
Meta-learned ID Embeddings for Online
Inductive Recommendation

Jingyu Peng, Le Wu(B), Peijie Sun, and Meng Wang

School of Computer Science and Information Engineering,

Hefei University of Technology, Hefei 230009, China

Abstract. Learning accurate user and item ID embeddings from user-
item historical records has shown great success for recommender systems.
Most of these embedding learning models are transductive and work well
for users that appear in the training stage. However, in the model serving
stage, new users continue to join the system. It’s important to quickly
adapt to new users’ preferences for online inductive recommendation sce-
narios. Some previous works adopted embedding retraining or fed content
data for new user ID embedding learning, these models either suffered
from slow convergence or relied on auxiliary data. In this paper, we pro-
pose a meta-learned ID embedding framework for new users without
using any side information in online inductive recommendation scenar-
ios. Our key idea is that, we treat each user’s ID embedding learning as a
separate task, and propose to meta-learn the initial embedding by mod-
eling the global knowledge from all users (tasks). Each user’s embedding
is initialized by the learned global knowledge instead of randomly initial-
ization. Therefore, we could quickly adapt to a new user’s ID embedding
based on a few updates from her online records, which can facilitate fast
online recommendation. Moreover, our main technical contribution lies
in how to learn the global prior knowledge for informative ID embedding
initialization without any side information. Finally, extensive experimen-
tal results on three real-world datasets clearly show both the efficiency
and effectiveness of the meta-learned ID embeddings for inductive rec-
ommendation.

Keywords: Recommender system · Meta learning · Collaborative
Filtering · Cold-start

1 Introduction

Collaborative Filtering (CF) is a popular approach for building recommender
systems, with the assumption that users’ preferences for items could be col-
laboratively modeled from users’ historical behavior data [1,20]. Among all CF
models, learning accurate user and item ID embeddings has been the key technol-
ogy that dominates CF area [3,15,18,24,25]. These embedding models can learn
low dimensional dense vector representations of users from their past behavior.
However, most of these ID embedding based models are naturally transductive,
c© Springer Nature Switzerland AG 2021
H. Lin et al. (Eds.): CCIR 2021, LNCS 13026, pp. 32–44, 2021.
https://doi.org/10.1007/978-3-030-88189-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88189-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-88189-4_3

Meta-learned ID Embeddings for Online Inductive Recommendation 33

meaning that during the model serving process, each test user must appear in
the training process. In practical recommender systems, new users continuously
join the platform, e.g., a new user registers to or an anonymous user enters a
platform, and shows preferences to some items (e.g., browses or buys several
items). It is very cruical to update recommender systems timely to serve these
new users, as it can improve user satisfaction and increase their loyalty to the
platform.

To achieve the inductive learning with new users at test time, some
researchers provided content-based approaches to learn new users’ preferences,
but most new or anonymous users are reluctant to fill any personal informa-
tion [6,22]. Another naive idea is to retrain recommender models with new
users’ behavior. As full retraining is time consuming, an alternative solution
is only to update new users’ embeddings while keeping the embeddings of items
and old users fixed. For each new user, the training process usually starts with
random initial user embedding, and the model performance needs many update
times to reach a local minimum. Although this fine-tune process shows compa-
rable efficiency compared to the full data retraining, obtaining new users’ final
ID embedding with many training epochs is still far from the online latency
requirements. In summary, relying on auxiliary data or suffering from the time
efficiency issue make current models inferior choices for serving new users online.

In this paper, we explore whether it is possible to provide fast recommenda-
tion for new users in inductive recommendation without using any side informa-
tion. Instead of randomly initializing ID embeddings for new users, our high-level
idea is to learn better initial embeddings for new users, such that to speed up
the learning process of new users with very limited records. As predicting each
user’s preference to an item can be regarded as a classification problem, we
treat each user’s embedding learning as a separate task, and make an analogy
between recommending some products to a new user with few interactions and
few-shot classification [5,12]. Therefore, it is natural to apply meta-optimization
approaches, which are successful in fast adaption of few-shot classification [5].
The core idea of meta-optimization approaches is to train global sharing initial-
ization parameters for all tasks (users). When a new user (task) comes, her ID
embedding could be initialized with the global learned knowledge, then her final
ID embedding can be quickly to be adapted with a few updates to facilitate fast
online recommendation.

