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Abstract. In intelligent education, cognitive diagnosis is a fundamental
but important task, which aims to discover students’ mastery of differ-
ent knowledge concepts. Plenty of methods have been proposed to exploit
student-exercise interactions, especially graph-based methods. However,
most of them treat student behaviors to exercises as a binary interac-
tion (i.e., interacted or not), neglecting diverse behavior patterns (i.e.,
correct and incorrect interactions). Moreover, the number of concepts
is much smaller than exercises, presenting a challenge for measuring
student proficiency. Therefore, in this paper, we propose a novel Multi-
Relational Cognitive Diagnosis (MRCD) framework. Specifically, we first
divide students’ answer behaviors into correct and incorrect interactions
with exercises, and form the corresponding two student-exercise relation
graphs. We then leverage Graph Convolutional Network to learn exercise-
level representations of students and exercises based on different relation
graphs. Since dividing operation exacerbate the data sparsity problem,
we employ graph contrastive learning to enhance MRCD on represen-
tation learning. Moreover, considering the relatively small number of
concepts, we directly employ attention mechanism to generate student
and exercise representations based on relevant concepts. After that, we
fuse exercise-level and concept-level representations, and send them to
a cognitive diagnosis model to predict student performance. Extensive
experiments over two real-world datasets demonstrate the effectiveness
of our proposed model.
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1 Introduction

Intelligent Tutoring Systems (ITS) [4,21] have been widely applied in recent
years, such as Santa and ASSISTments online education platform. These plat-
forms provide rich exercise resources and personalized exercise suggestions [3,9]
for students. The crucial task of ITS is to obtain the proficiency of students on
different concepts [20], which has drawn plenty of attention.
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Fig. 1. The process of the cognitive diagnosis task.

Based on student-exercise historical interactions and exercise-concept corre-
lation matrix (i.e., Q-matrix annotated by educational experts), early diagnosis
models predicted student performance on exercises by handcrafted functions,
such as Item Response Theory (IRT) [13,25], Deterministic Inputs, Noisy-And
gate (DINA) [11], and Multidimensional IRT (MIRT) [1,26]. However, most of
them only exploit shallow interactions, ignoring complex relationships among
students, exercises, and concepts, which cause the performance of student pre-
diction far from satisfaction.

With the rapid development of neural networks, many neural network-based
methods have been proposed For example, [30] introduced neural network for
cognitive diagnosis on the basis of traditional diagnosis methods. RCD [14]
designed a relation-driven framework to learn representations by constructing
the student-exercise-concept hierarchical graph, where student-exercise interac-
tions are reduced to binary interactions. Despite the great progress, complex
relations among students, exercises, and concepts are still under-exploited. One
of main problems is the simplified binary processing of student-exercise inter-
actions. As shown in Fig. 1, student-exercise interactions can be divided into
correct and incorrect patterns. For the correct behavior pattern, it does not
only reveal understanding to exercises, but also reflects association [37], guess-
ing [11], and so forth. The incorrect behavior also contains different meanings,
such as misunderstanding and carelessness. These phenomena demonstrate that
it is useful to measure student-exercise interactions in terms of different rela-
tions. Moreover, one exercise usually contains multiple concepts, (e.g., Q-matrix
in Fig. 1). However, most existing methods handle this phenomenon by treating



Multi-Relational Cognitive Diagnosis for Intelligent Education 427

the performance of a student in an exercise as the average capability of con-
tained concepts [14], which ignores the potential information of student-concept
interactions and is too coarse to measure the ability level of students on specific
concepts.

To this end, we propose a novel Multi-Relational Cognitive Diagnosis (MRCD)
framework. Specifically, to fully exploit student-exercise interactions, we divide
answer records into correct and wrong patterns. Then, we employ Graph Convo-
lutional Network (GCN) to learn exercise-level node representations from student-
exercise relation graphs based on different behavior patterns. Meanwhile, the
dividing operation will exacerbate data sparsity problem. Thus, we design a con-
trastive learning scheme with relational data augmentation to alleviate this prob-
lem. Moreover, considering that knowledge concepts are much less than exercises,
and that student-exercise interactions are too coarse to describe the proficiency
of students to concepts, we develop a self-attention module to model the rela-
tions among students, exercises, and concepts directly. Along this line, concept-
level student ability and exercise characteristics can be better modeled. Next, we
fuse exercise-level and concept-level representations of students and exercises, and
send them into the neural diagnosis model to predict student performance. Exten-
sive experiments over two real-world datasets demonstrate the superiority of our
proposed MRCD.

