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ABSTRACT
Cognitive diagnosis, aiming at providing an approach to reveal the

proficiency level of learners on knowledge concepts, plays an im-

portant role in intelligent education area and has recently received

more and more attention. Although a number of works have been

proposed in recent years, most of contemporary works acquire

the traits parameters of learners and items in a transductive way,

which are only suitable for stationary data. However, in the real

scenario, the data is collected online, where learners, test items and

interactions usually grow continuously, which can rarely meet the

stationary condition. To this end, we propose a novel framework,

Incremental Cognitive Diagnosis (ICD), to tailor cognitive diagno-

sis into the online scenario of intelligent education. Specifically,

we first design a Deep Trait Network (DTN), which acquires the

trait parameters in an inductive way rather than a transductive

way. Then, we propose an Incremental Update Algorithm (IUA)
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to balance the effectiveness and training efficiency. We carry out

Turning Point (TP) analysis to reduce update frequency, where we

derive the minimum update condition based on the monotonicity

theory of cognitive diagnosis. Meanwhile, we use a momentum

update strategy on the incremental data to decrease update time

without sacrificing effectiveness. Moreover, to keep the trait pa-

rameters as stable as possible, we refine the loss function in the

incremental updating stage. Last but no least, our ICD is a general

framework which can be applied to most of contemporary cognitive

diagnosis models. To the best of our knowledge, this is the first

attempt to investigate the incremental cognitive diagnosis problem

with theoretical results about the update condition and a tailored

incremental learning strategy. Extensive experiments demonstrate

the effectiveness and robustness of our method.
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1 INTRODUCTION
Recently, intelligent education systems have been widely used,

where cognitive diagnosis is one of the key fundamental technolo-

gies supporting these systems [13, 14]. Cognitive diagnosis can be

used to profile learners by discovering their latent cognitive pro-

ficiency on knowledge concepts and can also be applied to reveal

some traits of the test items such as difficulty and discrimination [31].
As shown in the left-top part of Figure 1, learners usually first an-

swer a set of test items and leave their responses (e.g., right or

wrong) which form up the response matrix, and then a Cognitive

Diagnosis Model (CDM) is used to diagnose the trait features of

learners and items. In past decades, many CDMs like Item Response

Theory (IRT) [17], Deterministic Inputs, Noisy "And" gate model

(DINA) [4] and NeurlCD [34] are proposed. These methods diag-

nose the traits of learners/items in a transductive way and therefore

are only suitable for the stationary data, where learners, items and

interactions are not expected to change.

However, in the real scenario, learners usually answer testing

items online in intelligent education systems. The responses are

sequentially recorded and formatted into the streaming log data,

which can rarely meet the stationary condition that the transduc-

tive CDMs can be applied. As illustrated in the left part of Figure 1,

when the incremental logs come, there are more interactions, which

might lead to increment of the number of learners and items (i.e., the

green blocks). Thus, in order to update the traits of learners/items,

transductive CDMs should refit all data including the incremental

ones leading to extremely low efficiency (i.e., branch II in Figure 1).

Although in other areas, some modifications such as Incremental

Learning have been proposed to tailor the transductive methods

into online scenarios (e.g., incremental matrix factorization), these

methods cannot be applied in cognitive diagnosis. Some theories

of cognitive diagnosis require the methods to guarantee some psy-

chometric relationships such as monotonicity [24, 31], which are

not considered in the popular incremental learning methods. Thus,

in the real online scenario of intelligent education, where learners,

test items and interactions usually grow continuously, how to apply

cognitive diagnosis remains unsolved.

Along this line, there are three challenges to be tackled. First is

the new learner/item problem. As mentioned above, with incremen-

tal logs arriving, the number of learners and items might increase.

Nevertheless, traditional CDMs conducting in a transductive way

should refit all data to get the traits of new learners/items (i.e.,

area 4○ in Figure 1), which result in low efficiency. Thus, how to

find a method to directly deduce the traits of new learners/items

becomes a urgent challenge. Second, updating model parameters is

a trade-off between effectiveness and efficiency. If we include more

data to retrain the CDM (e.g., branch II in Figure 1), the prediction

effectiveness can be promoted. However, including more data also

requires more training time. On the contrary, if we only update on

the incremental data (i.e., branch I in Figure 1)), the training time

can be saved. However, only focusing on a few amount of data leads

to potential overfitting, which could result in lower effectiveness.

Third, updating model parameters will result in traits unstableness.