With the analogy between recommending some products to a new user with
few interactions and few-shot classification, there are several recent attempts
that leveraging meta-optimization approaches to generate better initial embed-
dings for new users, either with the entity profile information [11,17] or with
auxiliary heterogeneous information networks [13]. Nevertheless, it is non-trivial
to apply these meta-optimization techniques, as we do not have any content
input for new users. How to define the general sharing initialization parame-
ters for all users becomes the key challenge. To tackle this challenge, we design
two detailed strategies for global parameters initialization. The first model is
straightforward by treating the initialization ID embedding as global parameter

34 J. Peng et al.

for all users, i.e., all users share the same initial ID embedding. The second idea
is feeding pretrained item embeddings and the current user’s limited records to
learn the global parameters that can be used to output the unique ID embed-
ding of each user. Finally, we conduct extensive experiments on three real-world
datasets and the experimental results clearly show the effectiveness and efficiency
of our proposed framework. For example, our proposed framework could improve
the recommendation accuracy with more than 10% and the training efficiency
with less than one-tenth time cost compared to the best baseline.

2 Preliminaries

Given the user set U = (1, 2, 3, ...,M), |U| = M and item set V =
(1, 2, 3, ..., N), |V| = N , their interaction records form the rating matrix R

M×N .
In this matrix, ruv equals one when user u rates item v but zero otherwise. For
each user u, we use R+

u to denote the positive itemset that u shows preferences,
i.e., ∀v ∈ V, v ∈ Ru ⇐⇒ ruv = 1. And we randomly select k times the size of
R+

u items from the set V − R+
u . The selected items are treated as the negative

itemset R−
u .

With users’ preferences, state-of-the-art CF embedding models focus on
learning a low dimensional embedding space of users and items, namely P ∈
R

D×M and Q ∈ R
D×N . Then, the predicted preference of the user-item pair

(u, v) is modeled by the inner product of their corresponding embedding vectors
as:

r̂uv = pT
uqv. (1)

The widely used binary cross-entropy loss [7] is adopted as the loss function as:

L = −
M∑

u=1

∑

i∈R+
u

∑

j∈R−
u

(rui log(r̂ui)+(1−ruj) log(1− r̂uj))+λ‖P‖2F +λ‖Q‖2F , (2)

where the first term captures the training loss, the last two terms are l2-norm
regularization terms with model parameters as [P,Q], and λ is a regularization
parameter.

These CF models perform well for the transductive setting, i.e., all test users
appear in the training data. However, in the real world, inductive learning is more
general with new users continuously join the system and show their preferences
with very limited records in a short session. How to provide timely recommenda-
tions for new users has become a critical issue. A straightforward solution is to
retrain the embedding-based recommendation model with both the online new
user data and offline data. However, the retraining time is time-consuming. An
alternative solution is to only learn the ID embeddings of new users and keep
learned item embeddings fixed as the item embeddings have been well trained
offline. Let a denote a new user that does not appear offline, i.e., a /∈ U , our goal
is to learn the new user ID embedding pa by minimizing the following function:

La = −
∑

i∈R+
a

∑

j∈R−
a

(rai log(r̂ai) + (1 − raj) log(1 − r̂aj)) + λ||pa||2F , (3)

Meta-learned ID Embeddings for Online Inductive Recommendation 35

where pa is the embedding of new user a that does not appear in the training
data, and λ is the same regularization parameter as Eq. (2).