2 Related Work

Cognitive Diagnosis Models. Cognitive diagnosis [12] focuses on assessing
strengths and weaknesses regarding the student abilities. Traditionally, to over-
come the limitation of Classical Test Theory [2] that evaluates student ability
only by actual scores, IRT [13] leveraged a logical function to study the linear
relationship between student ability and exercise characteristics (e.g., difficulty
and discrimination). DINA [11] adopted discrete binary vectors to represent exer-
cises and students. In addition, it also focused on the effect of the slip and guess-
ing behaviors of students. MIRT [26] expanded the dimension of IRT to study
the mastery levels of students in a fine-grained manner. In recent years, neu-
ral networks have been introduced for better diagnosis. For example, [30] com-
bined neural network with the monotonicity assumptions for adaptive learning
the representations of students and exercises, while ensuring the interpretabil-
ity. And [10] used semantic information of exercises to obtain the difficulty and
discrimination. Besides, there are also some literatures focused on the impact of
educational context on students’ implicit cognitive states [37], and the diagnostic
task by considering both objective and subjective exercises [35].

Graph Structure Modeling. Due to the great success, graph-based modeling
have attracted wide attention in many areas, which effectively improve the qual-
ity of learned representations by aggregating features from neighbors [7,16,32].
In intelligent education, graph-based methods also become one of the hot top-
ics [14,22,29,36]. For example, [36] explored high-order relevance between exer-
cises and concepts by aggregating node representations from exercise-concept
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graph. RCD [14] built a hierarchical graph consisting of three local graphs:
student-exercise graph, exercise-concept graph, and concept dependency graph
to learn better representations. However, these methods just mapped student-
exercise interactions into binary values, ignoring the rich information hidden in
different behavior patterns, which limited the performance of student prediction.

Meanwhile, Graph Contrastive learning (GCL) is one of the popular tech-
nologies on representation learning. Its core idea is to pull closer an anchor and
positive samples while pushing away the anchor from negative samples in the
representation space [17,18,24,31]. For alleviating the problem of data sparsity,
[38] considered the original structure of graphs and node features by adopting
an importance-driven approach. [33] introduced self-supervised learning as an
auxiliary task to alleviate problems such as the long-tail and the robustness in
recommendation. And [18] used structural neighbors and semantic neighbors to
construct sample pairs. Considering two special subgraphs formed when con-
structing the relational graph, we construct positive and negative sample pairs
from correct and wrong perspectives.

3 Problem Formulation

There are three entity sets: student set S (|S| = M), exercise set E (|E| = N),
and knowledge concept set C (|C| = K), where M,N,K are sizes of each set.
Q ∈ R

N×K matrix labeled by experts, describes correlations between exercise E
and concept C. qjk = 1 is that exercise ej contains concept ck, otherwise qjk = 0.
Besides, R ∈ R

M×N denotes student-exercise interactions, where rij ∈ {−1, 1, 0}
means that student si makes {wrong, correct, no} answer to exercise ej .

Considering the interaction type, we propose to divide R into two relational
interactions R+ and R−, where R+ (R−) denotes correct (wrong) interactions.
Taking R+ as an example, student-exercise interactions (i.e., correct answer and
others) naturally form a bipartite graph G+ = {S ∪ E,R+}, where the graph
adjacent matrix is constructed as follows:

A+ =
∣
∣
∣
∣

0N×M R+

R+T 0M×N

∣
∣
∣
∣
. (1)

Meanwhile, the wrong relational graph G− = {S ∪ E,R−} is constructed simi-
larly. The goal of cognitive diagnosis is to predict student performance on exer-
cises, and diagnose cognitive states of students on specific knowledge concepts.

