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ABSTRACT
Social recommendation focuses on leveraging social information to
enhance recommendation quality for social users. It requires that
rating histories of these social users are available, which presents a
great challenge for recommendation on cold-start social users who
have no rating records. In fact, cold-start social recommendation
can also be regarded as a cross domain recommendation(CDR) task,
where user-item interactions form information domain and user-
user links form social domain. Mainstream CDR approaches map
or share bridge users representations between domains to enhance
performance on non-bridge users in target domain. However, the
performance of CDR methods heavily relies on the bridge users
scale, which leads the system very vulnerable. In order to eliminate
above mentioned problem, in this paper, we propose a novel Self-
supervised Cross Domain Social Recommendation(SCDSR), aiming
at cold-start social users. By innovatively integrating information
domain and social domain into a heterogeneous graph, SCDSR
builds higher-order connections between cold-start social users
and items via very limited bridge users. Meanwhile, SCDSR em-
ploys mutual information maximization on heterogeneous graph
with self-supervised signals to optimize node representation learn-
ing. Finally, extensive experiments on two real-world datasets (i.e.,
Epinions and Dianping) clearly demonstrate the effectiveness of
our proposed method.

CCS CONCEPTS
• Information systems→ Information systems applications; Data
mining; Collaborative filtering.
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1 INTRODUCTION
With the rapid development of E-commerce platforms, the data
sparsity problem becomes much severer, which presents a great
challenge for recommender systems. Luckily, the social connections
of users can be used to alleviate this problem, which is defined as
social recommendation [8], [17], [25] and has gained much atten-
tion.

Traditionally, social recommendation requires that social users
should have rating histories, so that their preference can be mea-
sured. For example, TrustSVD introduced social influence as addi-
tional terms for users’ embedding learning based on SVD++ [6].
However, this requirement limits the capability of social recommen-
dation, making it incapable of dealing with cold-start social users,
who have no user-item interactions. A promising way is to regard
this problem as a cross domain recommendation, where informa-
tion domain contains user-item interactions and social domain
provides user-user social connections. By transferring auxiliary
knowledge from source information domain to target information
domain, the recommendation of cold-start users can be handled
properly. For example, Man et.al [18] designed a mapping function
from source domain to target domain based on bridge users in order
to alleviate cold-start users problem in target domain. Wang et.al
[21] utilized pre-trained bridge user embeddings from information
domain as ground truth for the label propagation from bridge users
to non-bridge users in social domain.

Though great progress has been made, one important issue still
remains unresolved. Specifically, most existing CDR methods heav-
ily rely on the bridge users scale, which determines the transfer
capability of models from source domain to target domain [18], [12].
Thus, the quality(e.g., numbers, representations) of bridge users
will dominate the model performance. However, a large number of
bridge users are not always available. A common situation in true
world is that only few bridge users are in both domains. In other
words, how to capture signals in both domains as more as possible
with very limited bridge users is the main challenge that we must
tackle in cross domain social recommendation.

In this paper, we propose a novel Self-supervised Cross Domain
Social Recommendation (SCDSR) to tackle the bridge users scale
dependency problem in CDR. In particular, we first integrate so-
cial domain and information domain into a heterogeneous graph,
so that non-bridge users in social domain can capture latent item
preference via bridge users by graph propagation. Based on the
heterogeneous graph, high-order correlations between non-bridge
users in social domain and items in information domain via limited
bridge users should be considered, which is in favor of generating
better user (item) representations. Furthermore, considering the
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uniqueness of different domains on the heterogeneous graph, we
introduce self-supervised learning for optimization by performing
multiple mutual information maximization, which aims to learn
better node embeddings by capturing the global heterogeneous
graph properties from two domains perspectives. Extensive experi-
ments on two real-world datasets demonstrate the effectiveness of
our proposed methods. Moreover, additional experiments on the
size of bridge users prove that SCDSR can better deal with CDR
situations with small size of bridge users.

2 RELATEDWORK
2.1 Social Recommendation
Social recommendation utilizes social connections as auxiliary in-
formation to alleviate data sparsity problem in recommender sys-
tems [15], [6]. Several researchers treated social connections as
regularization terms [16], [8], [17]. Recently, several works deal
with social recommendation in a graph perspective [24], [25], [4].
MHCN exploits the mutual information maximization technique
between the user, user-centered sub-hypergraph and hypergraph
representations to learn users representations distinguishably in
social recommendation [9]. However, these models are not suitable
for cold-start social recommendation. To address such issue, Wang
et.al [21] proposed NSCR to learn the preference of the cold-start
social users via sharing bridge users embeddings. While most exist-
ing models heavily rely on the bridge user scale and perform worse
when the bridge users are very few.

