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ABSTRACT
Cognitive diagnosis is a fundamental issue of intelligent educa-

tion platforms, whose goal is to reveal the mastery of students on

knowledge concepts. Recently, certain efforts have been made to

improve the diagnosis precision, by designing deep neural networks-

based diagnostic functions or incorporating more rich context

features to enhance the representation of students and exercises.

However, how to interpretably infer the student’s mastery over

non-interactive knowledge concepts (i.e., knowledge concepts not

related to his/her exercising records) still remains challenging, es-

pecially when not giving relations between knowledge concepts.

To this end, we propose a Knowledge-Sensed Cognitive Diagno-

sis (KSCD) framework, aiming at learning intrinsic relations among

knowledge concepts from student response logs and incorporating

them for inferring students’ mastery over all knowledge concepts

in an end-to-end manner. Specifically, we firstly project students,

exercises and knowledge concepts into embedding representation

matrices, where the intrinsic relations among knowledge concepts

are reflected in the knowledge embedding representation matrix.
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Then, the knowledge-sensed student knowledge mastery vector

and exercise factor vectors are obtained by the multiply product

of their embedding representations and the knowledge embedding

representation matrix, which make the student’s mastery of non-

interactive knowledge concepts be interpretably inferred. Finally,

we can utilize classical student-exercise interaction functions to pre-

dict student’s exercising performance and jointly train the model.

In additional, we also design a new function to better model the

student-exercise interactions. Extensive experimental results on

two real-world datasets clearly show the significant performance

gain of our KSCD framework, especially in predicting students’

mastery over non-interactive knowledge concepts, by comparing

to state-of-the-art cognitive diagnosis models (CDMs).
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Figure 1: Illustration of cognitive diagnosis. The left part
presents the students’ response logs and the exercise-concept
relationalmatrix named𝑄-matrix, while the upper right part
shows the corresponding diagnosis results.

1 INTRODUCTION
The aim of cognitive diagnosis in the field of intelligent educa-

tion is to diagnose students’ knowledge mastery (i.e., students’

mastery of knowledge concepts) based on their historical records

of answering exercises and the exercise-concept relational matrix

called 𝑄-matrix [1, 4, 23, 30]. Taking Figure 1 as an example, stu-

dents Cub and Dom have practiced a series of exercises (i.e., {𝑒1, 𝑒2,

𝑒4} and {𝑒1, 𝑒2, 𝑒3}), respectively, and got responses (e.g., right or

wrong), which is shown at the top left; the 𝑄-matrix is shown at

the bottom left. Through the process of cognitive diagnosis, their

knowledge mastery is obtained, which is shown in the right of the

figure. Indeed, such diagnosis results can benefit a wide range of

intelligent educational applications, such as helping teachers make

decisions regarding remedial instruction [18, 28, 35] or targeted

interventions [2, 21].

With the development of a large number of intelligent education

platforms, cognitive diagnosis has become one fundamental tech-

nology for enhancing the core competitiveness of the platforms and

received a great deal of attention [15, 21]. The classic cognitive diag-

nosis models (CDMs) in the field of educational psychology [5, 19],

such as Item Response Theory (IRT) [12], Deterministic Input, Noisy

’And’ gate (DINA) [9], rely on manually designed simple diagnostic

functions, which may not be sufficient for modeling the complex

interaction relationships between students and exercises in the in-

telligent education platforms. Therefore, considerable efforts have

been undertaken to improve the precision of cognitive diagnosis

by the researchers of artificial intelligence and data science do-

mains [16, 17, 33, 34].

These efforts mainly focus on designing neural network-based

diagnostic functions to better fit the complex student-exercise inter-

actions [31], or attempts to incorporate more rich context features

and prior relations between knowledge concepts for enhancing

the representation learning of students and exercises [13, 32, 36].

However, how to interpretably infer the student’s mastery over

non-interactive knowledge concepts still remains challenging, es-

pecially when not giving the prior relations between knowledge

concepts (e.g., prerequisite relation and similarity relation). The

non-interactive knowledge concepts of a student refers to these

knowledge concepts not related to his/her exercising records (e.g.,
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Figure 2: The distribution of students with different pro-
portion interactive knowledge concepts in two real-world
datasets. We can see that more than 80% of students interact
with less than 10% knowledge concepts in the ASSISTments,
andmore than 55% students interact with less than 10%knowl-
edge concepts in the e-Math.

𝑘4 is the non-interactive knowledge concept of the student cub in
Figure 1). Therefore, these existing CDMs have major limitations

in most of the intelligent education platforms due to the following

two reasons. On the one hand, most of the intelligent education

platforms are usually with highly sparse student-concept interac-

tions as shown in Figure 2, which indicates that the vast majority of

knowledge concepts are not interacted by a student. On the other

hand, it is difficult for most developing intelligent education plat-

forms to obtain this prior relations between knowledge concepts

since annotating them is labor-intensive and costly.

To this end, we propose a Knowledge-Sensed Cognitive Diagno-

sis (KSCD) framework, whose idea is that the intrinsic knowledge

relations can be learned from response logs and 𝑄-matrix (e.g., the

similarity of knowledge correctness in response logs can reflect the

similarity of knowledge difficulty), and benefit the performance of

cognitive diagnosis. To be specific, we first encode students, knowl-

edge concepts and exercises into the same hidden space. Then, we

obtain the student knowledge mastery vector and exercise factor

vectors in the knowledge space by the multiply product of their

embedding representation vectors and knowledge embedding repre-

sentation matrix. Finally, we can use previous CDMs (such as neural

cognitive diagnosis model (NCD) [31]) to model the interactions be-

tween the student and exercise parameters in the knowledge space

for predicting student exercising performance. In this paper, we also

design a new student-exercise interaction function to better capture

the information among students, exercises and knowledge concepts.

