
Enhanced Graph Learning for Collaborative Filtering
via Mutual Information Maximization

Yonghui Yang1,2, Le Wu1,2,3,∗, Richang Hong1,2, Kun Zhang1,2, Meng Wang1,2,3
1 Key Laboratory of Knowledge Engineering with Big Data, Hefei University of Technology, China
2 School of Computer Science and Information Engineering, Hefei University of Technology, China

3 Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, China
{yyh.hfut,lewu.ustc,hongrc.hfut,zhang1028kun,eric.mengwang}@gmail.com

ABSTRACT
Neural graph based Collaborative Filtering (CF) models learn user
and item embeddings based on the user-item bipartite graph struc-
ture, and have achieved state-of-the-art recommendation perfor-
mance. In the ubiquitous implicit feedback based CF, users’ unob-
served behaviors are treated as unlinked edges in the user-item
bipartite graph. As users’ unobserved behaviors are mixed with dis-
likes and unknown positive preferences, the fixed graph structure
input is missing with potential positive preference links. In this
paper, we study how to better learn enhanced graph structure for
CF. We argue that node embedding learning and graph structure
learning can mutually enhance each other in CF, as updated node
embeddings are learned from previous graph structure, and vice
versa (i.e., newly updated graph structure are optimized based on
current node embedding results). Some previous works provided
approaches to refine the graph structure. However, most of these
graph learning models relied on node features for modeling, which
are not available in CF. Besides, nearly all optimization goals tried
to compare the learned adaptive graph and the original graph from
a local reconstruction perspective, whether the global properties of
the adaptive graph structure are modeled in the learning process is
still unknown. To this end, in this paper, we propose an enhanced
graph learning network (EGLN) approach for CF via mutual infor-
mation maximization. The key idea of EGLN is two folds: First, we
let the enhanced graph learning module and the node embedding
module iteratively learn from each other without any feature input.
Second, we design a local-global consistency optimization function
to capture the global properties in the enhanced graph learning
process. Finally, extensive experimental results on three real-world
datasets clearly show the effectiveness of our proposed model.

CCS CONCEPTS
• Information systems → Recommender systems.

Le Wu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’21, July 11–15, 2021, Virtual Event, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8037-9/21/07. . . $15.00
https://doi.org/10.1145/3404835.3462928

KEYWORDS
Collaborative Filtering, Recommendation, Graph Learning, Mutual
Information Maximization

ACM Reference Format:
Yonghui Yang1,2, LeWu1,2,3,∗, RichangHong1,2, Kun Zhang1,2, MengWang1,2,3.
2021. Enhanced Graph Learning for Collaborative Filtering via Mutual In-
formation Maximization . In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR ’21),
July 11–15, 2021, Virtual Event, Canada. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3404835.3462928

1 INTRODUCTION
Collaborative filtering provides personalized recommendations by
collectively learning users’ preference from user-item historical
interaction behaviors [22, 26, 28, 34]. In most recommendation sce-
narios, it is more common for users to express their preferences
with implicit feedback (e.g., viewing a movie, visiting a restaurant,
and pining a picture) rather than explicit ratings. Under the ubiquity
of implicit feedback, users’ limited observed behaviors are denoted
as positive preference set, while negative and unobserved positive
preferences are mixed together to form a large unobserved pref-
erence set [15, 24, 26]. Therefore, how to learn users’ preferences
from implicit feedback based CF has become an important topic in
both academia and industry.

State-of-the-art CF models rely on embedding techniques for
the recommendation, due to the flexibility, and relatively high per-
formance of these embedding models [4, 13, 26, 33]. Earlier works
treated user-item implicit feedback as a user-item binary rating
matrix, with the observed values as 1, and the unobserved values as
0, and adopted matrix factorization techniques for the user and item
embedding learning [13, 26]. Bayesian Personalized Ranking (BPR)
is a popular pairwise ranking matrix factorization based recommen-
dation model that is specifically designed for implicit feedback. By
projecting both users and items into a low latent space, BPR designs
a pairwise ranking goal, assuming that a user prefers an observed
item to an unobserved item [26]. As users’ behaviors are naturally
represented as a user-item bipartite graph, neural graph collabora-
tive filtering models have been proposed to better model user-item
bipartite graph structure [4, 12, 33]. These neural graph models
perform graph convolution by updating user and item embeddings
at current layer based on the aggregation of linked entity embed-
dings at previous layer. Furthermore, motivated by the advances
of neural mutual information techniques for capturing structured
information [32], researchers propose to learn node embeddings
of graph-structured data by maximizing the mutual information
between node representations and the corresponding summarized

Session 1B: Recommendation 1 SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

71

https://doi.org/10.1145/3404835.3462928
https://doi.org/10.1145/3404835.3462928

global representations of the graph structure [3, 32]. These neural
graph models inject the graph structure in user and item embed-
ding learning, and enhance representation learning with mutual
information maximization on graph-structured data.

In fact, the performance of neural graph recommendation mod-
els relies on the input data of the user-item bipartite graph. In
implicit feedback based recommendation, directly transforming
the observed user-item behaviors as links is the default choice for
current neural graph models. However, we argue that the fixed
graph construction process neglects the unique properties of the
implicit feedback recommendation by treating all unobserved be-
haviors as negative feedback. In practice, unobserved behaviors
are mixed with negative feedback and unknown positive feedback.
Simply treating all unobserved feedback as negative edges that are
not linked in the user-item bipartite graph neglects the difference
between the true negative and false negative behaviors. Such a
default fixed graph structure is obviously noisy with missing false
negative interactions, and would lead to suboptimal performance
especially when users have sparse interaction records.

In this paper, we argue that instead of adopting a fixed user-
item graph structure for embedding learning in CF, we also need
to learn an adaptive user-item graph structure to better serve CF.
This is a non-trivial task as we do not know whether a missing
link from users’ unobserved behaviors is true negative or false
negative. Some researchers in the machine learning community
also study a similar problem of learning better graph structures to
facilitate downstream tasks. Researchers propose to learn graph
topology and node embeddings from a unified perspective, either
by edge reweighting [31] with self-attention or parameterized node
similarity with input node features [19]. These models do not suit
our task for two reasons. First, all of these models rely on the in-
put node features for adaptive graph learning, while CF does not
contain any node feature information. Second, most of these adap-
tive graph learning techniques use local optimization functions for
graph learning, e.g., the learned node embeddings from adaptive
graph need to reconstruct the original graph with first-order re-
construction errors. However, as the graph local-global structure
matters, how to keep the local-global consistency of the adaptively
learned graph is still unknown.

To this end, in this paper, we propose an enhanced graph learning
approach for CF. We formulate the approach with two mutually en-
hanced parts: enhanced graph learning module and node embedding
learning module. The rationale is that, we can design a better graph
learning module with previously learned user and item embed-
dings, and a better user and item embedding learning with updated
adaptive graph structure. Specifically, we first let the graph learn-
ing module and the node embedding learning module iteratively
learn from each other without any feature input. As users’ observed
behaviors are ground-truth positive preferences, and the missing
behaviors are mixed with false negative (i.e., unknown positive)
preferences, the graph learning module is a residual graph learning
to pick possible unknown preferences with confidence weights.
Next, we design an enhanced graph optimization function, with
the local-global consistency of the enhanced graph is also modeled
to serve better graph structure and node embedding learning. The
proposed model can be trained end-to-end. Finally, we perform
extensive experimental results on three real-world datasets, and

the experimental results clearly demonstrate the superiority and
effectiveness of our proposed model.