Please note that, as each new user has very limited records, the average
number of most new users’ rating records is far less than the ID embedding
size D, i.e., |R+

a | � D. Given the optimization function for each new user a,
we start with a random initialization of pa, and perform gradient descent until
convergence. The training process will cost hundred of update epochs. Thus, it
could not satisfy users’ real-time needs for serving new users online. It is natural
to ask the question: could we design a fast learning model for new users, such
that we could quickly learn a new user’s preference with a few gradient steps?

3 Meta-learned ID Embeddings for New Users

In this section, we first propose how to recast the problem of fast inductive rec-
ommendation with new users under the meta-learning framework. Then, we give
two detailed architectures of designing the meta-learned ID embedding models
without any content input. After that, we briefly show how to quickly adapt
to new users’ ID embeddings at online serving stage with the learned meta-
knowledge.

Fig. 1. The overall framework of our proposed framework, with the key idea of meta-
learned ID embedding is shown at the right part of this figure.

3.1 Meta-learning for Inductive Recommendation

To quickly learn each new user’s embedding vector with her limited rating
records, we could build a connection between meta-learning and inductive rec-
ommendation for new users. By treating each user u’s ID embedding learning
as a task, each task (user) has very limited training data R+

u . Meta-learning
provides a potential solution to our problem: by learning to learn across data
from many previous tasks (users), meta-learning algorithms can discover the
global meta-knowledge among tasks (all training users) to enable fast learning

36 J. Peng et al.

on new tasks (new users). In our framework, the prior knowledge is denoted as a
parameter set Φ, and instead of random initialization of each user’s embedding
p0

u as previous works, we learn a function g parameterized by Φ to initialize ID
embedding vector p0

u = g(;Φ).
For ease of clarification, in Fig. 1, we show the concrete steps for deploying

meta-learning for new users. There are three steps: pretraining, meta-training
and meta-test. These three steps follow a natural time line. In the pretraining
step, we can adopt any embedding models to learn user and item embeddings.
This step outputs item embedding matrix Q for the following two steps. Next, we
mimic the meta-training process to divide the data of each task into a support
set and a query set, and design meta-learning framework to learn the global
knowledge. The global knowledge is then sent to the online stage to initialize the
new user’s ID embedding, which can facilitate quickly adapting to new users’ ID
embedding learning through one or more gradient steps.

Specifically, during meta training, similar to the setting in MAML, we split
the original training data of each task Tu into two sets: a support set Su and a
query set Qu. The support set and query set come from u’s rated itemset R+

u and
are mutually exclusive: Su ∩ Qu = ∅,Su,Qu ⊆ R+

u . Each task Tu is associated
with task-specific local parameters, i.e., the ID embeddings pu. We use p0

u to
denote the initial embedding of the local parameter pu. Then, this task updates
its local parameter pu with the support set Su using one or a few gradient steps.
For example, when using one gradient update, we have:

p′
u = pu − α∇pu

LTu
(g(;Φ))

= pu − α∇pu
LTu

(p0
u), (4)

where α is the step size parameter for local parameter update, and LTu
is

the loss function with regard to task Tu. Without loss of generality, we use the
cross-entropy loss as:

LTu
= −

∑

i∈Su

∑

j∈S−
u

(ruilog(r̂ui) + (1 − ruj)log(1 − r̂uj)), (5)

where S−
u is k times of the size of Su, and S−

u ⊆ R−
u . In the above equation, we

do not have any regularization term as Eq. (3). The reason is that, meta-learning
algorithms only perform several gradient steps based on Eq. (5), and works as a
early stopping without any overfitting issue.

For each task Tu, after learning the updated local parameter p′
u, we learn

how to learn the performance of global parameters Φ with the query set Qu. The
global parameters Φ is trained by optimizing the performance of updated local
parameters p′

u with respect to Φ across all tasks (users).

arg min
Φ

∑

u∈Qu

LTu
(p

′
u) = LTu

(pu − α∇pu
LTu

(g(;Φ))). (6)

Meta-learned ID Embeddings for Online Inductive Recommendation 37

In the above equation, please note that the meta-optimization performance
is evaluated on the updated task-specific local parameters p

′
u, which are learned

from current global parameters Φ (e.g., a step update with Eq. (4)). Then, meta-
optimization over tasks (users) is also updated with stochastic gradient descent
as:

Φ ← Φ − β∇Φ

∑

u∈Qu

LTu
(p

′
u), (7)

where β is the meta step size.