Through model training, the student’s mastery levels over interac-

tive and non-interactive knowledge concepts can be diagnosed and

interpretably inferred. Moreover, the intrinsic knowledge relations

can be learned, which is reflected in the embedding representation

matrix of knowledge concepts. Extensive experiments in real-world

datasets demonstrate the effectiveness of the proposed KSCD.
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2 RELATEDWORK
2.1 Cognitive Diagnosis
In the past decades, many CDMs have been proposed by researches

of educational psychology domain. IRT [12] and DINA [9] are the

two most fundamental but classic CDMs. IRT portrays the student

and exercise with the unidimensional and continuous latent traits (

i.e., the student latent ability, exercise difficulty, and exercise dis-

crimination), and predicts the probability of a student answering

an exercise correctly via the logistic function or cumulative dis-

tribution function of the normal distribution. By extending the

student latent trait and exercise parameters into multidimensional

space, Reckase et al. proposed Multidimensional IRT (MIRT) [27].

DINA [9] represents the student’s knowledge mastery with a binary

vector indicating whether he/she has mastered each knowledge

concept. In DINA, one of the exercise parameters comes directly

from𝑄-matrix, which is used to guarantee the interpretation of the

diagnosis results, while the dot product is used to predict student

exercising performance.

In recent years, with the guidance of the educational psychology

theories, CDMs based on neural networks have been explored to

further improve both precision and interpretability. These works

can be divided into the following three categories. The first category

focuses on designing neural network-based diagnostic functions, so

as to better fit the complex student-exercise interactions [31]. For

example, NCD [31] models the interaction between students and

exercises with one shadow layer inspired by MIRT models and two

deep full connection layers. The second category focuses on uti-

lizing more rich context features for enhancing the representation

learning of students and exercises [8, 36]. For example, educational

context-aware cognitive diagnosis (ECD) [36] focuses on modeling

the effect of a student’s educational contexts (e.g., parents’ edu-

cation, school resource, personal interest) on the cognitive state.

Thesemodels of the two above groups cannot diagnose the student’s

mastery of knowledge concepts that are not correlated to her exer-

cising records. The third category attempts to address this issue by

incorporating prior relations between knowledge concepts [13, 32].

For example, relation map driven cognitive diagnosis (RCD) [13]

models the student-exercise interactions and prior structural rela-

tions among knowledge concepts via a multi-layer relation map.

However, the annotation of the relations is labor-intensive and

costly [10], thus it is still difficult for most intelligent education

platforms to obtain this information. Inspired by these facts, this

paper attempts to learn the intrinsic knowledge relations from re-

sponse logs and 𝑄-matrix and incorporates them for enhancing

the performance of cognitive through the multiply product. The

multiply product can make it easy to explain students’ mastery of

non-interactive knowledge concepts based on the intrinsic knowl-

edge relations. Moreover, the proposed model supports the fusion

of prior knowledge structure in the embedding learning stage.

2.2 Knowledge-Sensed Student Modeling
Recently, several studies [11, 25, 26] have demonstrated that there

usually exist interdependencies among knowledge concepts. The

relations of knowledge concepts are fairly helpful for many ed-

ucational tasks [7]. For example, in knowledge tracing, Chen et

al. [7] incorporated the prior prerequisite relation among knowl-

edge concepts into the knowledge tracing model by considering

this property as a constraint of the model. Tong et al. [29] used

prior knowledge concepts relations (e.g., prerequisite, similarity,

etc.) to model the propagation of influence between concepts (e.g.,

unidirectional, bidirectional, etc.). Nakagawa et al. [22] formulated

the knowledge tracking task as a time-series node-level classifi-

cation problem by incorporating the prior knowledge structure

as a graph, and then solved it by graph neural networks. These

models mentioned above mainly study the time-aware knowledge

relational effect for student modeling. Obviously, they cannot be

directly applied for cognitive diagnosis. Moreover, these works are

mainly based on prior knowledge concepts relations obtained by

manual annotation, which are not easy to obtain in practice.

3 PROBLEM STATEMENT
For the cognitive diagnosis task in an intelligent education platform,

there are three sets of entities: a set of students S = {𝑠1, 𝑠2, ..., 𝑠𝑁 },
a set of exercises E = {𝑒1, 𝑒2, ..., 𝑒𝑀 }, the associated knowledge

conceptsK = {𝑘1, 𝑘2, ..., 𝑘𝐶 }. The exercise-knowledge relations are
usually provided by domain experts and denoted as 𝑄-matrix Q ∈
R𝑀×𝐶

, where Q𝑗 is a 𝐶-dimensional binary vector that indicates

which knowledge concepts are correlated to the exercise 𝑒 𝑗 . Let R
denote students’ exercising response logs, which are represented

by a set of triplet (𝑠𝑖 , 𝑒 𝑗 , 𝑟𝑖 𝑗 ), where 𝑠𝑖 ∈ S, 𝑒 𝑗 ∈ E, and 𝑟𝑖 𝑗 ∈ {0, 1}
represents the response score of student 𝑠𝑖 got on exercise 𝑒 𝑗 (0

represents fault and 1 represents true).

Problem Definition. Given student entity S, exercise entity E,
and knowledge concept entity K , the students’ exercising response
logs R and the exercise-knowledge relational matrixQ, let the student’
knowledge mastery vector 𝜶𝑖 be modeled into the knowledge space,
that is, the 𝑐-th element of 𝜶𝑖 denotes the mastery of student 𝑠𝑖 on
knowledge concept𝑘𝑐 . Our goal is to obtain the value of𝜶𝑖 through the
student’s exercising performance prediction 𝑃 (𝑟𝑖 𝑗 = 1) = 𝑓 (𝜶𝑖 ,𝚽𝑗 ),
where 𝚽𝑗 denotes the parameter set of exercise 𝑒 𝑗 (e.g., the knowledge
difficulty 𝜷 𝑗 , discrimination 𝜂 𝑗 ).

In the process of modeling the student’s knowledge mastery

vector 𝜶𝑖 and the exercise parameters𝚽𝑗 , how to learn the intrinsic

relations among K and interpretably incorporate such information

to model these parameters in the knowledge space in an end-to-end

manner is the key purpose of this paper. Next, we introduce the

parameter modeling methods of some representative CDMs, which

are closely related to our work. Note that here we do not discuss

the related work that relies on prior relations between knowledge

concepts, annotated by domain experts.