2 RELATEDWORKS
Collaborative Filtering. CF based approaches make personal-
ized recommendations by collectively analyzing user-item behav-
iors [15, 22, 26]. Learning accurate user and item embeddings is
the default architecture for modern recommender systems due to
its flexibility and relatively high performance [28]. After that, the
preference of a user to an item can be predicted as the inner product
of the corresponding user and item embeddings. Most traditional
CF models take a user-item matrix as input, and learn free user
and item latent embeddings based on matrix factorization tech-
niques [22, 26]. Recently, researchers argued that user behaviors
can be naturally represented as a user-item bipartite graph structure.
Thanks to the powerful modeling ability of graph neural networks
for modeling complex graph structure [18], researchers proposed
to learn user and item embeddings from the bipartite graph. Many
graph based recommendation models, such as GC-MC [30], Pin-
Sage [38], NGCF [33], LR-GCCF [4] and LightGCN [12] have been
proposed. Different neural graph recommendation models vary
in the input graph data and the graph aggregation process. E.g.,
NGCF exploited the user-item bipartite graph structure as input, and
injected the high-order collaborative signals for better user/item
embedding learning with iterative graph convolutions[33]. Pin-
Sage took item-item correlation graph with item content features
as input, and learned graph-smoothed item embeddings [38]. LR-
GCCF [4] and LightGCN [12] simplified neural graph models with
linear graph convolutions by considering the uniqueness of CF,
and achieved state-of-the-art performance. Neural graph based rec-
ommendation models have shown dominating recommendation
performance. Nearly all neural graph recommendation models are
implemented with a fixed sparse user-item graph. In practice, the
user/item embeddings learned from the input graph are predictable
for the possible missing links of the original user-item graph. Based
on this natural idea, instead of learning embeddings from fixed
user-item graph at once, we consider how to iteratively perform
graph learning based on current learned embeddings to enhance
user-item graph for better recommendation.

GraphLearning basedModels.Graph convolutional networks
perform graph convolutions to integrate vertex features and the in-
put graph topology for node embedding learning [18, 19]. Here, the
graph structure is constructed by human experts or precomputed
by the k-nearest neighbors of each node [1, 6]. As the input graph
structure is not perfect and may contain missing or noisy edges,
the graph structure is not optimized for graph based downstream
tasks. GAT is proposed to attentively reweight edge importance
based on the self-attention mechanism [31]. Researchers proposed
to learn adaptive graph structure to facilitate downstream graph
based tasks [16, 20, 39]. These approaches learned distance metrics
for graph Laplacian matrix with parameterized similarity calcula-
tion. The parameterized similarity calculation is based on input
node features, such as the covariance matrix of input features [20],
feature weight vector [16]. E.g., given input features and a pre-
liminary graph structure, GLCN is proposed to learn revised edge
weights with weight vectors of input features [16]. Most of the

Session 1B: Recommendation 1 SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

72

above models only perform graph learning at once. As better graph
structure can help better node embedding learning, and vice versa,
an iterative deep graph learning model is proposed to let graph
learners and downstream tasks enhance each other [5]. Since the
input graph is not always available in real-world scenarios, re-
searchers proposed to learn discrete and spare graph structure from
scratch by solving a bilevel program that learns a discrete prob-
ability on the edges of the graph [7]. Since this model needs to
learn the possible link of every node pair, the time complexity is
square of the nodes, which prevents it from being applied to large
graphs. In summary, all of these works showed promising results
of learning and revising graph structure to facilitate downstream
tasks. However, these models can not directly applied to CF as we
do not have any node features. Inspired by the dropout technique in
deep learning, researchers proposed to drop edges for robust graph
learning, such to avoid fake edges or adversarial attacks [17, 27]. In
contrast, we consider the scenario of sparse links in CF and how to
add edges to enhance neural graph recommendation models.

Mutual Information Maximization. Maximizing the mutual
information between the input and output is a fundamental quan-
tity for measuring the dependency of input and output variables.
Recently, many researchers paid attention to representation learn-
ing based on mutual information estimation [2, 14, 32]. Due to the
difficulty of measuring mutual information in high dimensional
space, Belghazi et al. proposed a neural estimation approach for mu-
tual information estimation, where a statistical network is trained
to distinguish samples coming from the joint distribution of two
random variables. Deep InfoMax (DIM) argued that the structure
matters, and investigated representation learning by maximizing
the mutual information between local representation and global
representation [14]. DIM significantly improved the representation
learning performance via the local-global pair mutual information
maximization. Inspired by DIM, Deep Graph InfoMax (DGI) is pro-
posed for representation learning for graph structured data [32].
DGI maximizes mutual information between patch representations
and corresponding high level summary of graph, which are learned
based on GNNs. DGI is further extended to the heterogeneous graph
embedding [23], community-aware graph embedding learning [40],
consideration of measuring mutual information from both node
features and topological structure [25], and graph-level representa-
tion learning [29]. In CF based recommendation, users and items
are formed as a bipartite graph. Cao et al. proposed BiGI, a bipartite
graph embedding learning method to suit recommendation sce-
nario via mutual information maximization [3]. Specifically, BiGI
first generated global graph representation from the composition of
user/item embedding and local representation via a subgraph-level
attention mechanism. Then, it recognized global properties through
local-global mutual information maximization. BiGI showed supe-
rior recommendation performance compared to neural graph based
recommendationmodels bymodeling global properties of the graph.
Our work also borrows the success of mutual information model-
ing on graph structure data. Different from these works, we apply
mutual information on the enhanced graph to model the global
graph properties for the enhanced graph learning.

3 THE PROPOSED MODEL
In this section, we would introduce the proposed Enhanced Graph
Learning Network (EGLN) approach for recommendation. We first
propose the overall architecture of the proposed model, followed by
the two key components in our proposed model: enhanced graph
learning with learned embeddings and node embedding learning
with the enhanced graph structure.

3.1 Overall Architecture
In CF based recommender systems, there are two kinds of entries:
a userset 𝑈 (|𝑈 | = 𝑀) and an itemset 𝑉 (|𝑉 | = 𝑁). Considering
the implicit feedback is more common in most recommendation
scenarios, we use interaction matrix R ∈ R𝑀×𝑁 to denote user-item
interactions, where each element r𝑎𝑖 = 1 if user 𝑎 has interacted
with item i, otherwise r𝑎𝑖 = 0. Given the interaction matrix R, most
neural graph recommendation models define a user-item bipartite
graph as:G = {𝑈∪𝑉 ,A}, where the adjacencymatrix is unweighted
matrix defined as follows:

A =

[
0𝑀×𝑀 R
R𝑇 0𝑁×𝑁

]
. (1)

Given the above graph G = {𝑈 ∪ 𝑉 ,A}, most graph based CF
models take this fixed graph as input, and learn user and item em-
beddings based on the fixed graph structure. These models use
iterative graph aggregation operations to encode the graph struc-
ture for node embedding learning. Let P ∈ R𝐷×𝑀 and Q ∈ R𝐷×𝑁

denote the free user embedding matrix and free item embedding
matrix that need to be learned, the state-of-the-art graph based CF
models learn the final user embedding matrix U ∈ R𝐷×𝑀 and final
item embedding matrix V ∈ R𝐷×𝑁 by injecting high-order structure
of the graph G for the final embedding learning. Without loss of
generality, we use [P,Q,U,V] = 𝐺𝐶𝐹 (G) to represent the graph
based CF approach. We use node to denote either a user or an item
node without distinction.