2.2 Cross Domain Recommendation
Cross domain recommendation leverages richer source information
domain to handle the data sparsity problem in target information
domain. EMCDR [18] is proposed to learn a MLP mapping function
between bridge users to align both domains. Hu et.al [7] introduced
deep transfer learning method into CDR to learn latent user-item
interactions between domains. PPGN [12] expanded the adjacency
matrix to capture high order user-item relationships among both
domains. However, most existing methods can only be applied in
the fully user overlapped scenario. In real world, the common phe-
nomenon is that only partial users are shown in both or multiple
domains simultaneously, which presents a greater challenge for
recommendation in CDR. Several works have been proposed to
address such issue [12], [13], [22]. Liu et.al [14] transferred bridge
users embeddings to alternative domain during graph convolu-
tion learning in both domains. Generally, the performance of the
embedding-based transfer approaches are also relied on the scale
of bridge users. Thus, their performances are heavily limited when
the bridge users are very few.

2.3 Self-supervised Graph Learning
Self-Supervised Learning(SSL) is a common paradigm which aims
to learn representative characteristics for the downstream tasks
from the raw data. SSL has been paid much attention due to its
excellent performance in CV [5], [9], [10] and NLP [2], [3], [11].
Recently, SSL is also extended to the area of graph representation
learning by fully exploiting the graph structure [1], [20]. Similarly
in recommender systems, several works have been proposed by
mutual information maximization technique to learn better graph

representations with self-supervised signals [26], [23], [27]. EGLN
exploited mutual information maximization to constrain the local-
global consistency in the enhanced graph learning process [27]. SGL
was proposed to optimize graph learning via mutual information
maximization among multi-views of graph structure [23]. Naturally,
in cross domain social recommendation task, when the bridge users
are very few, it is very promising to employ mutual information
maximization to help models learn better user representations from
the constructed heterogeneous graph.

3 PROBLEM DEFINITION
Given the user-item graph of information domain GI =

(U I ∪ V ,R), where U I (|U I | = M) and V (|V | = L) are the user set
and item set in DI , respectively, and R is the user-item rating
matrix, as well as the undirected user-user social graph of social
domain GS = (U S , S), whereU S (|U S | = N ) is the users set in DS

and S is the user-user social matrix.U B = U I ∩U S (|U B | = T ) is em-
ployed to represent the bridge users set and T is a small value. We
integrate GI and GS into a heterogeneous graph G = GI ∪GS =

G⟨U I ∪U S ∪V ,R, S⟩ via limited bridge users. The goal is to learn a
recommender system f (·) to predict social domain non-bridge users’
preference to items as: R̂ = f (G) = f (U I ∪U S ∪V ,R, S), where
R̂ ∈ R(N−T )×L denotes the predicted preference of non-bridge users
in social domain to the items in information domain.

4 METHODOLOGY
The overall framework of SCDSR consists of two parts: Hetero-
geneous Graph Embedding Learning andModel Optimization
with Self-supervised Learning, where the former part introduces
how we construct heterogeneous graph and the later explains how
we use self-supervised learning for graph optimization.

4.1 Heterogeneous Graph Embedding Learning
Since bridge users exist in both information domain and social
domain, it is natural to leverage bridge users to integrate two do-
mains into a heterogeneous graph, as shown in first step in Figure
1. Even bridge users are very few, we can also build higher-order
connections between non-bridge users in social domain and items
in information domain based on graph convolution. Similar as other
embedding based graph models [24], [25], we transform the IDs of
all users and items into embedding vectors with one-hot encoding,
where P ∈ R(M+N−T )∗d and Q ∈ RL∗d denote the user and item
embedding matrices, respectively. d is the embedding dimension.