Existing Representative Parameter Modeling Methods. The
representative traditional method IRT [12] models the process of

predicting the probability that student 𝑠𝑖 correctly answering exer-

cise 𝑒 𝑗 as follows:

𝑃 (𝑟𝑖 𝑗 = 1) = 𝑓𝐼𝑅𝑇 ((𝛼𝑖 − 𝛽 𝑗 ) × 𝜂 𝑗 ), (1)

where the student’s ability 𝛼𝑖 and the exercise parameters including

exercise’s knowledge difficulty 𝛽 𝑗 and exercise’s discrimination 𝜂 𝑗
are directly defined as unidimensional and continuous variables.
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Figure 3: The KSCD framework. h𝑆
𝑖
is the embedding repre-

sentation vector of student 𝑠𝑖 , h𝐾 is the knowledge represen-
tation matrix, and h𝐸

𝑗
is the embedding representation vector

of exercise 𝑒 𝑗 . In the student-exercise interaction module,
𝐶 is the number of knowledge concepts and 𝑛 𝑗 denotes the
number of knowledge concepts contained in exercise 𝑒 𝑗 .

The representative neural network based method NCD [31] mod-

els the student’s exercising performance as:

𝑃 (𝑟𝑖 𝑗 = 1) = 𝑓𝑁𝐶𝐷 (Q𝑗 ◦ (𝜶𝑖 − 𝜷 𝑗 ) × 𝜂 𝑗 ), (2)

where the student’s knowledge mastery vector 𝜶𝑖 is directly mod-

eled by multiplying the student’s one-hot representation vector

with a trainable matrix. Similarly, the exercise’s knowledge diffi-

culty 𝜷 𝑗 and discrimination 𝜂 𝑗 are directly obtained by multiplying

the exercise’s one-hot representation vector with a trainable matrix

and a trainable vector, respectively. Here, each dimension of 𝜶𝑖 and
𝜷 𝑗 can correspond to a specific knowledge concept with the help

of the vector Q𝑗 through element-wise product (i.e., “◦”).
In short, these parameter modeling methods directly project stu-

dents and exercises into knowledge mastery vector and exercise

factor vectors, and still seldom consider the intrinsic relations be-

tween concepts for learning the representations of these vectors.

Therefore, they cannot diagnose the student’s mastery on concepts

that are not correlated to his/her exercising records. To address this

issue, we propose a Knowledge-Sensed Cognitive Diagnosis (KSCD)

framework, which will be presented in the next section.

4 THE PROPOSED KSCD FRAMEWORK
Figure 3 illustrates the framework of KSCD, which consists of three

modules: (1) the embedding module; (2) the knowledge-sensed

representation module; and (3) the student-exercise interaction

module. Specifically, in the embedding module, we map the stu-

dent 𝑠𝑖 , exercise 𝑒 𝑗 , and knowledge concept 𝑘𝑐 to a unified hidden

space, respectively, to obtain the embedding representations h𝑆
𝑖
,

h𝐸
𝑗
and h𝐾 for student 𝑠𝑖 , exercise 𝑒 𝑗 , and knowledge concept set

K . In the knowledge-sensed representation module, we obtain the

knowledge mastery vector 𝜶𝑖 and knowledge difficulty vector 𝜷 𝑗
for student 𝑠𝑖 and exercise 𝑒 𝑗 by multiplying knowledge concept

representation matrix h𝐾 with student’s embedding representation

h𝑆
𝑖
and exercise’s embedding representation h𝐸

𝑗
, respectively. The

exercise discrimination variable 𝜂 𝑗 is acquired from exercise’s em-

bedding representation h𝐸
𝑗
through non-linear transformation. The

above two modules are the purpose of the proposed framework.

Finally, with the obtained interpretable parameters of students and

exercises, the student-exercise interaction module is designed with

a specially designed function to predict the student’s exercising

performance. Actually, under the KSCD framework, these existing

student-exercise interaction functions can also be used to define

the last module.

4.1 The Embedding Module
Firstly, we encode the students, exercises, and knowledge concepts

into a 𝑑-dimensional hidden space and obtain their initialized em-

bedding representation vectors, by multiplying their one-hot repre-

sentation vectors with the trainable matrices respectively, as shown

in Eq. (3).

h𝑆𝑖 = x𝑆𝑖 × A, h𝐸𝑗 = x𝐸𝑗 × B, h𝐾𝑐 = x𝐾𝑐 × D, (3)

where h𝑆
𝑖
, h𝐸

𝑗
, h𝐾𝑐 ∈ R1×𝑑 denote the initialized embedding rep-

resentations of student 𝑠𝑖 , exercise 𝑒 𝑗 and knowledge concept 𝑘𝑐 .

x𝑆
𝑖
, x𝐸
𝑗
, x𝐾𝑐 denote the one-hot representation vectors of student 𝑠𝑖 ,

exercise 𝑒 𝑗 , and concept 𝑘𝑐 respectively. A ∈ R𝑁×𝑑
, B ∈ R𝑀×𝑑

and

D ∈ R𝐶×𝑑 are three trainable matrices (𝑁 ,𝑀 and𝐶 are the number

of students, exercises and knowledge concepts respectively).

Each knowledge concept is represented by a 𝑑-dimensional vec-

tor, so we can obtain the representation matrix h𝐾 ∈ R𝐶×𝑑 about

knowledge concept set K .

4.2 The Knowledge-Sensed Representation
Module

The main purpose of this module is to obtain the interpretable stu-

dent and exercise parameters (i.e., the student’s knowledge mastery

vector 𝜶𝑖 , exercise’s knowledge difficulty vector 𝜷 𝑗 , and exercise’s

discrimination 𝜂 𝑗 ) based on the representations obtained from the

embedding module. These parameters are universally needed by

classical student-exercise interaction functions for student’s exer-

cising performance prediction.

The knowledge mastery vector 𝜶𝑖 of student 𝑠𝑖 is obtained by

multiplying the student’s embedding vector h𝑆
𝑖
and the knowledge

embeddingmatrix h𝐾 . Themultiply product canmake the diagnosis

results of different knowledge concepts explainable by the intrinsic

knowledge relations. We formulate it as:

𝜶𝑖 = h𝑆𝑖 × (h𝐾 )𝑇 , (4)

where 𝜶𝑖 ∈ R1×𝐶 . Similarly, the knowledge difficulty vector

𝜷 𝑗 ∈ R1×𝐶 of exercise 𝑒 𝑗 is obtained by multiplying the exercise
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embedding representation vector h𝐸
𝑗
and the knowledge embedding

representation matrix h𝐾 .