Previous graph based recommendation models use fixed graph
structure input G for user and item embedding learning. In this
work, we argue that the fixed graph structure is not the optimal
input for graph based CF models. The reason is that, in implicit feed-
back based CF, users’ unobserved behaviors aremixedwith negative
and unknown positive preferences. Nevertheless, the fixed graph
structure treats the negative and unknown preferences equally by
regarding all unknown preferences as missing links on the fixed
graph structure. Therefore, we argue instead of adopting a fixed
user-item graph structure for embedding learning in CF, we also
need to learn an enhanced user-item graph structure to better serve
CF. We denote the enhanced graph structure as G𝐸 = {𝑈 ∪𝑉 ,A𝐸 },
whereA𝐸 = A+A𝑅 . Specifically,A𝑅 ∈ R(𝑀+𝑁)×(𝑀+𝑁) denotes the
residual non-negative edge weight matrix that needs to be learned.
We use the residual graph learning structure as all existing edges
in the original user-item bipartite graph denote the positive pref-
erences of users, and are valuable for user and item embedding
learning. By using the residual graph structure, the revised graph
structure is enhanced by possible unknown positive preferences
that are hidden in unobserved behaviors.

Session 1B: Recommendation 1 SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

73

5

Node Embedding Learning

air̂
au

iv

ap

iq

Enhanced Graph Learning

Graph ConvolutionP Q

Residual Graph RA

Input Graph A

Enhanced Graph EA

Similarity
Calculation

aiS

user
embedding

 item
embedding

Figure 1: The overall framework of our proposed model.

Our goal turns to find a better residual graph with edge weight
matrix A𝑅 , such that we could better serve user and item em-
bedding learning for improving CF performance. Now, the graph
based CF consists of two modules: residual graph learning and
node embedding learning. These two modules are not isolated but
closely related. On one hand, the residual graph learning mod-
ule needs to rely on the currently learned user and item embed-
dings, in order to find possible links of A𝐸 . As we can predict users’
preferences based on the learned user and item embeddings, the
possible unknown residual link matrix A𝑅 can be formulated as:
A𝑅 = 𝐺𝐿(P,Q,U,V), where𝐺𝐿 is the graph learning module based
on the output of the graph based CF module. On the other hand,
after we have obtained residual graph structure, we could use the
graph based CF module to find better user and item embeddings
as: [P,Q,U,V] = 𝐺𝐶𝐹 (A +A𝑅) based on the enhanced graph struc-
ture. Therefore, these two modules can be performed in an iterative
way, with better graph based CF module facilitates the better graph
learning module, and vice versa. For better illustration, we show
the overall framework of EGLN in Figure 1 and give the detailed
structure of two modules in the following subsections.

3.2 Enhanced Graph Learning with Learned
Embeddings

Given the node embeddings learned from the previous graph based
CF model as: [P,Q,U,V] = 𝐺𝐶𝐹 (A + A𝑅), our goal is to learn a
residual graph structure with residual weight matrix A𝑅 . Since the
residual graph structure is also a user-item bipartite graph, the
weight matrix A𝑅 is actually composed as:

A𝑅 =

[
0𝑀×𝑀 S
S𝑇 0𝑁×𝑁

]
, (2)

where S ∈ R𝑀×𝑁 is the residual user-item preference matrix that
needs to be learned. We calculate the user-item similarity matrix S
as:

s𝑎𝑖 = 𝜎 (
< p𝑎 ×W1, q𝑖 ×W2 >

|p𝑎 ×W1 | |q𝑖 ×W2 |
), (3)

where 𝜎 (𝑥) is a sigmoid function that transforms the computed
similarity into range (0, 1), W1 and W2 are two trainable matrices

that map user/item representations from free latent space into
similarity space, and <, > denotes vector inner product operation.

From Eq. (3), we have the learned user-item similarity matrix.
However, the learned similarity matrix S is dense and hard to be
used for graph convolution. Similar to many graph construction
models [16, 39], we sparse the learned similarity matrix for resid-
ual graph construction. Generally, there are two kinds of methods
for graph sparseness: L1 normalization [16, 17] and threshold inter-
ception [39]. In this paper, we use threshold interception as it can
flexibly control the edges of the learned graph. In practice, for each
user, we retain the edges with top-K computed similarities. The
sparsified similarity matrix is calculated as follows:

𝑠𝑎𝑖 =

{
𝑠𝑎𝑖 , 𝑠𝑎𝑖 ∈ 𝑡𝑜𝑝𝐾 (𝑠𝑎)
0, 𝑠𝑎𝑖 ∉ 𝑡𝑜𝑝𝐾 (𝑠𝑎),

(4)

where 𝑠𝑎 = [𝑠𝑎1, ..., 𝑠𝑎𝑁] is the learned similarity vector of each
user based on Eq.(3).

There may exist a question that why we use the free user and
item embedding matrices (i.e., P and Q) instead of the final user
and item embedding matrices (i.e.,U and V) for residual graph
weight matrix learning. In practice, we also try to use the final
embedding matrices for residual graph learning, but it does not
perform as well as Eq.(3). We guess a possible reason is that, the
final embedding matrices are injected into the node-centric high-
order graph structure. By using the final node embeddings, most
of the non-zero s𝑖 𝑗 values are from the users (items) that already
have links in the original graph. If we exclude the original fixed
graph structure for finding the possibly unlinked user-item pairs,
most of these user-item pairs are close in the graph structure and
can already be modeled with graph CF models. In contrast, the
free embeddings capture the original characteristics of nodes for
updated graph learning, and are complementary to the final node
embeddings that already modeled the current graph structure.

Please note that the edge weights A in the original graph are
equal to one but vary in the enhanced graph with weight matrix
A𝐸 . The reason is that the learned residual graph has two kinds of
edges: one is the old edges that already appear in the original graph
and another is the newly added edges compared to the original
graph. Thus, in the enhanced graph with residual graph structure,

Session 1B: Recommendation 1 SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

74

old edges are reweighted with weight value larger than 1 while new
edges are weighted with value less than 1. This indicates that our
enhanced graph could be able to add missing edges and reweight
the existing edges simultaneously.

3.3 Embedding Learning with Enhanced Graph
Structure

Given the enhanced graph structure with weight matrix A𝐸 , the
embedding learning module tries to learn better user and item em-
bedding with enhanced graph structure as: [P,Q,U,V] = 𝐺𝐶𝐹 (A𝐸).
In the following, we introduce the architecture of the node embed-
ding learning module.

GCNs are state-of-the-art techniques in representation learning,
which encode local graph structure into node representation [18].
Extensive works show the effectiveness of GCNs on graph based
recommendations [33, 35, 36, 38]. Therefore, we also use GCN
as encoder and feed the enhanced graph G𝐸 into the encoder to
generate node representations.