3.2 Architecture of Meta-Learned ID Embeddings

Given the formulation above, the problem of meta-learned ID embedding frame-
work turns to how to build a function g(;Φ) to extract global knowledge structure
for initial user ID embedding of each task Tu as: p0

u = g(;Φ).

General Learner. Without any side information as input, a simple idea of the
global knowledge learner is to set g to an identity function. Formally, for any
task Tu of a user u, we have:

p0
u = g1(;Φ) = IΦ = Φ, (8)

where I ∈ R
D×D is an identity matrix, and Φ ∈ R

D. In other words, we assume
that there exists similarities of all users, and it is presented in the form that each
user has a same preference initialization vector.

Personalized Learner. The general learner is simple, but its expressiveness
may be limited by assigning the same initialization vector for all users. As each
user u has limited available records Su, we design a personalized embedding
learner to fully utilizing her rating records. Since we already pretrained item
embedding matrix Q, the personalized initialization vector for each user can be
calculated with:

xu = Pooling(Q[Su]) (9)
p0

u = g2(xu;Φ), (10)

where Q[Su] denotes the sub item embedding matrix As each user’s support set
varies, the pooling operation in Eq. (9) transforms the variable length submatrix
into a fixed size vector output. Both the pooling function and the learner g2 can
be flexible. In practice, we choose average pooling as it achieves better perfor-
mance compared to max pooling. Equation (10) could be a linear function as
p0

u = Wxu with transformation matrix W, or a multilayer perceptron to capture
the non-linear relationships. Compared to the general learner, the personalized
learner utilizes more personalized information for initial embedding learning.

38 J. Peng et al.

Algorithm 1. Training Process of Meta-Learned ID Embedding

Input: Task Tu with support and query
set
Input: Pretrained item-embedding
matrix Q
Input: Step size hyperparameters α and
β
Input: The local update times K
Output: The shared global parameters
Φ

1: Randomly initialize global parameter
Φ

2: while Not converge do
3: Randomly sample batch of users

B ⊂ U
4: for user u in B: do
5: Initialize p0

u = g(; Φ) based on a
detailed architecture;

6: L = 0;

7: for k = 1; k ≤ K; k + + do
8: for v ∈ V : do
9: r̂uv = qT

V pk−1
u ;

10: end for
11: Calculate loss Lu based on

Eq.(5);
12: pk

u ← pk−1
u − α∇

pk−1
u

LTu ;
13: end for
14: pu = pK

u ;
15: for v ∈ V : do
16: r̂uv = qT

V pu;
17: end for
18: Calculate Lu with Eq.(5) based

on query set Qu;
19: L = L + LTu

20: end for
21: Φ ← Φ − β∇ΦL;
22: end while
23: Return Global parameter set Φ.

We show the details of meta-training in Algorithm 1. For the above two
detailed architectures, the only difference in this algorithm is calculating g(;Φ)
in Line 5. In practice, for each user u, the unobserved feedbacks V − Su is much
larger than the observed support set Su in Eq. (5). Similar as many previous
works [3,7,19], we randomly select 3 times of the size of Su as possible negative
items at each training epoch.

3.3 Meta-test Stage

After finishing the meta-training process, we get the global parameter set Φ. For
online serving stage, if a new user a comes and shows preferences to a limited
item set Sa, we could initialize her embedding as p0

a = g(;Φ) and quickly update
her embedding with K gradient steps.