𝜷 𝑗 = h𝐸𝑗 × (h𝐾 )𝑇 . (5)

The unidimensional discrimination 𝜂 𝑗 of exercise 𝑒 𝑗 is obtained

from the exercise embedding vector h𝐸
𝑗
through non-linear transfor-

mation, as shown in Eq. (6). Here, 𝜙 denotes the activation function.

𝜂 𝑗 = 𝜙 (W × h𝐸𝑗 + b). (6)

Besides, to ensure each dimension of the student’s knowledge

mastery 𝜶𝑖 and the exercise’s knowledge difficulty 𝜷 𝑗 correspond-
ing to the specific concept, the knowledge relevance vector Q𝑗 ∈
R1×𝐶 of exercise 𝑒 𝑗 is also needed. Q𝑗 is calculated by multiplying

the exercise one-hot representation vector x𝐸
𝑗
with matrix Q as:

Q𝑗 = x𝐸𝑗 × Q. (7)

4.3 The Student-Exercise Interaction Module
With the obtained interpretable student and exercise parameters (i.e,

the knowledge mastery vector 𝜶𝑖 of student 𝑠𝑖 , knowledge difficulty

𝜷 𝑗 and discrimination 𝜂 𝑗 of exercise 𝑒 𝑗 , and 𝑄 𝑗 ), we can use classi-

cal student-exercise interaction functions to predict the student’s

exercising performance.

Here, we can resemble NCD because it is a representative neu-

ral network approach to define the complex interactions between

students and exercises. Specifically, with the obtained parameters,

the KSCD firstly adopts the MIRT-like function as the first layer of

student-exercise interaction, which is shown in Eq. (8). Then, sev-

eral fully connected layers satisfying the monotonicity assumption

of student knowledge mastery and exercising response are used to

predict the exercising performance, as shown in Eq. (9).

x𝑖 𝑗 = Q𝑗 ◦ (𝜶𝑖 − 𝜷 𝑗 ) × 𝜂 𝑗 , (8)

𝑦𝑖 𝑗 = 𝜙 (W3 × 𝜙 (W2 × 𝜙 (W1 × x𝑇𝑖 𝑗 + 𝑏1) + 𝑏2) + 𝑏3), (9)

where𝜙 denotes the activation function.𝑊1,𝑊2,𝑊3 are the weights

of different neural network layers, respectively.

In this paper, we also design a new student-exercise interaction

function as shown in Eq. (10), which can further incorporate the in-

trinsic relations among knowledge concepts. Specifically, we splice

the student’s knowledgemastery vector𝜶𝑖 with the knowledge con-
cept representation h𝐾𝑐 , respectively, and then pass it through the

neural network layer to obtain the higher-order student’s knowl-

edge mastery vector 𝜶 ′
𝑖𝑐
of each knowledge concept 𝑘𝑐 . A similar

operation is adopted for the exercise parameters to obtain higher-

order knowledge difficulty 𝜷 ′
𝑗𝑐

of each knowledge concept 𝑘𝑐 . A

utility function 𝑓𝑠𝑒 (𝜶 ′
𝑖𝑐

− 𝜷 ′
𝑗𝑐
) is then used to measure the stu-

dent’s ability advantage over exercise’s knowledge difficulty on

each knowledge concept 𝑘𝑐 , and the student’s ability advantage

on exercise 𝑒 𝑗 is selectively accumulated through the knowledge

relevance vector 𝑄 𝑗 of the exercise 𝑒 𝑗 . The specific formulas are

defined as follows:

𝑦𝑖 𝑗 = 𝜙 ( 1
𝑛 𝑗

𝐶∑︁
𝑐=1

Q𝑗𝑐 × 𝑓𝑠𝑒 (𝜶 ′
𝑖𝑐 − 𝜷 ′

𝑗𝑐 )), (10)

𝜶 ′
𝑖𝑐 = 𝜙 (𝑓𝑠𝑘 (𝜶𝑖 ⊕ h𝐾𝑐 )), (11)

𝜷 ′
𝑗𝑐 = 𝜙 (𝑓𝑒𝑘 (𝜷 𝑗 ⊕ h𝐾𝑐 )), (12)

Table 1: Dataset statistics.

Statistics JunYi e-Math

# Students 1000 517

# Exercises 712 1582

# Knowledge Concepts 39 61

# Response logs 203,945 62,412

# Avg logs per student 203.94 120.71

# Avg concepts per exercise 1.00 1.21

# Avg logs per Knowledge Concept 8.09 6.87

where 𝑛 𝑗 denotes the number of knowledge concepts contained in

exercise 𝑒 𝑗 ; 𝜙 denotes the activation function, and here we adopt

sigmoid and ⊕ is the splice operation; 𝑦𝑖 𝑗 ∈ (0, 1) is the predicted
probability that student 𝑠𝑖 correctly answers exercise 𝑒 𝑗 ; 𝑓𝑠𝑒 , 𝑓𝑠𝑘 ,

𝑓𝑒𝑘 are linear transformation functions that represent different fully

connection neural layers.

4.4 Model Optimization
The final knowledge mastery vector 𝜶𝑖 of each student 𝑠𝑖 can be

obtained through the student’s exercising performance prediction

task. Loss function is defined with the cross entropy between the

output 𝑦𝑖 𝑗 of the student-exercise interaction module and true

exercising response 𝑟𝑖 𝑗 as follows:

𝑙𝑜𝑠𝑠 = −
∑︁

(𝑠𝑖 ,𝑒 𝑗 ,𝑟𝑖 𝑗 ) ∈R
(𝑟𝑖 𝑗 𝑙𝑜𝑔𝑦𝑖 𝑗 ) + (1 − 𝑟𝑖 𝑗 )𝑙𝑜𝑔(1 − 𝑦𝑖 𝑗 )) . (13)

5 EXPERIMENTS
Our experiments are designed to address the following research

questions:

• RQ1: How does our framework perform when comparing

with state-of-the-art CDMs?