Generally, given the initial user/item embedding matrix P0 =

P,Q0 = Q,the enhanced graph weight matrix A𝐸 and a pre-defined
embedding propagation depth 𝐾 , graph convolution encoder out-
puts the final user embedding matrix U and final item embedding
matrix V. At (k+1)-th layer, each user’s and each item’s embeddings
are updated with the aggregation of neighbors’ embeddings as:

p𝑘+1𝑎 = 𝐴𝐺𝐺 (p𝑘𝑎, {q𝑘𝑗 : 𝑗 ∈ A𝐸
𝑎 }) (5)

q𝑘+1𝑖 = 𝐴𝐺𝐺 (q𝑘𝑖 , {p𝑘𝑏 : 𝑏 ∈ A𝐸
(𝑀+𝑖) }) (6)

where 𝐴𝐸
𝑎 = { 𝑗 |𝐴𝐸

𝑎𝑗
> 0} ⊆ 𝑉 is the item set that user 𝑎 links with,

and 𝐴𝐸
𝑀+𝑖 = {𝑏 |𝐴𝐸

(𝑀+𝑖)𝑏 > 0} ⊆ 𝑈 is the user set who linked with
item 𝑖 . 𝐴𝐺𝐺 () denotes the aggregation operation, which can be
implemented with many optional functions, such as concatenation,
weighted sum and neural network based aggregation. Traditional
GCN methods usually adopt non-linear activation and trainable
weight transformation on feature propagation [9, 18, 30]. However,
recent works have demonstrated that non-linear activation and
feature transformation are unnecessary and bring unnecessary
complexity in graph based CF [4, 12]. Therefore, we only use the key
component: neighbor aggregation in graph convolution encoder.
Given these findings, we implement Eq.(7) and Eq.(8) as follows:

p𝑘+1𝑎 = p𝑘𝑎 +
1∑𝑀+𝑁−1

𝑗=0 A𝐸
𝑎𝑗

∑
𝑗 ∈A𝐸

𝑎

A𝐸𝑎𝑗q
𝑘
𝑗 , (7)

q𝑘+1𝑖 = q𝑘𝑖 +
1∑𝑀+𝑁−1

𝑏=0 A𝐸(𝑀+𝑖)𝑏

∑
𝑏∈A𝐸

𝑀+𝑖

A𝐸(𝑀+𝑖)𝑏p
𝑘
𝑏
. (8)

Given the pre-defined embedding propagation depth 𝐾 , we could
obtain the final user embedding matrix U = P𝐾 and final item
embedding matrix V = Q𝐾 . After that, the preference of user 𝑎 to
item 𝑖 can be predicted as follows:

r̂ai =< u𝑎, v𝑖 >, (9)

where <, > denotes vector inner product operation. In order to
illustrate the embedding propagation process more clearly and
facilitate the batch implementation, we formulate Eq.(7) and Eq.(8)
in amatrix form. Letmatrix P𝑘 andmatrixQ𝑘 denote the embedding
matrices of users and items after k-th propagation, then the updated

embedding matrices on (k+1)-th propagation are formulated as
follows: [

P𝑘+1

Q𝑘+1

]
= (

[
P𝑘

Q𝑘

]
+ D−1A𝐸 ×

[
P𝑘

Q𝑘

]
), (10)

where k=0,1,2,...,K-1 (K is the pre-defined propagation depth). 𝐷 is
the degree matrix of the enhanced graph with weight matrix A𝐸 .

4 OPTIMIZATION DESIGN AND MODEL
TRAINING

In this part, we first introduce the overall optimization function
design for enhanced graph learning with mutual information maxi-
mization. After that, we illustrate the model training process.

4.1 Mutual Information Maximization for
Enhanced Graph Learning

4.1.1 Constraint on Edge Level. Given the learned residual graph
structure A𝑅 , a natural idea is to use reconstruction based loss as
the graph learning module optimization goal:

argmin
Θ𝐺

L𝑠 = | |A − A𝑅 | |2𝐹 (11)

where Θ𝐺 = [P,Q,W1,W2] are the parameters in graph learning.
The above Euclidean distance minimization constraint encourages
the learned residual graph to be close to the original graph from
the edgewise level. We treat the edges of the original graph as the
ground truth positive feedback. Thus, the learned residual graph
should retain these edges. However, this edgewise constraint only
learns the individual link correlation but fail to capture the global
graph properties. In the following, we introduce the global graph
properties through local-global consistency learning.

4.1.2 Constraint on Graph Level. Given the enhanced graph G𝐸 =

{𝑈 ∪𝑉 ,A𝐸 }, for each edge (𝑢𝑎, 𝑣𝑖), we summarize the sub-graph
centered around the user-item pair as the local representations.
In practice, we use the final user and item embeddings output by
the node embedding learning module in Section 3.3 as the local
representations:

h𝑎𝑖 = [𝜎 (u𝑎), 𝜎 (v𝑖)], (12)
where 𝜎 is a sigmoid activation function. The combination method
we adopted is concatenation. After obtaining the local represen-
tations, we aim to seek the global representations to capture the
information of the entire graph. Similar to existing representation
learning works [14, 29, 32], we obtain the global representations g
by leveraging a readout function: R𝑍×2𝐷 → R2𝐷 , where 𝑍 is the
number of edges on the enhanced graph G𝐸 . The detailed process
is shown as follows:

𝑍 =

𝑀−1∑
𝑎=0

𝑀+𝑁−1∑
𝑖=𝑀

𝑠𝑖𝑔𝑛(A𝐸𝑎𝑖), (13)

g =
∑

[𝑎,𝑖] ∈G𝐸

h𝑎𝑖
𝑍
, (14)

where 𝑠𝑖𝑔𝑛(𝑥) is logical function, which equals to 1 if 𝑥 >0, equals
to 0 if 𝑥 = 0 and equals to -1 if 𝑥 <0.

After obtaining the local representations and global representa-
tions, we then maximize the mutual information between them to

Session 1B: Recommendation 1 SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

75

keep the local-global consistency. Similar to many existing works
about mutual information maximization [3, 14, 32], we employ a dis-
criminatorD to compute the score that assigned to a <local,global>
pair with a bilinear mapping function:

D(h, g) = hTWdg (15)

whereWd ∈ R2𝐷×2𝐷 is a transformation weight matrix. Without
confusion, we use vector h to denote the local representations
of any edge on the enhanced graph G𝐸 . Then, we combine the
local representations h and the global representations g as positive
sample [h, g] for the discriminator D.

In order to perform contrastive learning for the discriminator
D, we need negative samples for discriminator optimization. Let F
denote node embedding matrix of graph G𝐸 , then G𝐸 can be de-
scribed as (A𝐸 , F). We implement three kinds of negative samplings
[h̃, g] from data augment perspective.
Fake Edge. Given the enhanced graph (A𝐸 , F), we randomly sam-
ple a fake edge (𝑢𝑎, 𝑣 𝑗), where A𝐸𝑎𝑗 = 0. Then, the local representa-
tions h̃ of fake edge, and the global representations g are combined
as a negative sample.
Feature shuffling. It generates a corrupted graph (A𝐸 , F̃) by ran-
domly shuffling a certain percentage of features. Negative samples
are achieved by pairing local representations h̃ from (A𝐸 , F̃) and
global representations g from (A𝐸 , F).
Structure perturbation. It generates a corrupted graph (Ã𝐸 , F)
by randomly adding or dropping certain ratio of edges. The local
representations h̃ from (Ã𝐸 , F) combine the global representations
g from (A𝐸 , F) as negative samples for the discriminator D.