4 Experiments

4.1 Experimental Settings

Datasets. We conduct experiments on three real-world datasets: MovieLens-
1M 1, Amazon Cell Phones and Accessories and Amazon CDs and Vinyl2. In
the following subsections, the MovieLens-1M, Amazon Cell Phones and Acces-
sories, and Amazon CDs and Vinyl are called MovieLens, Amazon Small and

1 https://grouplens.org/datasets/movielens/1m/.
2 http://jmcauley.ucsd.edu/data/amazon/.

https://grouplens.org/datasets/movielens/1m/
http://jmcauley.ucsd.edu/data/amazon/

Meta-learned ID Embeddings for Online Inductive Recommendation 39

Table 1. The statistics of the three datasets.

Datasets MovieLens Amazon small Amazon Big

Pre-training Users 1,510 6,970 18,815

Items 3,952 9,448 57,750

Ratings 249,088 59,606 252,706

Meta-training User 3,020 13,937 37,626

Ratings 18,316 59,606 182,832

Avg size of support set 2.81 1.93 2.21

Avg size of query set 3.25 2.34 2.65

Meta-test Users 1,510 6,953 18,749

Ratings 8,978 33,497 97,640

Avg size of support set 2.70 2.15 2.35

Avg size of query Set 3.20 2.67 2.85

Amazon Big for short. As we focus on the ranking task, for all datasets, we
transform the ratings in the original datasets into implicit feedback. If one user
rates an item, the corresponding entry will be treated as 1, otherwise it will be
0. As illustrated in Fig. 1, there are three steps in deploying meta-learning for
new users: pretraining, meta-training, and meta-test. Since there should be no
duplicate users among these three steps, we randomly split all users into three
parts in the ratio 1:2:1 for pretraining, meta-training, and meta-test, respec-
tively. In the pretraining stage, we randomly select one record of each user as
the validation data. In the meta-training stage, for each user we randomly select
2 to 10 historical records of her. Half of the selected records are treated as the
support set, and the rest of the selected records are treated as the query set.
And we adopt the same procedure to prepare the support set and query set for
each user in the meta-test stage. Details of all dataset are shown in Table 1.

Experimental Setup. We call our proposed framework of meta-learned ID
embeddings MetaCF for inductive CF. The two detailed architectures for
MetaCF are denoted as MetaCF G for general embedding (Eq. (8)) and
MetaCF P for personalized embedding (Eq. (10)). As (10) could be a linear
function or a multilayer perceptron to capture the non-linear relationships, we
use MetaCF P(Linear) and MetaCF P(Neural) to denote these two choices. The
neural architecture is a two-layered neural network with ReLU activation. To
study the efficiency and effectiveness of our proposed model, the classical recom-
mender model Bayesian Personalized Ranking [19] and the meta-learning based
model MeLU [11] are chosen as the baseline models. For fair comparison, the
two baselines use the same pretrained item embedding matrix as our proposed
framework. They start with random initialization of new users with meta-test
data, and use the same prediction function as our proposed framework with the
similar loss function (Eq. (3)). The performance of all models is evaluated on the
query set of the users in the meta-test stage. The meta-learning based models,
i.e., our proposed model and MeLU, are trained on the meta-train data first.

40 J. Peng et al.

Then for each new user in the meta-test stage, the support set of each user is
used to learn her ID embedding. However, BPR is only trained on the support
set of all users in the meta-test stage to learn the ID embeddings of all users.
Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG) [26,27]
are used to evaluate the performance of all models. For both metrics, a larger
value means a better performance.

Parameter Setting. For all models, we set the dimension D to 32. The step
size alpha is set to 2 × 10−3 for all models and beta is set to 1 × 10−7, 1 ×
10−6, and 1× 10−5 for MetaCF G, MetaCF P(Linear), and MetaCF P(Neural),
respectively. The local updates times K varies from one to five. Please note that,
as the meta-gradient involves second derivatives when performing back gradient
over the meta-objective (Eq. (5)), we resort to first-order approximation, which
shows nearly the same performance as obtained with full second derivatives [5].

Table 2. Overall performance of our proposed models. Bold font means the best model
and underline means the corresponding model ranks second.