• RQ2: How does our framework perform in predicting stu-

dents’ mastery over non-interactive knowledge concepts?

• RQ3:Whether the intrinsic relations among knowledge con-

cepts learned by our model are reliable?

• RQ4: Whether our model is sensitive to hyperparameters?

• RQ5:Whether the students’ mastery over non-interactive

knowledge concepts predicted by our model is reasonable?

5.1 Experimental Settings
5.1.1 Dataset Description. To verify the superiority of the pro-

posed KSCD framework, we conduct experiments on two real-world

datasets: JunYi [6] and e-Math. JunYi is a public dataset collected

by the JunYi Education Platform in Taiwan, containing nearly 20𝑀

responses from 1, 000 students. E-Math is a private dataset collected

by a well-known electronic educational product, mainly contain-

ing math exercises and test logs of primary and secondary school

students. We filter out students with less than 15 response logs

for all datasets to guarantee that there are enough data for mod-

eling each student. After preprocessing, for the JunYi dataset, we

obtain 1, 000 students, 203, 945 response logs, and 39 knowledge

concepts. Similarly in the e-Math dataset, we obtain 517 students,

62, 412 response logs, and 61 knowledge concepts. To demonstrate
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Table 2: Overall experimental results, where 80%/20%, 70%/30%, 60%/40% and 50%/50% denote different train/test split ratios. The
line named Imp.(%) provides the relative performance improvement of the KSCD model compared to the best baseline model.
The best results are highlighted in bold and the best results of the baselines are underlined. It is noted that both our KSCD and
KSCD_NCD significantly outperform the best baseline with 𝑝 <0.01.

(a) JunYi

Methods

ACC RMSE AUC

50%/50% 60%/40% 70%/30% 80%/20% 50%/50% 60%/40% 70%/30% 80%/20% 50%/50% 60%/40% 70%/30% 80%/20%

DINA 0.6872 0.6892 0.6912 0.7021 0.4687 0.4717 0.4751 0.4612 0.7130 0.7181 0.7185 0.7364

MIRT 0.7409 0.7397 0.7434 0.7337 0.4211 0.4218 0.4192 0.4330 0.7741 0.7712 0.7752 0.7639

NCD 0.7508 0.7502 0.7543 0.7510 0.4122 0.4113 0.4091 0.4102 0.7890 0.7884 0.7903 0.7951

CDGK 0.7502 0.7522 0.7557 0.7601 0.4123 0.4107 0.4109 0.4059 0.7890 0.7903 0.7928 0.7983

ECD 0.7527 0.7512 0.7554 0.7591 0.4115 0.4119 0.4102 0.4065 0.7891 0.7887 0.7904 0.7909

KSCD_NCD 0.7649 0.7625 0.7693 0.7722 0.4039 0.4031 0.4001 0.3967 0.8065 0.8059 0.8124 0.8158

KSCD 0.7728 0.7715 0.7758 0.7783 0.3951 0.3964 0.3929 0.3912 0.8178 0.8152 0.8191 0.8223
Imp.(%) 2.670% 2.566% 2.660% 2.394% 3.985% 3.482% 4.217% 3.622% 3.637% 3.151% 3.317% 3.006%

(b) e_Math

Methods

ACC RMSE AUC

50%/50% 60%/40% 70%/30% 80%/20% 50%/50% 60%/40% 70%/30% 80%/20% 50%/50% 60%/40% 70%/30% 80%/20%

DINA 0.6508 0.6551 0.6429 0.6547 0.4921 0.4827 0.4819 0.4857 0.6881 0.6914 0.6930 0.6853

MIRT 0.6602 0.6635 0.6634 0.6613 0.4837 0.4792 0.4788 0.4770 0.6956 0.7021 0.7030 0.7018

NCD 0.6908 0.6903 0.6943 0.6975 0.4449 0.4434 0.4483 0.4486 0.7316 0.7422 0.7425 0.7440

CDGK 0.6844 0.6946 0.6906 0.6992 0.4457 0.4484 0.4473 0.4443 0.7289 0.7422 0.7438 0.7443

ECD 0.6910 0.6905 0.6953 0.6981 0.4442 0.4420 0.4424 0.4416 0.7317 0.7415 0.7418 0.7431

KSCD_NCD 0.7049 0.7038 0.7013 0.7085 0.4397 0.4380 0.4372 0.4345 0.7456 0.7534 0.7537 0.7579

KSCD 0.7073 0.7098 0.7099 0.7135 0.4331 0.4314 0.4312 0.4298 0.7609 0.7647 0.7677 0.7685
Imp.(%) 2.359% 2.188% 2.100% 2.045% 2.499% 2.398% 2.532% 2.672% 3.991% 3.032% 3.213% 3.251%

the effectiveness of our framework for different data sparsity, we

apply 80%/20%, 70%/30%, 60%/40% and 50%/50% training/test splits

for each student’s response logs in all datasets, respectively.

The basic statistics of the datasets after preprocessed are summa-

rized in Table 1. The “# Avg logs per Knowledge Concept” represents

the average amount of logs that each student interacted with each

concept, and the formula is expressed as shown in Eq. (14).

𝐴𝑉𝐺𝑙𝑜𝑔 =

∑𝑁
𝑖=1

∑𝐶
𝑗=1 𝑙𝑜𝑔(𝑖, 𝑗)∑𝑁

𝑖=1

∑𝐶
𝑗=1 𝐹 𝐽 (𝑙𝑜𝑔(𝑖, 𝑗) > 0)

, (14)

where 𝑙𝑜𝑔(𝑖, 𝑗) denotes the number of exercises containing knowl-

edge concept 𝑘 𝑗 answered by student 𝑠𝑖 ; 𝑁,𝐶 are the number of

students and knowledge concepts, respectively; 𝐹 𝐽 (·) is the indica-
tor function, where 𝐹 𝐽 (·) = 1 if 𝑙𝑜𝑔(𝑖, 𝑗) > 0, otherwise 𝐹 𝐽 (·) = 0.