After obtaining positive and negative samples, the positive sam-
ples are labeled by 1 and the negative samples are labeled by 0.
The local-global consistency mutual information maximization
tries to correctly discriminate positive and negative local-global
pairs [3, 32]. Therefore, we use binary cross entropy loss as L𝑑 :

argmin
Θ𝐷

L𝑑 = −
𝑍−1∑
𝑧=0

𝑙𝑜𝑔D(h, g) + (1 − 𝑙𝑜𝑔D(h̃, g))
𝑍

(16)

where Θ𝐷 = W𝑑 is the discriminator parameter.

4.2 Model Training
For rating prediction, we employ the pairwise ranking based BPR
loss [24, 26], which assumes that the observed items’ prediction val-
ues should be higher than those unobserved. The objective function
can be formulated as follows:

argmin
Θ𝐺

L𝑟 =
𝑀−1∑
𝑎=0

∑
(𝑖, 𝑗) ∈𝐷𝑎

−ln𝜎 (𝑟𝑎𝑖 −𝑟𝑎𝑗) +𝜆 | |P| |2 +𝜆 | |Q| |2, (17)

where 𝜎 (𝑥) is a sigmoid function, Θ𝐺 = [P,Q,W1,W2] are graph
learning parameters, 𝜆 is the regularization coefficient.𝐷𝑎 = {(𝑖, 𝑗) |𝑖 ∈
𝑅𝑎∧ 𝑗 ∉ 𝑅𝑎 } denotes the pairwise training data for user 𝑎. 𝑅𝑎 repre-
sents the item set that user 𝑎 has interacted.

Given rating loss L𝑟 (Eq.(17)), the local graph learning based loss
L𝑠 (Eq.(11)) and the global graph learning based loss L𝑑 (Eq.(16)),
we combine them as the final optimization.We set two parameters 𝛼
and 𝛽 to balance these three losses, respectively. Finally, the overall
objective function can be formulated as follows:

Table 1: The statistics of three datasets.
Dataset Users Items Ratings Sparsity

Movielens-1M 6040 3952 226310 99.052%
Amazon-Video Games 31,207 33,899 300003 99.972%

Pinterest 55187 9916 1500809 99.726%

argmin
Θ

L = L𝑟 + 𝛼L𝑠 + 𝛽L𝑑 , (18)

where Θ = [Θ𝐺 ,Θ𝐷] are all parameters in the final objective func-
tion. We implement the proposed model with TensorFlow1.

5 EXPERIMENTS
In this section, we conduct extensive experiments on three real-
world datasets to evaluate the effectiveness our proposed EGLN model.

5.1 Experimental Settings
5.1.1 Datasets Description. To evaluate the effectiveness of our
proposed model, we conduct experiments on three public datasets:
Movielens-1M [10], Amazon-Video Games [11, 21, 37], and Pin-
terest [8]. For Movielens-1M, we transform explicit ratings into
implicit feedback, where each entry is viewed as 1 only when rat-
ing equals 5. For Amazon-Video Games, we adopt the processed
dataset [37] which each user have at least 5 records. For Pinterest,
we also use the processed dataset [13] which each user have at least
20 records. After data pre-processing, we randomly split historical
interactions into training, validation, and test parts with a certain
ratio(7:1:2 on Movielens-1M and 8:1:1 on Amazon-Video Games
and Pinterest).

5.1.2 Baselines and Evaluate Metrics. We compare our proposed
model with several competing baselines which could be categorized
into three groups. The first is classical matrix factorization based
method BPR [26]. The second is neural graph based CF models with
fixed graph structure, including NGCF [33], BiGI [3], LR-GCCF [4]
and LightGCN [12]. The last, we compare our model with three
graph learning based models, including GAT [31], DropEdge [27]
and GLCN[16]. GAT is an efficient graph neural network with
edges reweighting by self-attention mechanism. DropEdge is a
robust graph learning method by randomly removing edges. GLCN
leverages the input features to graph reconstruction. In practice, we
use the learned embeddings from the strongest baseline (LightGCN)
as the input features.

As we focus on ranking and recommending Top-K items to users,
we adopt two widely used ranking metrics: Hit Ratio (HR) and
Normalized Discounted Cumulative Gain (NDCG). Specifically, HR
measures the number of successfully predicted items in the top-N
ranking list that the user likes in the test data. NDCG considers the
hit positions of the items and will give a higher score if the hit items
are in the top positions. In order to reduce the randomness caused
by negative samplings, we select all unrated items as negative
samples for each user, and combine them with the positive items
that the user likes in the ranking process. For each model, we repeat
experiments 10 times and report the average results.

1https://www.tensorflow.org

Session 1B: Recommendation 1 SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

76

Table 2: HR@k and NDCG@k comparisons for Movielens-1M dataset.

Models HR@k NDCG@k
k=5 k=10 k=15 k=20 k=25 k=30 k=5 k=10 k=15 k=20 k=25 k=30

BPR 0.14949 0.20061 0.24543 0.28940 0.32519 0.35469 0.13634 0.15521 0.17133 0.18567 0.19667 0.20559
NGCF 0.15477 0.21055 0.26015 0.30107 0.33670 0.36503 0.14149 0.16207 0.17950 0.19293 0.20404 0.21259
BiGI 0.15831 0.21225 0.25930 0.29936 0.33500 0.36708 0.14521 0.16483 0.18124 0.19435 0.20531 0.21477

LR-GCCF 0.15932 0.21160 0.26004 0.29888 0.33284 0.36290 0.14696 0.16595 0.18283 0.19575 0.20654 0.21569
LightGCN 0.16597 0.22381 0.27327 0.31322 0.34957 0.37971 0.15355 0.17439 0.19191 0.20511 0.21645 0.22563

GAT 0.16025 0.21813 0.26682 0.31148 0.34820 0.37818 0.14613 0.16777 0.18487 0.19955 0.21099 0.22021
DropEdge 0.16010 0.21660 0.26509 0.30735 0.34566 0.37785 0.14517 0.16609 0.18326 0.19725 0.20910 0.21887
GLCN 0.16105 0.21989 0.26871 0.31301 0.34752 0.38025 0.14898 0.17080 0.18801 0.20246 0.21338 0.22314
EGLN 0.16990 0.22961 0.27905 0.31680 0.35071 0.38335 0.15657 0.17842 0.19565 0.20834 0.21905 0.22857

Table 3: HR@k and NDCG@k comparisons for Amazon-Video Games dataset.