For each node (i.e., user or item) in heterogeneous graph, we
update their embeddings by various neighbors aggregation meth-
ods. Generally, the aggregation processes for users and items are
formulated as follows:

pk+1
u = pku + ϵ

∑
i ∈Ru

1
|Ru |

qki + τ
∑

a∈Su

1
|Su |

pka , (1)

qk+1
i = qki +

∑
a∈RTi

1��RTi ��pka (2)

where pku and qki denote the user and item embeddings respectively
in the k-th layer. Ru and Su represent interacted items and con-
nected users for useru. Ri represents the set of users who had rated
the item i . If users belong to bridge users, ϵ = 1 and τ = 1; if users
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are non-bridge users in information domain, ϵ = 1 and τ = 0; and
if users are non-bridge users in social domain, ϵ = 0 and τ = 1. As
shown in Eq.(1), bridge user embeddings can capture both user-item
and user-user correlations via graph aggregation. Next, we adopt a
readout function to generate final representations for prediction,
which is formulated as follows:

pu = fr eadout

(
pku |k = [0, . . .K]

)
, qi = fr eadout

(
pki |k = [0, . . .K]

)
(3)

where fr eadout denotes a readout function (average pooling) for
generating representation from each layer.

After obtaining the final embeddings of users and items, inner
product is employed to denote the preference of users to items. The
preference of non-bridge users a in social domain to each item i
can be calculated as:

r̂ai = ⟨pa ,qi ⟩ (4)
where ⟨, ⟩ denotes inner product operation.

Since we focus on implicit feedbacks, we employ Bayesian Per-
sonalized Ranking (BPR) [19] loss to optimize our SCDSR, which is
a pairwise loss supposing that the observed positive samples have
higher scores than the unobserved negative samples. The objective
function can be formulated as follows:

LR = −
∑

(u,i, j ∈D I )
lnσ

(
r̂ui − r̂uj

)
+ψθ2 (5)

where useru and item i , item j are the user and items in information
domainDI , respectively.σ denotes the sigmoid activation function.
User u has interaction behavior with item i , dubbed as the positive
sample. Those items which are not interacted by user u are treated
as negative samples, such as item j. θ = [P ,Q] is user and item
latent matrices andψ is a regularization coefficient.

4.2 Model Optimization with Self-supervised
Learning

As we focus on recommending items to non-bridge users in social
domain who have no interaction records, it brings a great chal-
lenge that how to learn their preferences on lacking of supervised
signals. Recently, SSL based models have achieved great success
in CV and NLP, and also successfully applied in graph learning
based recommendation tasks [23], [27]. To this end, we present our
optimization solution with self-supervised signals from contrastive
learning within heterogeneous graph data.

Given node embeddings learned from above heterogeneous
graph, we aim to capture the global heterogeneous graph proper-
ties through maximizing the mutual information about local-global
representation. Next, we firstly describe the calculation process
of local and global representation of the graph G then we present
local-global infomax for self-supervised learning.

4.2.1 Local Representation. The above heterogeneous graph learn-
ing module has provided each node’s embedding for rating predic-
tion. To better represent the graph properties, we perform local-
global infomax for node embedding learning. For each node in
heterogeneous graph, we first introduce how to represent local
formulation.

Considering the edge uniqueness, we formulate the node’s local
representation from different perspectives. In social domainDS , for
the nodes with social connections, similar as other homogeneous

graph works with MI [20], we directly use the learned embeddings
pa from heterogeneous graph as user a’s local representation ha .
Due to two prototype nodes included in information domain DI ,
we summarize the sub-graph of each user-item pair (ua ,vi ) as the
local representation hai . Specifically, the local representations are
depicted as follows:

ha = σ (pa ) (6)
where σ is an activation function(sigmoid), and we use concate-
nation function to combine node pair’s embeddings as the local
representation for users in information domain.

4.2.2 Global Representation. As we have two kinds of local rep-
resentation from domain perspectives, we then summarize two
graph-level global representations to capture the domain proper-
ties. Refer to other graph based representation learning works [1],
[20], [27], we also adopt a readout function to formulate the global
representation g. Considering the difference between both domains,
we define two modified local-level filter based readout function,
FRS and FRI to obtain global representations:

gS = FRS (G) =
1��U S
�� ∑a∈U S ha , (7)

gI = FRI (G) =
1
R1

∑M−1
a=0

∑L−1
i=0

raihai (8)

4.2.3 Local-Global Infomax. In order to capture the whole hetero-
geneous graph properties on the node representation, we utilize
mutual information maximization on each ⟨local ,дlobal⟩ pair of
users. Generally, we use two discriminators to assign the score to
all ⟨local ,дlobal⟩ pairs in both domains. To be specific, for social
domain, we employ a discriminator DS , formulated as follows:

DS

(
hS, gS

)
= σ

(
hTSWSgS

)
(9)

where hS and дS denote the local representation and global repre-
sentation in social domain, respectively.WS ∈ Rd×d is a trainable
weight matrix. Similarly, we also employ a discriminator DI for
information domain, which is formulated as follows:

DI

(
hI, gI

)
= σ

(
hTI WIgI

)
(10)

where hI and gI denote the local representation and global repre-
sentation in information domain, respectively.WI ∈ R2d×2d is a
trainable weight matrix. For both discriminators, we combine the
corresponding local representation hS(hI) and global representation
gS(gI) as the positive samples [hS, gS]([hI, gI]).

In order to perform contrastive learning for discriminators DS
andDI , we devise three data augmentation for the corrupted graph
Ĝ. Specifically, the corrupted strategies we used conclude: (1) Edge
Modification(EM) randomly drops a certain proportion of edges
and adds the same number edges in each domain for the hetero-
geneous graph, similar as [2]. (2) Node Dropout(ND) randomly
drops a certain proportion of nodes and their edges in the het-
erogeneous graph. (3) Node Feature Shuffling(NFS) randomly
selects a certain proportion of nodes in the heterogeneous graph
and shuffles their embeddings.

After the above procedure, we can obtain the corrupted hetero-
geneous graph Ĝ. Then, we summarize the local representation h̃S
and h̃I in social and information domain. The local representation
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Figure 1: The overall architecture of our proposed model.

from the corrupted graph combine the global representation from
the original graph as negative samples [h̃S , gS]([h̃I , gI]) for dis-
criminators. Same as DGI [20], we use InfoNCE as our local-global
mutual objective for optimization:

arдminΘDS
LS = −

1��U S
�� ∑a∈U S

(
logDS

(
ha , gS

))
+
(
1 − loдDS

(
h̃a , gS

))
, (11)

arдminΘDI
LI = −

1
R1

M−1∑
a=0

L−1∑
i=0

rai
(
logDI

(
hai , gI

))
+
(
1 − loдDI

(
h̃ai , gI

))
(12)

where ΘDS = WS and ΘD I = WI are discriminator parameters
in social and information domain. Note that bridge users are con-
strained with both mutual information modules simultaneously.

By maximizing the mutual information between local and global
representation, we introduce self-supervised signals for graph em-
bedding learning which contributes to capture the global graph
properties. Last, we joint the supervised signals and self-supervised
signals in a multi-task form as follows:

L = LR + αLS + λLI (13)

where α and λ are weights to balance each part.

5 EXPERIMENTS
5.1 Dataset Description
We process two public datasets: Epinions1 and Dianping2 to meet
our task. Given information domain and social domain are com-
posed of rating data and social links respectively, firstly, we filter
the candidate users who exist in both domains.Then, we randomly
select 10% candidate users as bridge users. Later, we treat up to

1http://www.trustlet.org/downloaded_epinions.html
2https://lihui.info/data/dianping/

4-order social neighbors of bridge users as non-bridge users in so-
cial domain. The rest of candidate users are treated as non-bridge
users in information domain. 20% ratings of bridge users and all the
ratings of non-bridge uses in social domain are treated as test set.
And the train set consists of the remained rating data in information
domain and social links data in social domain. The specific data
statistics are shown as Table 1.

5.2 Baselines and Evaluation Metrics
We select several state-of-the-art recommendation methods con-
taining social recommendation (TrustSVD and DiffNet) and cross
domain recommendation(EMCDR, NSCR and BiTGCF) methods as
our baselines:

• TrustSVD [6] treats the social trust as additional termswhen
learning bridge users’ preference.

• DiffNet [25] utilizes GNN to model bridge users’ high-order
social relations for better preference learning.

• EMCDR [18] utilizes MLP to learn the mapping function
between both embeddings for bridge users.

• NSCR [21] leverages bridge users’ preference embedding
for feature propagation in the social domain.

• BiTGCF [14] transfers bridge users’ embeddings to alterna-
tive domains during graph learning.

Note that only cross domain approaches can be evaluated for
the non-bridge social users, as no rating data is available to learn
their preference embedding directly. As we focus on recommending
Top-N items, we adopt Hit Ratio (HR) and Normalized Discounted
Cumulative Gain (NDCG) as metrics. For both metrics, the higher
results we get, the greater performance the model achieves. Last,
for fair comparisons, we repeat the evaluation process 10 times and
report the average results as final results.