5.1.2 Baseline Models and EvaluationMetrics. For our KSCD frame-

work, we provide two implementations (namedKSCD andKSCD_NCD)

with different student-exercise interaction functions. Specifically,

KSCD is with the specially designed interaction function, while

KSCD_NCD is with the same interaction function as the NCD. We

compare the two implementations with several baselines to verify

the effectiveness of KSCD, including DINA [9], MIRT [27], NCD [31]

CDGK [32] and ECD [36]. The details are described below:

• DINA as the classical CDM, utilizes a binary variable to char-

acterize whether students have mastered specific concepts.

• MIRT is an extension of the classical IRT model, which uses

multidimensional vectors to characterize the parameters of

students and exercises, using linear functions for interaction.

• NCD attempts to use neural networks to automatically learn

the complex interaction between students and exercises.

• CDGK is an artificial neural network-based CDM, which

adds a guess adjustment layer to take into account guessing

factors and performs the aggregation of concepts into CDM.

• ECD aggregates the cognitive states of students reflected

in the educational environment and students’ historical re-

sponse records, so as to achieve diagnostic enhancement.

Here, we characterize the cognitive state reflected by the

educational contexts using a random initialization vector

due to the absence of educational contexts.

Considering that there is no true knowledge mastery of students,

we indirectly evaluate the effectiveness of our model by using

the knowledge mastery vector obtained to predict the student’s

exercising performance according to recent literature [20, 31]. Cor-

responding, the ACC (Accuracy) [31], RMSE (root mean square

error) [24], and AUC (area under the curve) [3] are used as met-

rics to assess the performance of CDMs in predicting students’

exercising performance.

5.1.3 Parameters Setting. We initialize the network parameters

with Xavier initialization [14]. Each parameter is sampled from N(0,
𝜇2), where 𝜇 = −

√︁
(2/(𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡 )). 𝑛𝑖𝑛 , 𝑛𝑜𝑢𝑡 denote the number

of neurons input and output, respectively. The relevant parameters

are set as follows through hyperparameter experimental analysis.
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Table 3: Experimental results over different categories of test sets. The line named Imp.(%) provides the relative performance
gain of the KSCD model compared to the best baseline model. The best results are highlighted in bold and the best results of
the baselines are underlined.

(a) JunYi

Methods

ACC RMSE AUC

50%/50% 60%/40% 70%/30% 80%/20% 50%/50% 60%/40% 70%/30% 80%/20% 50%/50% 60%/40% 70%/30% 80%/20%

Warm

DINA 0.6775 0.6762 0.6833 0.6891 0.4589 0.4617 0.4581 0.4542 0.7435 0.7414 0.7473 0.7540

MIRT 0.7455 0.7430 0.7457 0.7354 0.4180 0.4196 0.4176 0.4317 0.7705 0.7672 0.7702 0.7605

NCD 0.7560 0.7545 0.7574 0.7529 0.4076 0.4084 0.4070 0.4087 0.7860 0.7856 0.7901 0.7921

CDGK 0.7562 0.7566 0.7594 0.7632 0.4084 0.4071 0.4085 0.4041 0.7861 0.7868 0.7897 0.7952

ECD 0.7583 0.7558 0.7586 0.7616 0.4072 0.4090 0.4069 0.4048 0.7863 0.7858 0.7903 0.7959

KSCD_NCD 0.7688 0.7653 0.7713 0.7736 0.4008 0.4009 0.3985 0.3955 0.8031 0.8025 0.8078 0.8124

KSCD 0.7767 0.7735 0.7775 0.7798 0.3923 0.3944 0.3916 0.3902 0.8142 0.8116 0.8153 0.8189
Imp.(%) 2.426% 2.234% 2.383% 2.175% 3.659% 3.120% 3.760% 3.440% 3.548% 3.152% 3.163% 2.890%

Cold

DINA 0.5228 0.5330 0.5697 0.5731 0.5212 0.5531 0.5403 0.5340 0.6152 0.6104 0.6194 0.6272

MIRT 0.6783 0.6841 0.6909 0.6883 0.4603 0.4591 0.4515 0.4679 0.7485 0.7492 0.7485 0.7451

NCD 0.6788 0.6778 0.6880 0.6997 0.4577 0.4577 0.4521 0.4474 0.7403 0.7322 0.7437 0.7443

CDGK 0.6720 0.6835 0.6744 0.6954 0.4614 0.4570 0.4598 0.4498 0.7388 0.7368 0.7417 0.7512

ECD 0.6759 0.6725 0.6854 0.6937 0.4598 0.4595 0.4542 0.4493 0.7409 0.7320 0.7436 0.7519

KSCD_NCD 0.7125 0.7142 0.7250 0.7371 0.4435 0.4398 0.4340 0.4283 0.7786 0.7754 0.7907 0.7969

KSCD 0.7190 0.7208 0.7402 0.7386 0.4307 0.4284 0.4186 0.4187 0.7948 0.7959 0.8125 0.8097
Imp.(%) 5.922% 5.365% 7.136% 5.560% 5.899% 6.258% 7.287% 6.415% 6.186% 6.233% 8.550% 7.687%

(b) e-Math

Methods

ACC RMSE AUC

50%/50% 60%/40% 70%/30% 80%/20% 50%/50% 60%/40% 70%/30% 80%/20% 50%/50% 60%/40% 70%/30% 80%/20%

Warm

DINA 0.6003 0.6037 0.6076 0.6126 0.5197 0.5241 0.5223 0.5192 0.6321 0.6278 0.6297 0.6381

MIRT 0.6588 0.6613 0.6615 0.6594 0.4844 0.4803 0.4804 0.4783 0.6942 0.7002 0.6998 0.6991

NCD 0.6864 0.6960 0.6955 0.6976 0.4443 0.4485 0.4482 0.4384 0.7323 0.7448 0.7442 0.7456

CDGK 0.6920 0.6906 0.6914 0.7013 0.4437 0.4484 0.4480 0.4405 0.7329 0.7405 0.7456 0.7543

ECD 0.6832 0.6961 0.6965 0.6989 0.4448 0.4414 0.4470 0.4415 0.7288 0.7450 0.7437 0.7439

KSCD_NCD 0.7029 0.7032 0.7035 0.7115 0.4356 0.4345 0.4377 0.4303 0.7471 0.7534 0.7539 0.7637

KSCD 0.7080 0.7093 0.7086 0.7125 0.4331 0.4320 0.4321 0.4301 0.7609 0.7643 0.7656 0.7671
Imp.(%) 2.312% 1.896% 1.737% 1.597% 2.630% 2.130% 3.333% 2.361% 3.820% 2.591% 2.682% 1.697%