Models HR@k NDCG@k
k=5 k=10 k=15 k=20 k=25 k=30 k=5 k=10 k=15 k=20 k=25 k=30

BPR 0.04036 0.06758 0.08729 0.10208 0.11610 0.12741 0.02985 0.03815 0.04372 0.04744 0.05069 0.05319
NGCF 0.05360 0.08268 0.10739 0.12575 0.14194 0.15680 0.03693 0.04680 0.05375 0.05839 0.06217 0.06544
BiGI 0.05587 0.08644 0.11002 0.12871 0.14662 0.16213 0.03893 0.04930 0.05591 0.06062 0.06479 0.06820

LR-GCCF 0.05710 0.08716 0.11064 0.13127 0.14827 0.16383 0.03995 0.05018 0.05680 0.06195 0.06591 0.06936
LightGCN 0.05957 0.09316 0.11709 0.13783 0.15489 0.17145 0.04149 0.05284 0.05955 0.06478 0.06877 0.07242

GAT 0.05614 0.08843 0.11134 0.13070 0.14753 0.16254 0.03918 0.05009 0.05656 0.06142 0.06536 0.06867
DropEdge 0.05365 0.08394 0.10571 0.12417 0.13969 0.15492 0.03717 0.04742 0.05359 0.05825 0.06189 0.06525
GLCN 0.05954 0.09069 0.11530 0.13546 0.15269 0.16845 0.04153 0.05211 0.05900 0.06410 0.06812 0.07157
EGLN 0.06414 0.09754 0.12189 0.14289 0.16023 0.17633 0.04433 0.05567 0.06253 0.06781 0.07189 0.07544

Table 4: HR@k and NDCG@k comparisons for Pinterest dataset.

Models HR@k NDCG@k
k=5 k=10 k=15 k=20 k=25 k=30 k=5 k=10 k=15 k=20 k=25 k=30

BPR 0.04839 0.08323 0.11308 0.13879 0.16185 0.18311 0.04293 0.05874 0.06993 0.07854 0.08570 0.09191
NGCF 0.04906 0.08399 0.11290 0.13908 0.16193 0.18335 0.04380 0.05966 0.07050 0.07929 0.08638 0.09263
BiGI 0.05003 0.08471 0.11441 0.14004 0.16464 0.18563 0.04457 0.06026 0.07139 0.07997 0.08760 0.09373

LR-GCCF 0.05062 0.08566 0.11469 0.14085 0.16416 0.18616 0.04516 0.06104 0.07192 0.08065 0.08787 0.09430
LightGCN 0.05472 0.09160 0.12354 0.15033 0.17550 0.19775 0.04917 0.06590 0.07785 0.08680 0.09461 0.10112

GAT 0.05170 0.08953 0.12067 0.14807 0.17313 0.19592 0.04581 0.06287 0.07452 0.08368 0.09147 0.09813
DropEdge 0.05390 0.09203 0.12391 0.15168 0.17668 0.20027 0.04762 0.06484 0.07678 0.08607 0.09383 0.10073
GLCN 0.05409 0.09366 0.12596 0.15409 0.17979 0.20323 0.04785 0.06573 0.07780 0.08724 0.09520 0.10205
EGLN 0.05593 0.09468 0.12704 0.15537 0.18112 0.20393 0.05003 0.06756 0.07965 0.08914 0.09713 0.10381

5.1.3 Parameter Settings. For all embedding based models, the free
embedding dimension is fixed as 32, andwe initialize the embedding
matrices with a Gaussian Distribution with the mean value of 0
and the standard variance of 0.01. For those gradient descent-based
methods, we use Adam as the optimizing method with a suitable
initial learning rate. We stop the model learning process when
the performance decreases in the validation data. Similar to many
graph based CF models [4, 12, 33], we set the embedding propaga-
tion depth 𝐾 in range of {0,1,2,3,4}, and analyze its impact on the
experiment results. Since we have pair-wise ranking based loss, for
each observed user-item interaction, we randomly select one unob-
served item as candidate negative sample to compose a triple data
for training. There are several other parameters in the baselines,
we tune all these parameters to ensure the best performance of the
baselines for fair comparison.

5.2 Overall Performance Comparisons
The overall performance on top-k recommendation as shown in
Table2, Table3 and Table4, we report HR@K and NDCG@K values

of various models on three datasets. We observe that all graph based
models outperform BPR since they encode user/item embeddings
with high-order graph structure information, which considerably
alleviate the interaction sparsity issue. Specifically, NGCF improves
over BPR by injecting the neighbors embeddings for node rep-
resentation learning. BiGI consistently improves over NGCF by
leveraging the global properties of the bipartite graph. It shows the
effectiveness of maximizing the local-global graph representation
in graph based recommendation. LR-GCCF improves over NGCF
by designing residual preference predictions and linear embedding
propagation. LightGCN is the best baselines, which removes the
excess components: nonlinear activation and feature transforma-
tion in GCNs. The performance of these graph based CF models
indicates that the simplified neighbors aggregation approach is
more efficient for graph based CF.

Apart from comparing the performances on various graph based
CF models with fixed structure, we also compare several advanced
graph learning based models. For all graph learning based models,
we use the same neighbors aggregation mechanism as LightGCN
for fair comparisons. In practice, we find that although GAT shows

Session 1B: Recommendation 1 SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

77

Table 5: Ablation results of our proposed model (EGLN -E denote EGLN with fixed graph, EGLN -M denote EGLN without
mutual infomax, EGLN -FE denote EGLN under fake edge, EGLN -FS denote EGLN under feature shuffling, EGLN -SP denote
EGLN under structure perturbation).

Models Movielens-1M Amazon-Video Games Pinterest
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

EGLN -E 0.21507(-) 0.16650(-) 0.09104(-) 0.05171(-) 0.09190(-) 0.06440(-)
EGLN -M 0.22660(+5.36%) 0.17424(+4.65%) 0.09392(+3.16%) 0.05304(+2.57%) 0.09338(+1.61%) 0.06594(+2.39%)
EGLN -FE 0.22961(+6.76%) 0.17842(+7.16%) 0.09754(+7.15%) 0.05567(+7.27%) 0.09402(+2.31%) 0.06711(+4.21%)
EGLN -FS 0.22924(+6.59%) 0.17606(+5.74%) 0.09570(+5.12%) 0.05381(+4.06%) 0.09455(+2.88%) 0.06730(+4.50%)
EGLN -SP 0.22520(+4.71%) 0.17435(+4.71%) 0.09724(+6.81%) 0.05514(+6.63%) 0.09468(+3.03%) 0.06756(+4.91%)

[0,8) [8,16) [16,32) [32,64) [64,)
0.1

0.15

0.20

0.25

Num. of Records for Each User (T)

N
D

C
G

@
1
0

BPR

NGCF

BiGI

LR−GCCF

LightGCN

GAT

DropEdge

GLCN

EGLN

(a) Movielens-1M

[0,4) [4,8) [8,16) [16,32) [32,)
0.02

0.04

0.06

0.08

Num. of Records for Each User (T)

N
D

C
G

@
1
0

BPR

NGCF

BiGI

LR−GCCF

LightGCN

GAT

DropEdge

GLCN

EGLN

(b) Amazon-Video Games

[8,16) [16,24) [24,32) [32,40) [40,)
0.04

0.06

0.08

Num. of Records for Each User (T)

N
D

C
G

@
1
0

BPR

NGCF

BiGI

LR−GCCF

LightGCN

GAT

DropEdge

GLCN

EGLN

(c) Pinterest

Figure 2: Item recommendation performance under different user group.

a better performance than GCN on semi-supervised node classi-
fication, it does not show superiority compared with LightGCN
on recommendation task. We speculate the possible reason is that
the user-item bipartite graph is too sparse, which is not suitable
for attentive weight learning. DropEdge is also weaker than Light-
GCN, since all observed interactions are strong positive signals for
model optimization and dropping edges are not effective in recom-
mendation scenarios. GLCN achieves the best performance among
these graph learning based models, we revise the weight matrix
with the node embeddings learned from LightGCN. However, this
method only performs graph learning once, which can not capture
the better graph structure for recommendation.