4 Multi-Relational Cognitive Diagnosis

Figure 2 shows the overall framework of MRCD, which consists of three main
modules: Exercise-Level Learning Module, Concept-Level Learning Module, and
Diagnosis Module. Next, we will introduce each of them in details.
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4.1 Exercise-Level Learning Module

As mentioned before, complex student-exercise interactions imply a wealth of
information, which requires a better utilization method than binary processing.
Therefore, we propose to divide answer records into correct and wrong records,
and leverage graph structure to describe student-exercise interactions.

Fig. 2. The overall structure of our proposed MRCD. Note that the red lines indicate
that students answer exercises wrong. (Color figure online)

For simplicity, in following parts, we take correct answer and other inter-
actions R+ as an example to report technical details. Specifically, we leverage
S ∈ R

M×d and E ∈ R
N×d to denote free embeddings of students and exercises,

which are also initial values of the first layer in the graph. To obtain node embed-
dings at the (t + 1)th layer based on its neighbors and its own embedding at the
tth layer, we utilize graph propagation and pooling operation to update each
node embedding. A+

i = {j|r+ij = 1} and A+
j = {i|r+ij = 1} denote the exercise

set that student si has answered correctly and the student set who has answered
exercise ej correctly, the updating process can be formulated as follows:

st+1
i = sti +

∑

j∈A+
i

etj
|A+

i | , et+1
j = etj +

∑

i∈A+
j

sti
|A+

j | . (2)

Moreover, we formulate this process in matrix norm. Let St and Et denote
embedding matrices of students and exercises after the tth propagation, the
updated embedding matrices at the (t + 1)th propagation are calculated as fol-
lows: ∣

∣
∣
∣

St+1

Et+1

∣
∣
∣
∣
=

∣
∣
∣
∣

St

Et

∣
∣
∣
∣
+ (D−1A+) ×

∣
∣
∣
∣
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∣
∣
∣
∣
, (3)
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where D is a degree matrix of the A+, which efficiently transfers neighbor embed-
dings and updates fusion matrices.

Furthermore, we have noticed that dividing operation will exacerbate the
data sparsity problem, which is harmful for student proficiency modeling. Thus,
we employ GCL for better representation learning. Since we focus on different
interactions among students and exercises, it is natural to treat node embeddings
from different relational graphs as augmented embeddings. In G+ and G−, the
nodes representing the same student or exercise are positive pairs of each other,
while the other student(exercise) nodes in the graphs are negative samples. Then,
we employ InfoNCE [8,23] to constrain MRCD to pull positive pairs closer and
push negative pairs away as follows:

Ls =
∑

si∈S

−log
exp(sim(s+i , s−

i )/τ)
∑

sk∈S′ exp(sim(s+i , s+k )/τ)
,

Le =
∑

ej∈E

−log
exp(sim(e+j , e−

j )/τ)
∑

ek∈E′ exp(sim(e+j , e+k )/τ)
,

(4)

where {s+i , s−
i , e+j , e−

j } denote student and exercise embeddings from graph G+

and G− separately. S
′

and E
′

are the batch data that exclude anchor example
of student si and exercise ej . τ is temperature. With these two optimizations,
MRCD is able to make full use of sparse data to generate better representations.

4.2 Concept-Level Learning Module

Different from the situation that students and exercises have explicit interactions
(i.e., correct, wrong, and no answers), we only obtain implicit student-concept
interaction according to exercises. Meanwhile, each exercise often includes multi-
ple concepts, and making wrong answer does not mean not mastering all included
concepts in the exercise. Thus, we develop a concept-level learning module to
model interactions at a fine-grained level [34].