Cold

DINA 0.5061 0.5118 0.5147 0.4983 0.5521 0.5482 0.5551 0.5482 0.6125 0.6117 0.6073 0.6129

MIRT 0.6717 0.6873 0.6891 0.6892 0.4785 0.4662 0.4581 0.4581 0.7056 0.7225 0.7422 0.7384

NCD 0.6809 0.6897 0.6959 0.6960 0.4493 0.4436 0.4426 0.4419 0.7084 0.7278 0.7342 0.7400

CDGK 0.6701 0.6988 0.6834 0.7045 0.4519 0.4407 0.4401 0.4331 0.7039 0.7293 0.7529 0.7533

ECD 0.6828 0.6934 0.6929 0.7041 0.4492 0.4429 0.4439 0.4405 0.7088 0.7280 0.7333 0.7403

KSCD_NCD 0.6982 0.7133 0.7124 0.7254 0.4393 0.4308 0.4299 0.4228 0.7391 0.7540 0.7718 0.7797

KSCD 0.7052 0.7187 0.7267 0.7336 0.4311 0.4233 0.4182 0.4189 0.7623 0.7723 0.7962 0.7884
Imp.(%) 3.281% 2.848% 4.426% 4.131% 4.029% 3.948% 4.976% 3.279% 7.548% 5.896% 5.751% 4.659%

We uniformly set the embedding dimension of the first embedding

layer to 20-dimension (i.e., 𝑑 = 20 in Eq. (3)). The dimensions of the

full connection layers (Eq. (9)) in the student-exercise interaction

module are 512, 256, 1 respectively, and all layers use sigmoid as

the activation function. We use the Adam optimizer to train all

models with a batch size of 32 and the learning rate of 0.002. Finally,

the experimental results on all models are obtained by performing

standard 5-fold cross-validation. All models are implemented with

Pytorch, and all experiments are conducted with Tesla V100.

5.2 Experimental Results
5.2.1 The Comparison Results between ourmodels and Baselines. To
verify the effectiveness of the proposed KSCD framework, Table 2

shows the performance of KSCD, KSCD_NCD and all baselines in

predicting students’ future exercising responses on all datasets with

several train/test split ratios. Here, we report the average value of

five evaluation runs. The best results are highlighted in bold and

the best baselines are underlined. The last line shows the relative

improvement of KSCD compared with the best baseline models.

From Table 2, we can obtain the following observations. (1)

The performance gains of our proposed models (i.e., KSCD and

KSCD_NCD) on different train/test ratios for all datasets are sig-

nificantly outperforms all baselines, which demonstrates the effec-

tiveness of our proposed framework and answers RQ1. (2) KSCD
outperforms KSCD_NCD on all datasets, which confirms the valid-

ity of the specially designed student-exercise interaction function.

To further demonstrate the superiority of our model in predict-

ing students’ mastery on non-interactive concepts, we divide each

test record (𝑠𝑖 , 𝑒𝑖 , 𝑟𝑖 𝑗 ) in the test set into three categories (i.e., cold

test set, normal test set and warm test set) according to the per-

centage of non-interactive knowledge concepts in 𝑒 𝑗 . Here, the

non-interactive knowledge concepts in 𝑒 𝑗 means they are not corre-

lated to the train records of student 𝑠𝑖 . Specifically, let K𝑠𝑖 and K𝑒 𝑗
be the associated concept set of student 𝑠𝑖 from his/her training data
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Table 4: The top ten relevant and irrelevant knowledge pairs based on the learned knowledge embedding representation matrix.
The knowledge pairs whose relevance is consistent with the ground truth are highlighted in bold.

Relevant Irrelevant
Knowledge Concept Knowledge Concept Knowledge Concept Knowledge Concept

Application of two-digit add and sub Application of three-digit add and sub Recognize perimeter Estimate distance
Addition of two-digit Subtraction of three-digit Addition of two-digit Recognize fractions
Calculate perimeter Application of calculating perimeter Application of multi-digit multiplication Distance problem
Recognize perimeter Calculate perimeter Conversion of mass units Recognize seconds
Recognize mass units Application of mass units Conversion of time units Calculation of add and sub

Calculation within one hundred Calculation of two-digit Multiplication of two-digit Recognize rectangles
Calculation of add and sub Subtraction of three-digit Recognize kilometers Distance problem

Recognize fractions Multiply with zero Conversion of mass units Application of three-digit add and sub
Addition of three-digit (rounded) Addition of three-digit (non-rounded) Recognize mass units Multiply with zero

Addition of two-digit Subtraction of two-digit Subtraction of three-digit Multiplication of three-digit
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Figure 4: Impact of each hyperparameter on the performance of the KSCD_NCD and KSCD in terms of AUC.

and the associated concept set of exercise 𝑒 𝑗 , respectively. A test

record (𝑠𝑖 , 𝑒 𝑗 , 𝑟𝑖 𝑗 ) is divided into cold test set if |
⋂(K𝑒 𝑗 ,K𝑠𝑖 ) | = 0, is

divided into warm test set when |⋂(K𝑒 𝑗 ,K𝑠𝑖 ) | = |K𝑒 𝑗 |. Otherwise
it is put into normal test set. Here,

⋂
is the intersection operation

between sets and |.| means the size of the set.