Models MovieLens Amazon small Amazon Big

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

BPR 5 0.0341 0.0258 0.0195 0.0130 0.0047 0.0031

BPR Best 0.0656 0.0462 0.0308 0.0209 0.0070 0.0045

MeLU 0.0220 0.0108 0.0048 0.0029 0.0022 0.0013

MetaCF G 0.0444 0.0350 0.0247 0.0178 0.0066 0.0042

MetaCF P(Linear) 0.0565 0.0465 0.0312 0.0203 0.0092 0.0060

MetaCF P(Neural) 0.0694 0.0478 0.0298 0.0205 0.0081 0.0053

4.2 Model Performance

We report the overall performance comparison of our proposed framework and
baselines in Table 2. To verify whether our proposed models can quickly adapt
to a new user’s ID embedding based on a few updates from her online records,
we report the results of our proposed models when the local update times is set
as 5. The local update times of MeLU is also set to 5. We report two kinds of
results of the BPR model. BPR 5 denotes when the training epoch is set as 5.
And BPR Best denotes the best performance of BPR without training epoch
limitation.

According to the results in Table 2, we have the following conclusions.
First, compared with BPR 5 and MeLU, all our proposed models have signifi-
cant improvements on three datasets under all the metrics. The epochs of the
BPR Best for MovieLens, Amazon Small, and Amazon Big are 44, 49, and 50,
respectively. Although the local update times of our proposed model is set to 5,
our proposed models perform better than BPR Best on MovieLens and Amazon

Meta-learned ID Embeddings for Online Inductive Recommendation 41

Big datasets. E.g., on Amazon Big dataset, the NDCG@10 reaches 0.0060 for
MetaCF P(Linear), with more than 10% improvement compared to BPR Best.
We guess a possible reason of the recommendation performance gain is that,
as MetaCF P(Linear) can learn the global knowledge to speed up training for
new users and the prior knowledge of all training users can help to alleviate the
extreme sparsity of test users. The reason why MeLU performs worse may be
that MeLU is designed for the content-based recommendation without consid-
ering any collaborative information.

When comparing the performance of our proposed three architectures,
we observe that MetaCF G with the same meta-learned initialization of
all users could already reach quite good results. MetaCF P(Linear) and
MetaCF P(Neural) perform better than MetaCF G on MovieLens and Ama-
zon Small datasets. By comparing the performance of MetaCF P(Linear) and
MetaCF P(Neural), we can find the neural implementations achieve better result
on Movielens and Amazon Small, while the linear implementations perform bet-
ter on Amazon Big. In despite of the stronger express ability of neural architec-
ture, the data sparsity and data size limit the performance.

Table 3. Performance with different local update times K under metrics HR@10.

Model Local update times K

1 2 3 4 5

MovieLens BPR K 0.0110 0.0168 0.0236 0.0298 0.0341

MeLU 0.0213 0.0224 0.0235 0.0219 0.0220

MetaCF G 0.0264 0.0341 0.0395 0.0429 0.0444

MetaCF P(Linear) 0.0543 0.0546 0.0560 0.0559 0.0565

MetaCF P(Neural) 0.0677 0.0682 0.0686 0.0691 0.0694

In Table 3, we show the performance of all models with different values of
local update times K on Movielens. As K ranges from 1 to 5, we find the per-
formance of BPR K has a large improvement. By contrast, the performance of
our proposed models is relatively stable and is not strongly influenced by K.
We think this is caused by the meta-knowledge learned by our proposed models,
such that one local update can already reach very good ID embedding. Based
on this result, in practice with very high time request, we could set the local
update times to 1.

In Fig. 2, we compare the performance of all models with different support set
size on Amazon Big. From the result, we can find the performance of all models
improves stable with increasing the support set size. And under all cases, our
proposed models always perform better than the baselines.