Comparing with all the baselines, we empirically find that our
proposed EGLN consistently shows the best performance on all
the datasets. The detailed improvement rate varies across different
datasets, but the same overall trend is shared. E.g., EGLN improves
4.70% and 5.36% over the strongest baseline(LightGCN) of HR@10
and NDCG@10 on Amazon-Video Games dataset. It demonstrates
the effectiveness of adaptive graph learning to learn better node
embeddings to facilitate recommendation. Compared with graph
based CF with fixed graph structure, EGLN captures the false nega-
tive edges on the graph and revises the input graph to better serve
CF. Compared to GAT, EGLN reweights edges weights with the
learned residual graph instead of self-attention. Compared to Drope-
dge, EGLN revises the graph structure by capturing the missing
edges instead of randomly dropping edges. Compared to GLCN,
EGLN achieves the revised graph structure by iteratively perform-
ing residual graph learning and node embedding learning modules.
The above analysis detailed illustrates the reasons why EGLN shows
a better performance. Later, we give an ablation study to investigate
the role each component plays in EGLN .

5.3 Ablation Study of EGLN
As shown in Table 5, we report HR@10 andNDCG@10 of EGLN and
it’s simplified version. Specifically, EGLN -E denotes we implement
EGLN with fixed graph (𝛼 = 𝛽 = 0). EGLN -M denotes simplified
EGLN without the constraint of mutual information maximiza-
tion (𝛽 = 0). Besides, EGLN -FE denotes EGLN under fake edge,
EGLN -FS denotes EGLN under feature shuffling, EGLN -SP de-
notes EGLN under structure perturbation. Compared with EGLN -E,
EGLN -M achieves obviously improvements on all three datasets,
which verifies the effectiveness of the enhanced graph learning.
EGLN -FE, EGLN -FS, and EGLN -SP all show better performances
than EGLN -M, indicating that the local-global consistency opti-
mization is effective to enhance graph learning. In practice, we try
three implementations of EGLN , and find EGLN -FE yields the best
performance on Movielens-1M and Amazon-Video Games datasets,
and EGLN -FS shows the best performance on Pinterest datasets.
We speculate the possible reason is that Pinterest dataset contains
more interaction records, so fake edge can not provide same weight
signals for graph learning as same as another two datasets.

5.4 Performance under Different Data Sparsity
The interaction sparsity issue usually limits the capability of CF,
since precise user preference modeling needs sufficient interaction
data. To this end, we conduct experiments to explore the perfor-
mance of various models under different data sparsity. We divide all
test users into several groups based on their observed interactions
in training data. Taking the Movielens-1M dataset as the example,
we split users into five groups, the interaction numbers for each user
are more than 0, 8, 16, 32 and 64, respectively. Figure 2 illustrates
NDCG@10 of different groups on Movielens-1M, Amazon-Video

Session 1B: Recommendation 1 SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

78

Table 6: Performance comparisons of different propagation depth 𝐾 on three datasets.

Depth K Movielens-1M Amazon-Video Games Pinterest
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

K=0 0.20061(-) 0.15521(-) 0.06758(-) 0.03815(-) 0.08323(-) 0.05874(-)
K=1 0.21917(+8.98%) 0.16899(+8.88%) 0.08603(+27.30%) 0.04725(+23.85%) 0.08745(+5.07%) 0.06198(+5.52%)
K=2 0.22961(+14.46%) 0.17842(+15.25%) 0.09524(+40.77%) 0.05398(+41.49%) 0.09165(+10.12%) 0.06518(+10.96%)
K=3 0.22689(+13.10%) 0.17541(+13.01%) 0.09754(+44.35%) 0.05567(+45.40%) 0.09292(+11.64%) 0.06607(+12.48%)
K=4 0.22514(+12.23%) 0.17337(+11.70%) 0.09293(+37.51%) 0.05273(+38.22%) 0.09468(+13.50%) 0.06756(+13.77%)

0 0.01 0.05 0.1 0.5 1
0.215

0.22

0.225

0.23

H
R

@
1
0

α

0 0.01 0.05 0.1 0.5 1
0.165

0.17

0.175

0.18

N
D

C
G

@
1
0

HR@10

NDCG@10

0 0.0001 0.001 0.01 0.1 1
0.215

0.22

0.225

0.23

H
R

@
1
0

β

0 0.0001 0.001 0.01 0.1 1
0.17

0.173

0.176

0.179

N
D

C
G

@
1
0

HR@10

NDCG@10

0 1e−6 1e−5 1e−4 1e−3 1e−2
0.215

0.22

0.225

0.23

H
R

@
1
0

λ

0 1e−6 1e−5 1e−4 1e−3 1e−2
0.17

0.173

0.176

0.179

N
D

C
G

@
1
0

HR@10

NDCG@10

Figure 3: Item recommendation performance with different hyper-parameters on Movielens-1M dataset.

Games and Pinterest datasets. We observe that all models’ perfor-
mances increase when the count of interactions increase, which
means high quality user representation needs more interactions. In
general, our proposed EGLN shows the best performance on most
groups but fails in the densest group. We guess the reason is that CF
models could achieve good performance with sufficient interactions,
so our proposed enhanced graph learning module is not required in
this scenes. Besides, we also find that EGLN achieves more improve-
ments on sparse groups than dense groups(e.g., 17.754% and 6.674%
improvements over BPR on the sparsest and the densest group on
Movielens-1M dataset). This indicates EGLN is more beneficial to
sparse users, because EGLN introduces weak supervised signals by
adding missing edges which not appear in the input graph.

5.5 Detailed Model Analysis
In this part, we first analyze the effect of different embedding prop-
agation depth 𝐾 . Followed, we analyze the parameters sensitivities.

5.5.1 The Propagation Layer Depth. In order to investigate the ef-
fect of multiple propagation layers, we search the propagation depth
𝐾 in {0,1,2,3,4}. Please note that, when K=0, the graph convolution
part disappears, our model degenerates to BPR. As shown in Table
6, we summarize the experimental results on different propaga-
tion layers and compare the performance improvements over BPR.
When K increases from 0 to 1, the performance increases quickly on
three datasets, showing that the embedding propagation part effec-
tively alleviates the data sparsity issue. As K continues to increase,
we find the performance increases at first, and then drops after a
certain value. Specifically, our model reaches the best performance
with K=2 in Movielens-1M, K=3 in Amazon-Video Games, and K=4
in Pinterest, respectively. The reason is that Amazon-Video Games
and Pinterest datasets have more sparse interactions compared to
Movielens-1M. For the sparse dataset, deeper graph convolution
could help to aggregate more neighbors, which benefits the rep-
resentation learning. However, for the dense dataset, too deeper
propagation layer will easily lead to over-smoothing on the graph.