Specifically, we first obtain student-concept interaction matrix P ∈ R
M×K

based on R and Q matrix. pij = 1 means that student si has done exercises
that contains concept cj , Otherwise, pij = 0. Meanwhile, knowledge concepts
are represented by C ∈ R

K×d, where ci denotes the ith concept embedding.
Considering the quantitative relationship between exercises and concepts, the
student-concept interaction is relatively dense. It is easy to lead to oversmoothing
by using multi-layer convolution to propagate information [19]. Thus, we employ
attention mechanism to measure their connections as follows:

sci =
∑

ck∈Csi
αikck, αik =

sim(si, ck)
∑

ck∈Csi
sim(si, ck)

, (5)

where Csi = {ck|pik = 1} denotes a set of concepts that student si has interacted
with. sim(·) is cosine similarity. sci is the concept-level representation of student
si. Meanwhile, concept-level exercise representations are obtained similarly:
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ecj =
∑

cl∈Cej
βjlcl, βjl =

sim(ej , cl)
∑

cl∈Cej
sim(ej , cl)

, (6)

where Cej = {cl|qjl = 1} denotes a set of concepts that exercise ej contains. ecj is
the concept-level representation of exercise ej . By using this module, MRCD is
able to measure the different impact of concepts on students or exercises, which
is helpful for better modeling grasp level of students to concepts.

4.3 Diagnosis Module

After obtaining exercise-level and concept-level representations, what we do next
is to fuse these representations and predict the student performance. First of
all, we leverage a Fully Connected (FC) layer with a non-negative activation
function (i.e., Sigmoid function) to fuse representations as follows:

ŝi = σ(FCs([si; sci ])), êj = σ(FCe([ej ; ecj ])), (7)

where [; ] denotes concatenation operation. σ(·) is Sigmoid activation function.
{ŝi, êj} are the final representations of student si and exercise ej .

Secondly, similar to existing neural diagnosis models [10], we also employ
expert-designed diagnosis function MIRT [26] to finish the task. Specifically, we
leverage concept-level exercise representation ecj to obtain the value of exercise’s
discrimination with another FC layer. Then, the diagnosis result of student si is
calculated by predicting whether exercise ej is answered correctly as follows:

y∗
ij = σ(F (k × (ŝi − êj) × ediscj )), ediscj = σ(FC1(ecj)), (8)

where F (·) is the neural network with two full connected layers in which each
element of the weight is restricted to be positive [30]. k is a one-hot vector that
denotes concepts contained in exercise ej (i.e., the j-th row in the Q matrix).
y∗
ij is the predicted probability that student si answers exercise ej correctly.

Loss Function. Since cognitive diagnosis is formulated as predicting whether
a student do exercises correctly, Cross-Entropy is employed as the optimization:

Lse = −∑

i

∑

j

(

yij log y∗
ij + (1 − yij) log

(

1 − y∗
ij

))

, (9)

where yij is the ground truth whether student si answers exercise ej correctly.
Meanwhile, we have employed GCL to constrain MRCD to learn better exercise-
level representations with Eq. (4). Finally, the overall optimization target of
MRCD is formulated with a hyper-parameter λ as follows:

Loss = Lse + λ(Ls + Le). (10)
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5 Experiments

5.1 Experimental Settings

Table 1. The statistics of the datasets.

Datasets Students Exercises Concepts Correct logs Wrong logs KCs per exercise

ASSISTMents0910 4,163 17,751 123 183,356 95,520 1.97

EDNET 1,000 11,760 189 734,564 353,589 2.25

Datasets. We select ASSISTMents09101 and EdNet2, as the evaluation
datasets. These datasets count the interaction records between students and
online tutoring systems, which mainly record the data of several attributes and
results of students in the exercise process. Similar to existing work [14,28,30,36],
we filter out exercises without concepts annotation and students who have less
than 15 records. And we randomly select 1,000 students for cognitive diagnosis
on EdNet dataset. The statistics of these two datasets are reported in Table 1.

Evaluation Metrics. Considering that the student ability level cannot be
directly measured in cognitive diagnosis, we adopt some common indicators
to evaluate the performance of the model, such as, Root Mean Squared Error
(RMSE) [6], Accuracy (Acc) and Area Under Curve (AUC) [5].

Baselines. We compare MRCD with the following baselines:

– IRT [13]: IRT is a widely used probabilistic model based on a one-dimensional
linear relationship between student ability and exercise characteristics.

