluation met-
rics, root mean squared error (RMSE) and mean absolute error (MAE), to mea-
sure the performance of different prediction models. Similarly, we report the
prediction results in four time intervals (1–6 h, 7–12 h, 13–18 h, and 19–24 h).

We report the main experimental results in Table 1. Among all models, our
proposed model obtains the best results in all four time intervals on both met-
rics. Specifically, our method shows 12.6% to 19.4% improvement and 5.6% to
9.4% improvement over the state-of-the-art approach MGED-Net on MAE and
RMSE, respectively. Compared to LSTM, encoder-decoder-based methods (i.e.,
Seq2seq, GeoMAN, MGED-Net and our model) achieve significant improvements
in long-term predictions due to the decoder component. This justifies the adop-
tion of an encoder-decoder architecture in our method to model the long-term
temporal evolution. Moreover, it can be seen that our method’s short-term pre-
diction performance (e.g., 1–6 h and 7–12 h) is also much better than that of
WGC-LSTM. We deem that it is due to the dispersion-driven dynamic spatial
correlation modeling. In contrast, modeling the spatial influence by a static adja-
cency matrix in WGC-LSTM does not reflect the real air pollutant dispersion
process well, and thus leads to less desirable prediction performance. In the fol-
lowing sections, we provide more experiments to study the effects of different
spatial correlation modeling methods.

Benefits of Dynamic Spatial Graph. To demonstrate the benefits of mod-
eling dynamic spatial influence with atmospheric prior, we conduct a set of
experiments with different methods of modeling spatial correlation.

– Without dynamic spatial is a variant of our method that removes all
dynamic spatial features. The rest is the same as the proposed method.

– Fixed A considers the geographic proximity (e.g., the Euclidean distance)
between stations as edge weights of the spatial graph, which is set in advance
before the training.

– Shared A is essentially the method in [19], where the elements in the adja-
cency matrix of the spatial graph are considered as learnable parameters.
Note that the adjacency matrix here is shared among all time steps.

Table 2 shows the performance of different spatial correlation modeling meth-
ods. We can draw a few important observations. First, explicitly modeling
the spatial correlations among monitoring stations, even only considering their
Euclidean distance, is beneficial. Second, the spatial influence among different
stations is indeed not simply determined by their geographic proximity. This
explains why Fixed A’s performance is much worse than those of Shared A and
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(a) Fixed A (b) Shared A (c) Our method

Fig. 3. Visualization of the spatial influence of different spatial correlation modeling
methods on a target station

our method. Third, modeling dynamic spatial influence using well-established
atmospheric prior is rewarding. It not only achieves much better performance,
but also leads to a less complex model that is easier to train.

Dynamic Spatial Graph Visualization. Finally, to better understand how
the dynamic spatial graph helps improve air quality prediction accuracy, we
visualize the spatial influence of different stations on a target station (marked as
a red star) at two representative time steps t1 and t2 in Fig. 3. The yellow dots
represent the top-10 stations that have the most spatial influence on the target
station. The size of a dot represents its pollution level. The larger a dot, the
higher its PM2.5 value. The direction of an arrow indicates the wind direction
at a station, and the length indicates the wind speed. The grey triangles denote
other stations. Similarly, their sizes represent their air pollution level.

We have a few interesting observations. First, the most influential stations
of our method at different time steps well align with the Gaussian plume model
and one’s intuition. The most influential stations at different time steps for a
target station are also different, which are determined by multiple factors defined
by the Gaussian plume model, such as the geographic distance, air quality, and
meteorological conditions. This reflects the dynamic nature of the spatial cor-
relation modeling in our method. Second, the most influential stations in both
Fixed A and Shared A are fixed over time. For Fixed A, it is because the geo-
graphic proximity among stations does not change over time; for Shared A, it is
due to the fact that the same adjacency matrix is shared among all time steps.
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In particular, the most influential stations of Shared A are counter-intuitive.
Third, while in general Shared A performs better than Fixed A, at time steps
t1 and t2, its MAE values are worse than those of Fixed A. This is not difficult
to understand—the adjacency matrix learned by minimizing the average error
over all time steps cannot guarantee reasonable performance at every time step.

6 Conclusion and Future Work

In this paper, we took on a new perspective of air quality prediction, which mod-
els dynamic spatial influence among monitoring stations guided by atmospheric
dispersion modeling. We proposed to construct a dynamic spatial graph based
on the Gaussian plume model, generate graph embeddings by a GCN, and finally
fuse spatial and temporal information seamlessly in an encoder-decoder LSTM
network. Experiments on real-world benchmark datasets validate the superior-
ity of the proposed model. In addition, we provided a case study to intuitively
understand the benefits of dynamic spatial correlation modeling. In future work,
we will investigate other possible factors to improve dynamic spatial correlation
modeling, and explore more advanced prediction models to improve prediction
accuracy (e.g., stacked LSTMs).
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