5.5.2 Parameters Sensitivities. Here we analyze the performances
of EGLN with different hyper-parameters. Limited to the space, we
only show the results on Movielens-1M dataset. As shown in Figure
3, we illustrate HR@10 and NDCG@10 values with three kinds
of hyper-parameters: similarity constraint coefficient 𝛼 , mutual
objective coefficient 𝛽 and regularization coefficient 𝜆. We observe
that EGLN achieves the best performance with 𝛼 = 0.1, 𝛽 = 0.1
and 𝜆 = 1𝑒 − 4. For the regularization coefficient 𝜆, we observe
that the performance increases when 𝜆 increases from 0 to 1𝑒 − 4
and decreases quickly when 𝜆 is larger than 1𝑒 − 3. It indicates
that suitable regularization could effectively prevent over-fitting
issues, however too strong regularization will restrict the model
optimization. Same as 𝜆, for the objective balance parameters ℎ𝑎
and 𝛽 , the selections of appropriate parameters are also important
for overall objective optimization.

6 CONCLUSION
In this work, we argued that previous graph based CF with fixed
graph structure is sub-optimal for user/item embedding learning.
Therefore, we proposed an enhanced graph learning network (EGLN)
approach for better serving CF. To revise the enhanced graph
structure, EGLN was designed by two folds: First, the enhanced
graph learning module and the node embedding module iteratively
learned from each other without any feature input. Second, we
designed a local-global consistency optimization function to let the
enhanced graph capture the global properties in the graph learning
process. Finally, extensive experimental results on three real-world
datasets clearly demonstrated the superiority and effectiveness of
our proposed model.

ACKNOWLEDGEMENTS
This work was supported in part by grants from the National Natu-
ral Science Foundation of China (Grant No. 61972125, U19A2079,
61932009, 61732008, 62006066), the Fundamental Research Funds
for the Central Universities, HFUT and the Young Elite Scientists
Sponsorship Program by CAST and ISZS.

Session 1B: Recommendation 1 SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

79

REFERENCES
[1] David C Anastasiu and George Karypis. 2015. L2knng: Fast exact k-nearest

neighbor graph construction with l2-norm pruning. In CIKM. 791–800.
[2] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua

Bengio, Aaron Courville, and Devon Hjelm. 2018. Mutual information neural
estimation. In ICML. 531–540.

[3] Jiangxia Cao, Xixun Lin, Shu Guo, Luchen Liu, Tingwen Liu, and Bin Wang. 2021.
Bipartite Graph Embedding via Mutual Information Maximization. In WSDM.
635–643.

[4] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting
Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional
Network Approach. In AAAI. 27–34.

[5] Yu Chen, Lingfei Wu, and Mohammed Zaki. 2020. Iterative Deep Graph Learning
for Graph Neural Networks: Better and Robust Node Embeddings. NIPS 33 (2020).

[6] Wei Dong, Charikar Moses, and Kai Li. 2011. Efficient k-nearest neighbor graph
construction for generic similarity measures. InWWW. 577–586.

[7] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. 2019. Learn-
ing discrete structures for graph neural networks. In ICML. 1972–1982.

[8] Xue Geng, Hanwang Zhang, Jingwen Bian, and Tat-Seng Chua. 2015. Learning
image and user features for recommendation in social networks. In ICCV. 4274–
4282.

[9] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NIPS. 1024–1034.

[10] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. TIIS 5, 4 (2015), 1–19.

[11] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In WWW. 507–
517.

[12] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In SIGIR. 639–648.

[13] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. InWWW. 173–182.

[14] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil
Bachman, Adam Trischler, and Yoshua Bengio. 2018. Learning deep representa-
tions by mutual information estimation and maximization. ICLR.

[15] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In ICDM. 263–272.

[16] Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. 2019. Semi-supervised
learning with graph learning-convolutional networks. In CVPR. 11313–11320.

[17] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang.
2020. Graph structure learning for robust graph neural networks. In SIGKDD.
66–74.

[18] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. In ICLR.

[19] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph
convolutional networks for semi-supervised learning. In AAAI. 3538–3545.

[20] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. 2018. Adaptive graph
convolutional neural networks. In AAAI. 3546–3553.

[21] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In SIGIR. 43–52.

[22] Andriy Mnih and Russ R Salakhutdinov. 2008. Probabilistic matrix factorization.
In NIPS. 1257–1264.

[23] Chanyoung Park, Donghyun Kim, Jiawei Han, and Hwanjo Yu. 2020. Unsuper-
vised Attributed Multiplex Network Embedding. In AAAI. 5371–5378.

[24] Seung-Taek Park andWei Chu. 2009. Pairwise preference regression for cold-start
recommendation. In RecSys. 21–28.

[25] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang
Xu, and Junzhou Huang. 2020. Graph Representation Learning via Graphical
Mutual Information Maximization. InWWW. 259–270.

[26] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI. 452–
461.

[27] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. Dropedge:
Towards deep graph convolutional networks on node classification. In ICLR.

[28] Xiaoyuan Su and Taghi M Khoshgoftaar. 2009. A survey of collaborative filtering
techniques. Advances in artificial intelligence (2009).

[29] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2021. Infograph: Un-
supervised and semi-supervised graph-level representation learning via mutual
information maximization. arXiv preprint arXiv:1908.01000 (2021).

[30] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph Convolu-
tional Matrix Completion. STAT 1050 (2017), 7.

[31] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[32] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2019. Deep graph infomax. ICLR (2019).

[33] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural Graph Collaborative Filtering. In SIGIR. 165–174.

[34] Le Wu, Xiangnan He, Xiang Wang, Kun Zhang, and Meng Wang. 2021. A Survey
on Neural Recommendation: From Collaborative Filtering to Content and Context
Enriched Recommendation. arXiv preprint arXiv:2104.13030 (2021).

[35] Le Wu, Junwei Li, Peijie Sun, Richang Hong, Yong Ge, and Meng Wang. 2020.
DiffNet++: A Neural Influence and Interest Diffusion Network for Social Recom-
mendation. TKDE (2020).

[36] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang.
2019. A Neural Influence Diffusion Model for Social Recommendation. In SIGIR.
235–244.

[37] Le Wu, Yonghui Yang, Kun Zhang, Richang Hong, Yanjie Fu, and Meng Wang.
2020. Joint Item Recommendation and Attribute Inference: An Adaptive Graph
Convolutional Network Approach. In SIGIR. 679–688.

[38] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In SIGKDD. 974–983.

[39] Donghan Yu, Ruohong Zhang, Zhengbao Jiang, Yuexin Wu, and Yiming Yang.
2019. Graph-Revised Convolutional Network. arXiv preprint arXiv:1911.07123
(2019).

[40] Tianqi Zhang, Yun Xiong, Jiawei Zhang, Yao Zhang, Yizhu Jiao, and Yangyong
Zhu. 2020. CommDGI: Community Detection Oriented Deep Graph Infomax. In
CIKM. 1843–1852.

Session 1B: Recommendation 1 SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

80

	Abstract
	1 Introduction
	2 Related works
	3 The Proposed Model
	3.1 Overall Architecture
	3.2 Enhanced Graph Learning with Learned Embeddings
	3.3 Embedding Learning with Enhanced Graph Structure

	4 Optimization Design and Model Training
	4.1 Mutual Information Maximization for Enhanced Graph Learning
	4.2 Model Training

	5 Experiments
	5.1 Experimental Settings
	5.2 Overall Performance Comparisons
	5.3 Ablation Study of EGLN
	5.4 Performance under Different Data Sparsity
	5.5 Detailed Model Analysis

	6 Conclusion
	References