5.3 Overall Performance
After comparing the performance of all the models on two datasets
in Table 2, we have the following findings:
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Table 1: The statistics of datasets

Domains Dianping Epinions

Information
Users 10,182 8,725
Items 8,627 23,115
Ratings 199,407 206,612

Social Users 5,296 3,261
Links 13,282 11,544

Bridge
Users 1,303 1,107
Ratings 23,892 16,351
Links 3,934 2,625

• TrustSVD and DiffNet show better performance than EM-
CDR and NSCR on bridge users. It may because EMCDR and
NSCR only consider the bridge users’ collaborative filtering
information in the information domain, while TrustSVD and
DiffNet fuse social information with collaborative filtering
knowledge in information domain.

• As EMCDR and NSCR mainly depend on the scale of bridge
users, thus, when the bridge users are very few, they have
poor performance on the non-bridge users in social domain.
As for BiTGCF, it leverages GNN to capture the high-order
social relations in social domain, and obtain the high-order
collaborative information transferred from information do-
main, which can alleviate the few bridge users issue to some
extent.

• Except slightly worse performance on NDCG results of
bridge users on Dianping, our proposed SCDSR consistently
shows the best performance than other models on both
bridge users and non-bridge users in social domain. The
reason is that constructing heterogeneous graph via bridge
users can capture the high-order correlations across domains,
then non-bridge users can capture the potential item pref-
erences by propagating from bridge users. Moreover, we
introduce self-supervised signals for graph embedding learn-
ing by maximizing the mutual information between local
and global representations in both domains, which is benefi-
cial to capture the whole heterogeneous graph properties in
final node representation. It needs declare that the overall
low values are understandable because there are no available
user-item interactions for non-bridge social users.

5.4 Influence of Bridge Users
Bridge users build connections between items and non-bridge social
users. Thus, we conduct experiments to explore the influence of
bridge users. Specifically, we select 5%, 10%, 30% and 50% of all the
users in both domains as bridge users in Epinions and compare
the recommendation performance on non-bridge users. As shown
in Figure 2, we observe that SCDSR consistently achieves the best
performance under four bridge user proportions. Besides, SCDSR
shows a larger improvement than the strongest baseline on the
smaller proportion of bridge users. It indicates that SCDSR has
strong ability to dig more signals in both domains with very limited
bridge users for learning non-bridge users’ preferences through
high-order neighbors aggregation. Besides, the performance on

bridge users also outperforms in each proportions, proving the
effectiveness of our SCDSR.

5.5 Ablation Study
5.5.1 Effect of Mutual Information Modules. To investigate the
effect of two mutual infomax modules, we conduct experiments on
SCDSR with different MI settings. Limited to the space issue, we
only report the HR@10 and NDCG@10 values on Dianping dataset.
As shown in Table 3, we compare SCDSR with different variants,
where SCDSR+noMI is an original heterogeneous graph with no MI
modules, SCDSR+inforMI and SCDSR+socMI represent the models
withMI in information domain andMI in social domain respectively
based on a heterogeneous graph. SCDSR is our proposedmodel with
both MI modules constrain. According to the results, it is apparent
that each single MI module (SCDSR+inforMI, SCDSR+socMI) has
positive effect on our model. Moreover, both MI modules encourage
better node learning and non-bridge users can learn better item
preference via bridge users.

5.5.2 Comparisons of Negative Sampling Methods. For investigate
the influence of negative sampling, we conduct experiments on
SCDSR with three negative sampling methods: Edge Modifica-
tion(EM), Node Dropout(ND) and Node Feature Shuffling(NFS).
Due to the space, we only report our results on Dianping. We con-
struct corrupted heterogeneous graph Ĝ randomly in every epoch
process. In such dynamic way, we can obtain more comprehensive
structure information and learn more precise representation for
each non-bridge user. As shown in Table 4, we observe that SCDSR
with edge modification outperforms significantly compared to an-
other two methods. A possible reason is that node dropout and
node feature shuffling cause corrupted graph to lose most of the
important graph structure information.