– MIRT [26]: MIRT extends traditional IRT to model student-exercise inter-
actions from multidimensional knowledge concepts.

– DINA [11]: DINA considers whether students have mastered the fine-grained
knowledge concepts in a discrete manner. And the factors of student guessing
and sliding are also concerned.

– NeuralCD [30]: NeuralCD introduces neural network to model the com-
plex interaction relationship between students and exercises, and ensures the
interpretability of student factors and exercise factors with help of the mono-
tonicity assumption in the traditional diagnostic model.

– RCD [14]: RCD comprehensively models the student-exercise-concept rela-
tionship based on graph structure, especially concept dependency.

1 https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/
skill-builder-data-2009-2010.

2 http://ednet-leaderboard.s3-website-ap-northeast-1.amazonaws.com/.

https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010
http://ednet-leaderboard.s3-website-ap-northeast-1.amazonaws.com/
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Parameter Setting. To obtain the best performance, we tune the hyper-
parameters over validation set and employ Early-Stop with the patience of 6
epochs to prevent overfitting. Some common hyper-parameters are set as fol-
lows. Learning rate is set as lr = 0.0001. Embedding size of students, exercises,
and knowledge concepts are set as the number of concepts K. The number
of layer of GCN in exercise-level learning module are selected from {1, 2, 3, 4}.
The temperature τ in GCL is selected from {0.05, 0.1, 0.15, 0.2}. λ in Eq. (10)
is selected from {10−7, 10−6, 10−5, 10−4}. We initialize the network parameters
with Xavier initialization [15].

Table 2. Overall results on student performance prediction.

Models ASSISTMents0910 EdNet

ACC↑ RMSE↓ AUC↑ ACC↑ RMSE↓ AUC↑
IRT 0.67946 0.45477 0.68273 0.71707 0.43444 0.72514

DINA 0.67635 0.48847 0.71167 0.70049 0.46659 0.69111

MIRT 0.72136 0.45105 0.74283 0.72931 0.42891 0.74826

NeuralCD 0.72782 0.43374 0.75469 0.72819 0.42469 0.75792

RCD 0.73264 0.42268 0.77013 0.73246 0.42311 0.76280

MRCD 0.74130 0.41862 0.78208 0.73749 0.41962 0.77040

5.2 Experimental Results

Overall Performance. Table 2 reports the overall performance of models on
student performance prediction. From the table, we observe that MRCD achieves
the best performance on all evaluation metrics compared with other base-
lines, especially the state-of-the-art graph-based RCD model. This phenomenon
demonstrates the effectiveness of considering different type of interactions among
students and exercises and detailed measurement of students and concepts.
Moreover, MRCD has stable performance when data becomes sparser (i.e.,
ASSISTMents0910 dataset), indicating the usefulness of CL framework employed
in exercise-level learning module. Among all baselines, we observe that neural
network-based methods have better performance than traditional cognitive diag-
nosis models, indicating that neural network-based methods are more powerful
to measure the complex relationships among students, exercises, and concepts.

Parameter Sensitive Test. There are two important hyper-parameters to
control the impact of different modules, GCN layer number D and the weight λ
of CL loss. Therefore, we conduct additional experiments to verify their impacts.
Results are reported in Table 3 and Fig. 3. From the results, we observe that with
the increasing of GCN layers, model performance becomes better, supporting
that high-order interactions are very useful for student performance prediction.
Moreover, the performance increasing on ASSISTMents0910 dataset is larger
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Table 3. Performance comparisons of different propagation depth D.

Depth ASSISTMents0910 EdNet

ACC↑ RMSE↓ AUC↑ ACC↑ RMSE↓ AUC↑
D = 0 0.73004 0.43093 0.76606 0.73560 0.42052 0.76869

D = 1 0.73802 0.42100 0.77237 0.73512 0.42205 0.76674

D = 2 0.73931 0.41932 0.77855 0.73609 0.42062 0.76916

D = 3 0.74130 0.41862 0.78208 0.73749 0.41962 0.77040

D = 4 0.73890 0.41894 0.78047 0.73667 0.41953 0.77058

than EdNet. The possible reason is that more GCN layers will help MRCD obtain
more information for student proficiency modeling.