Table 3 shows the experimental results of all methods on warm

test sets and cold test sets, where the train/test ratio is 80%/20%,
70%/30%, 60%/40% and 50%/50%. The experimental results for the

normal test set are not given here since it is too small (less than 200)

in both datasets. Then, the relative performance improvement of

the KSCD model compared to the best baseline model, i.e., Imp.(%),

is given in the last line of the corresponding category. From this

table, we can obtain the following observations. (1) Our KSCD and

KSCD_NCD perform the best and the second-best in both warm test

sets and cold test sets, which demonstrates the effectiveness and

robustness of our KSCD framework. (2) The relative performance

gain of KSCD is more significant in the cold test set than that in

the warm test set. Taking the JunYi dataset as an example, when

train/test ratio is 70%/30%, our KSCD improves over the best base-

line on the ACC, RMSE, and AUC by 7.136%, 7.287%, and 8.550% in

the cold test set, respectively, while the improvements are 2.383%,

3.760%, and 3.163% in the warm test set. These observations indicate

the superiority of our models in predicting students’ mastery of

non-interactive concepts and answer RQ2.

5.2.2 Evaluation of Learned Intrinsic Knowledge Relations. This
experiment is based on the e-Math dataset that contains a true

relation between knowledge concepts (i.e., prerequisite relation be-

tween knowledge concepts). We conduct this analysis experiment

as follows. Firstly, we calculate the Pearson correlation coefficient

between knowledge concepts based on the learned knowledge em-

bedding matrix (i.e., the matrix h𝐾 ) by KSCD model. Then, we

obtain the top relevant and irrelevant knowledge concept pairs

according to the Pearson correlation coefficient. The results for the

top ten relevant and irrelevant knowledge pairs are shown in the

“relevant” column and “irrelevant” column of Table 4 respectively.

In the “relevant” column, we bold the knowledge pairs if they have

true first- or second-order neighborhood relationships, while we

bold the knowledge pairs if they do not have relationships in the

“irrelevant” column. From Table 4, we find that more than 80% of the

top ten relevant knowledge pairs have true first- or second-order

neighborhood relations, and 80% of the top ten irrelevant knowl-

edge pairs have no relation. This experiment validates the higher

accuracy of the learned knowledge relations and answers RQ3.

5.2.3 Sensitivity Analysis of Hyperparameters. For our models, we

conduct the parameter sensitivity analysis for the embedding di-

mension, size of the full connection layer, dropout rate and learning

rate, which are as: {5, 10, 20, 50, 70, 100}, {16, 32, 64, 128, 256, 512},
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} and {0.0005, 0.001, 0.002, 0.005,
0.01, 0.02}. Figure 4(a), (b), (c) and (d) show the impacts of embed-

ding dimension, learning rate size, the full connection layer size and

dropout rate size on the KSCD_NCD and KSCD models in predict-

ing student performance tasks, respectively. It is worth reminding

that there are the same trends in terms of the other two metrics (i.e.,

ACC and RMSE), although we only provide the AUC values in Fig-

ure 4. From the results, we can obtain the following observations.

Firstly, the selection of learning rate size has a more obvious impact

on the model when comparing with other hyperparameters, such

as dropout rate size. Second, compared with KSCD_NCD, the KSCD
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Figure 5: (a) Knowledge relevance calculated from the learned knowledge representationmatrix. (b) The visualization of student
diagnosis report. (c) Relation between know. intri. rele. (i.e., knowledge intrinsic relevance) and know. diag. rele. (i.e., knowledge
diagnosis relevance).

with a specially designed student-exercise interaction function is

more stable and insensitive to hyperparameters (RQ4).

5.2.4 Rationality Analysis of Diagnosis Results. Here, we analyze
the rationality of diagnosis results by KSCD through a case study (RQ5).
The case study can make it convenient for teachers or students to

understand how to use the output of the model. Specifically, we

randomly select one student in the e-Math dataset and visualize

his/her mastery of part knowledge concepts in Figure 5(b). Each

line contains the knowledge concept, the exercising records on the

knowledge concept, and the mastery of the corresponding knowl-

edge concept, diagnosed by our model. Figure 5(a) represents the

relevance between knowledge pairs calculated based on the learned

knowledge concept representation. From Figure 5(b), we can obtain

the following observations: (1) There are higher mastery values of

the student on knowledge concepts A○ and B○, whereas lower

mastery values over knowledge concepts D○ and E○, which is

consistent with the true exercising records. (2) Even though

the student has no exercising records on knowledge concepts

C○ and F○, the model infers that the student masters well

on knowledge concept C○ whereas worse over knowledge

concept F○, which can be explained with the learned intrin-

sic relations among concepts shown in Figure 5(a). That is,

the student has a better mastery on concept C○, since C○ is

highly relevant to concepts A○ and B○. The two observations

can prove that diagnosis results over both interactive and

non-interactive concepts are intuitively reasonable.

To further verify that the diagnosis results of knowledge

concepts can be explained by intrinsic knowledge relations,

we analyze the relations between knowledge intrinsic rele-

vance and knowledge diagnosis relevance. Specifically, we

first define the Pearson coefficient of concepts according to

their embedding representations as knowledge intrinsic rel-

evance and the Pearson coefficient of concepts according to

their diagnosis results of all students as knowledge diagnosis

relevance. Figure 5(c) shows the experimental result, where

each blue point represents a pair of concepts, and its values

in the 𝑥-axis and 𝑦-axis denote intrinsic relevance and diag-

nosis relevance respectively. We can find that the diagnosis

result of concepts can be explained by the intrinsic relations

since they have a consistent positive correlation.

6 CONCLUSION
In this paper, we proposed a Knowledge-Sensed Cognitive

Diagnosis (KSCD) framework, where the intrinsic relations

of knowledge concepts can be learned and benefit the per-

formance of cognitive diagnosis in an end-to-end manner.

Specifically, we first leveraged neural networks to encode the

embedding representations of students, exercises, and knowl-

edge concepts. Then, we designed a knowledge-sensed repre-

sentation module to map the students and exercises into the

knowledge space through the multiply product of their em-

bedding vectors and the knowledge embedding matrix. The

multiply product can make that the diagnosis results of dif-

ferent concepts can be explained by the intrinsic knowledge

relations reflected in the knowledge embedding represen-

tation matrix. Finally, a specially designed student-exercise

interaction function is used to predict the student’s exercis-

ing performance. Experimental results clearly demonstrate

the superiority of our proposed KSCD framework.
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