5.5.3 Parameter Sensitivities. We study the performance of SCDSR
with different parameters α and λ, where α and λ are utilized to
weight the importance of mutual infomax in social domain and
information domain, as illustrated in Formula 13. Limited to the
space, we only show the results on Dianping as shown in Figure
3. We search α and λ in [0,1,1e2,1e3,1e4] and observe that when α
=1e2 and λ =1e3, SCDSR achieves the best performance. Moreover,
we observe that the performance of SCDSR decreases quickly when
α is larger than 1e2, and the performance of SCDSR enhances with
increasing λ from 0 to 1e3, then drops significantly after 1e3. It
indicates that suitable parameters of each MI module are beneficial
for overall objective optimization.

6 CONCLUSION
In this paper, we propose a novel self-supervised cross domain
model SCDSR for social cold-start recommendation, which inte-
grates information domain and social domain into a heterogeneous
graph with very limited bridge users. By multiple layer graph prop-
agation, SCDSR can build the high-order correlations between non-
bridge users in social domain and items in information domain.
Furthermore, self-supervised learning is introduced for optimizing
node representations learning by mutual information maximization
on both domains. Finally, the experimental results obviously verify
the effectiveness of our proposed model.
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Table 2: The performance of HR@N and NDCG@N on the Dianping and Epinions datasets.

Target User Model Dianping Epinions
HR@N NDCG@N HR@N NDCG@N

10 20 30 10 20 30 10 20 30 10 20 30

Bridge Users

TrustSVD 0.0509 0.0796 0.1027 0.0370 0.0475 0.0551 0.0324 0.0473 0.0632 0.0233 0.0291 0.0341
DiffNet 0.0592 0.0877 0.1139 0.0440 0.0545 0.0626 0.0357 0.0588 0.0756 0.0258 0.0343 0.0407
EMCDR 0.0503 0.0715 0.0926 0.0371 0.0451 0.0520 0.0309 0.0405 0.0502 0.0201 0.0223 0.0262
NSCR 0.0158 0.0253 0.0345 0.0126 0.0163 0.0193 0.0208 0.0341 0.0461 0.0148 0.0199 0.0237
BiTGCF 0.0505 0.0795 0.1042 0.0372 0.0473 0.0552 0.0359 0.0579 0.0733 0.0247 0.0329 0.0379
SCDSR 0.0599 0.0911 0.1156 0.0435 0.0543 0.0619 0.0368 0.0590 0.0762 0.0276 0.0356 0.0411

Non-bridge Users
in Social Domain

EMCDR 0.0071 0.0083 0.0105 0.0067 0.0071 0.0079 0.0084 0.0134 0.0186 0.0072 0.0091 0.0110
NSCR 0.0140 0.0176 0.0222 0.0135 0.0148 0.0165 0.0102 0.0135 0.0177 0.0092 0.0104 0.0119
BiTGCF 0.0217 0.0299 0.0378 0.0185 0.0213 0.0241 0.0287 0.0429 0.0552 0.0243 0.0296 0.0340
SCDSR 0.0263 0.0359 0.0445 0.0221 0.0255 0.0284 0.0303 0.0443 0.0593 0.0257 0.0311 0.0365

Figure 2: HR@10 and NDCG@10 comparisons on bridge users and non-bridge users in social domain under various propor-
tions of bridge users on Epinions.

Table 3: HR@10 and NDCG@10 of different variants on bridge users and non-bridge users in social domain on Dianping.

Model Non-bridge Users Bridge Users
HR@10 NDCG@10 HR@10 NDCG@10

SCDSR+noMI 0.0203(-) 0.0204(-) 0.0534(-) 0.0409(-)
SCDSR+inforMI 0.0244(+6.09%) 0.0207(+1.47%) 0.0565(+5.8%) 0.0415(+1.47%)
SCDSR+socMI 0.0255(+10.87%) 0.0215(+5.39%) 0.0614(+14.98%) 0.0449(+9.78%)

SCDSR 0.0263(+14.35%) 0.0221(+8.33%) 0.0599(+12.17%) 0.0435(+6.35%)

Table 4: The results with different negative sampling methods on Dianping.

Model HR@N NDCG@N
N=10 N=20 N=30 N=10 N=20 N=30

SCDSR+EM 0.0263 0.0359 0.0445 0.0226 0.0257 0.0286
SCDSR+ND 0.0255 0.0340 0.0437 0.0222 0.0252 0.0285
SCDSR+NFS 0.0262 0.0351 0.0438 0.0224 0.0255 0.0284
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