42 J. Peng et al.

Fig. 2. Performance with different support set size under metrics HR@10 on Ama-
zon Big

5 Related Work

Learning low-dimensional ID embeddings of users and items from their histori-
cal behavior has been proved extremely useful for modern recommender system
design [10,19]. Most CF approaches are transductive and could not apply to new
nodes at test stage. To tackle the new node problem at test stage, some works
are proposed to leverage node content to build a connection between content
embedding and ID embedding for inductive learning [6,22]. Researchers have
recently attempted to utilize sub-graph based neural network between each possi-
ble user-item pair for inductive matrix factorization with new users or items [28].
However, due to the huge time complexity of each candidate sub-graph model-
ing, it is impractical for online stage. To tackle the streaming data problem at
model serving stage, how to incrementally update and retraining these systems
is also a hot topic [8,29]. For new users at test stage, a simple idea is to keep
the item embeddings learned from history fixed, while learning new user ID
embedding from random initialization [9,23]. In practice, these models still cost
many epoches to reach stable. Different from these works, we focus on how to
quickly adapt to each new user’s ID embedding with a better ID embedding
initialization.

Meta-learning, based on “learning to learn” concept, learns the meta-
knowledge through a variety of learning tasks [5,12,16]. Among all meta-learning
approaches, Model-agnostic Meta-Learning (MAML) is an optimization based
meta-learning approach that is widely used in many scenarios [5]. MAML treats
the learned shared global parameter as the initial state of any task, such that the
local parameters of each new task can be achieved with very few gradient steps
and a small of amount of data. Meta-learning models are employed in various
recommendation scenarios. Most meta-learning based approaches for recommen-
dation focused on the cold-start recommendation with user or item entity fea-
tures [2,11,17,21,30], auxiliary heterogeneous networks [13], or the sparse con-
text data [4]. E.g., Pan et al. proposed an optimization-based method to learn

Meta-learned ID Embeddings for Online Inductive Recommendation 43

an ID generator to generate desirable initial embeddings for new ad IDs based
on the features of ads [17]. And MeLU is designed for content based recommen-
dation with user preference estimator is trained with meta-learning[11]. Besides,
meta-learning approaches are also used to select user-level adaptive recommen-
dation model selection [14]. We differ greatly as we focus on fast adaption of
user embeddings without any content or auxiliary data, which makes our model
more general in practice.

6 Conclusions and Future Work

In this paper, we proposed a meta-learning framework for online inductive setting
with new users. To the best of our knowledge, we are one of the first few attempts
that provided meta-learned new user ID embedding without any content infor-
mation. By recasting this problem as a meta-learning solution, we designed dif-
ferent architectures to transform the prior knowledge into initial ID embeddigns
without any content input. Extensive experimental results on three real-world
datasets clearly showed the effectiveness and efficiency of our proposed frame-
work. In the future, we would like to design meta-learning algorithms for online
inductive recommendation with both new users and new items.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: a survey of the state-of-the-art and possible extensions. TKDE 17(6), 734–
749 (2005)

2. Bharadhwaj, H.: Meta-learning for user cold-start recommendation. In: 2019 Inter-
national Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

3. Chen, L., Wu, L., Hong, R., Zhang, K., Wang, M.: Revisiting graph based collabo-
rative filtering: a linear residual graph convolutional network approach. In: AAAI,
vol. 34, pp. 27–34 (2020)

4. Du, Z., Wang, X., Yang, H., Zhou, J., Tang, J.: Sequential scenario-specific meta
learner for online recommendation. In: SIGKDD, pp. 2895–2904 (2019)

5. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: ICML, pp. 1126–1135 (2017)

6. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NIPS, pp. 1024–1034 (2017)

7. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative
filtering. In: WWW, pp. 173–182 (2017)

8. Huang, X., Wu, L., Chen, E., Zhu, H., Liu, Q., Wang, Y.: Incremental matrix
factorization: a linear feature transformation perspective. In: IJCAI, pp. 1901–
1908 (2017)

9. Jiang, M., Cui, P., Wang, F., Zhu, W., Yang, S.: Scalable recommendation with
social contextual information. IKDE 26(11), 2789–2802 (2014)

10. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model. In: SIGKDD, pp. 426–434 (2008)

11. Lee, H., Im, J., Jang, S., Cho, H., Chung, S.: MeLU: meta-learned user preference
estimator for cold-start recommendation. In: SIGKDD, pp. 1073–1082 (2019)

44 J. Peng et al.

12. Li, Z., Zhou, F., Chen, F., Li, H.: Meta-SGD: learning to learn quickly for few-shot
learning. arXiv preprint arXiv:1707.09835 (2017)

13. Lu, Y., Fang, Y., Shi, C.: Meta-learning on heterogeneous information networks
for cold-start recommendation. In: SIGKDD, pp. 1563–1573 (2020)

14. Luo, M., et al.: MetaSelector: meta-learning for recommendation with user-level
adaptive model selection. In: WWW, pp. 2507–2513 (2020)

15. Mnih, A., Salakhutdinov, R.R.: Probabilistic matrix factorization. In: NIPS, pp.
1257–1264 (2008)

16. Nichol, A., Schulman, J.: Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999 2(3), 4 (2018)

17. Pan, F., Li, S., Ao, X., Tang, P., He, Q.: Warm up cold-start advertisements:
improving CTR predictions via learning to learn id embeddings. In: SIGIR, pp.
695–704 (2019)

18. Rendle, S.: Factorization machines. In: ICDM, pp. 995–1000 (2010)
19. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian

personalized ranking from implicit feedback. In: UAI, pp. 452–461 (2009)
20. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering

recommendation algorithms. In: WWW, pp. 285–295 (2001)
21. Vartak, M., Thiagarajan, A., Miranda, C., Bratman, J., Larochelle, H.: A meta-

learning perspective on cold-start recommendations for items. In: NIPS, pp. 6904–
6914 (2017)

22. Volkovs, M., Yu, G., Poutanen, T.: DropoutNet: addressing cold start in recom-
mender systems. In: NIPS, pp. 4957–4966 (2017)

23. Wang, F., Tong, H., Lin, C.Y.: Towards evolutionary nonnegative matrix factor-
ization. In: AAAI, pp. 501–506 (2011)

24. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative
filtering. In: SIGIR, pp. 165–174 (2019)

25. Wu, L., He, X., Wang, X., Zhang, K., Wang, M.: A survey on neural recommenda-
tion: from collaborative filtering to content and context enriched recommendation.
arXiv preprint arXiv:2104.13030 (2021)

26. Wu, L., Li, J., Sun, P., Hong, R., Ge, Y., Wang, M.: DiffNet++: a neural influence
and interest diffusion network for social recommendation. IEEE Trans. Knowl.
Data Eng. (2020)

27. Wu, L., Sun, P., Fu, Y., Richang, H., Xiting, W., Meng, W.: A neural influence
diffusion model for social recommendation. In: SIGIR, pp. 235–244 (2019)

28. Zhang, M., Chen, Y.: Inductive matrix completion based on graph neural networks.
In: ICLR (2020)

29. Zhang, Y., et al.: How to retrain a recommender system? In: SIGIR, pp. 1479–1488
(2020)

30. Zhu, Y., et al.: Learning to warm up cold item embeddings for cold-start recommen-
dation with meta scaling and shifting networks. arXiv preprint arXiv:2105.04790
(2021)

http://arxiv.org/abs/1707.09835
http://arxiv.org/abs/1803.02999
http://arxiv.org/abs/2104.13030
http://arxiv.org/abs/2105.04790

	Meta-learned ID Embeddings for Online Inductive Recommendation
	1 Introduction
	2 Preliminaries
	3 Meta-learned ID Embeddings for New Users
	3.1 Meta-learning for Inductive Recommendation
	3.2 Architecture of Meta-Learned ID Embeddings
	3.3 Meta-test Stage

	4 Experiments
	4.1 Experimental Settings
	4.2 Model Performance

	5 Related Work
	6 Conclusions and Future Work
	References