For the impact of CL framework, we observe from Fig. 3(a) that with the
increasing of λ, the performance of MRCD is first increasing and then decreas-
ing. When λ is bigger than 0.001, the performance will have a big drop. We
speculate the possible reason is that when λ is too big, MRCD will be con-
strained to learn similar representations for all students, which will do harm to
model performance. Based on three different evaluation metrics, we finally select
λ = 5e − 5 and λ = 1e − 6 as best setting for two datasets separately.

Ablation Study. In this part, we make several ablation studies to verify the
effectiveness of each component in MRCD, including exercise-level learning mod-
ule (MRCD-graph), concept-level learning module (MRCD-kc), the considera-
tion of different student-exercise relations by using RGCN [27] (MRCD-graph-
kc(rgcn)) and MRCD-graph-kc(t) without the division operation. Results are
illustrated in Table 4. We have to note that Division means whether dividing dif-
ferent relations. From the table, we observe that exercise-level learning module
plays the most important role. Since this module focuses on high-order interac-
tions among students and exercises, as well as employs CL framework to alleviate
the sparsity problem that dividing operation introduced, it is natural that this
module is very critical in our MRCD model. Moreover, when treating correct
and wrong answer behaviors as the same, we observe that model performance
also declined somewhat, demonstrating the necessity of processing correct and
wrong answer behaviors differently.

Case Study. Here we visualize the diagnostic result of a student selected from
the Assistment0910 dataset as shown in Fig. 3(b). And we record the student’s
historical responses and exercise-concept correlation relationship in Fig. 1. Note
that Order of Operations +,−,/,* () positive reals is abbreviated to Order of
Operations. From Fig. 3(b), we could clearly observe that different answer behav-
iors have an impact on the student’ mastery of corresponding knowledge con-
cepts. And considering students’ different answer behavior patterns is useful to
learn the ability of students, especially in the exercises with wrong answers.
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Table 4. Results of ablation experiment.

Models Division ASSISTMents0910 EdNet

ACC↑ RMSE↓ AUC↑ ACC↑ RMSE↓ AUC↑
MRCD-kc × 0.72500 0.43450 0.75752 0.71679 0.42992 0.74397

MRCD-graph � 0.73840 0.41975 0.77812 0.73059 0.42227 0.76466

MRCD-grph-kc(rgcn) � 0.73614 0.42274 0.77334 0.73587 0.42035 0.76909

MRCD-graph-kc(t) × 0.73849 0.42076 0.77773 0.73597 0.41980 0.76964

MRCD � 0.74130 0.41862 0.78208 0.73749 0.41962 0.77040

A
CC

  A
U

C

RM
SEACC

AUC

RMSE

(a) Prediction performance

Order of Operations +,-,/,* () positive reals

Division
No Division

Division
Fractions

Ordering Integers              Least Common Multiple

Divisibility
Rules

(b) Diagnostic Report

Fig. 3. Results of MRCD on ASSISTMents0910.

6 Conclusion

In this paper, we argued that different student-exercise interaction behaviors
revealed different features of students, which should be considered explicitly.
Thus, we proposed a novel Multi-Relational Cognitive Diagnosis (MRCD) frame-
work to model student proficiency over exercises from exercise-level and concept-
level perspectives simultaneously. Specifically, we first divided student-exercise
interactions into correct and incorrect answer interactions and built graphs based
on them. Then, we designed an exercise-level learning module, in which GCN
and GCL framework are employed to learn better representations. Moreover, we
developed a concept-level learning module to measure student-concept interac-
tions and exercise-concept relationship directly. Then, we fused these two-level
representations and sent them to a commonly used diagnosis model to predict
student performance over exercises. Extensive experiments over two real-world
datasets showed the superiority of MRCD. In the future, we will consider the
dynamic change of student ability over time for better cognitive diagnosis.
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