As shown in the right part of Figure 1, we acquire the original traits

(i.e., area 1○) from accumulated logs and get the updated traits

after (i.e., area 3○) incremental logs arriving. However, as shown

in area 2○ of the right part of Figure 1, we find that the updated

traits might differ from the original ones of a certain learner/item

(highlighted by the red dotted box in area 2○). Because cognitive

diagnosis usually serves as the upstream task, such changes might

influence the downstream tasks and analysis [3, 12, 27]. Thus, we

hope to keep the trait parameters as stable as possible.

To this end, we propose an Incremental Cognitive Diagnosis

(ICD) framework. Specifically, we first design a Deep Trait Network

(DTN), where the traits parameters are no longer got in a trans-

ductive optimization way but directly deduced from the logs. In

this way, we can easily get the traits of new learners/items without

refitting on the incremental data. Then, to balance effectiveness

and efficiency, we put forward an Incremental Update Algorithm

(IUA). We analyze the Turning Point (TP) and derive the minimum

update condition based on the monotonicity theory of cognitive

diagnosis to reduce update frequency. Meanwhile, we use a momen-

tum update strategy on the incremental data to decrease update

time without sacrificing effectiveness. Moreover, to keep the trait

parameters as stable as possible, we refine the loss function in the

incremental update stage. To the best of our knowledge, this is

the first attempt to investigate the incremental cognitive diagnosis

problem with theoretical results about the update condition and

a tailored incremental learning strategy. Extensive experiments

demonstrate the effectiveness and robustness of ICD.

2 RELATEDWORK
Cognitive Diagnosis. Cognitive diagnosis is a fundamental but

important task in many real-world scenarios such as games[2], med-

ical diagnosis [37], and especially, education [15, 31]. The main goal

of cognitive diagnosis is to learn the latent trait features of learners

from their testing logs. These learned trait features could be applied

to many tasks, such as performance prediction [34] and resource

recommendation [3]. In early years, cognitive diagnosis was mostly

developed from psychometric [13]. IRT [16] and DINA [4] are the

two most fundamental but classic cognitive diagnosis models which

model the response result of a learner answering an item as the

interaction between the trait features of the learner and the item.

By extending the trait features into multidimensional, Reckase et

al. [22] proposed Multidimensional Item Response Theory (MIRT).

Recently, some researchers introduce the deep learning into cog-

nitive diagnosis [32, 34, 36]. Wang et al. [34] proposed NeuralCD

exploiting neural networks to automatically learn the interaction

function. Tsutsumi et al. [32] built a learner network and an item

network to implement better representation of trait features. Gen-

erally, these methods learn the trait parameters in a transductive

way, therefore are only suitable for the stationary data. Thus, how

to tailor CDMs into the online scenario of intelligent education,

where the log data is sequentially collected remains unsolved.

Incremental Learning. Incremental learning investigates how to

learn with streaming data in an interactive scenario where training

examples are provided over time [7]. It has been developed for

several machine learning tasks, such as image classification [20],
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Figure 1: The flowchart of incremental update and full update for CDMs. Branch I. "Incremental Update" means the CDM
adjust the trait parameters only using the incremental logs while Branch II. "Full Update" represents the CDM use all data to
update the trait parameters.
recommender system [26], and reinforcement learning [1]. For in-

cremental cognitive diagnosis, the problem is formalized similarly

to Incremental Matrix Factorization (IMF), as both of them aim at

processing a changing matrix and predicting its unknown elements.

Following Huang et al. [10], current IMF models can be divided

into three categories: SVD-based model, vector-retaining model

and space-retraining model. SVD-based models [25] are character-

ized by using singular value decomposition (SVD) and require the

matrix with no missing elements. Vector-retraining models focus

on updating [33] or retraining [5, 6, 18, 21, 23, 28] the latent fea-

ture vector when incremental data arrives by additional pass of

algorithm like stochastic gradient descent (SGD). Space-retraining

methods [10, 26, 35] propose to evolve the whole feature matrix in

order to reduce redundant calculation. Though these works have

achieved great success, there exist some limitations when applied

to incremental cognitive diagnosis. First, there is a psychometric

relationship (e.g., monotonicity) between matrix elements in incre-

mental cognitive diagnosis (i.e., the traits of learners/items). Second,

because cognitive diagnosis usually serves as the upstream task, the

trait parameters should be kept as stable as possible. To the best of

our knowledge, our paper is the first work towards the incremental

cognitive diagnosis problem, which gives theoretical results about

the update condition and a tailored incremental learning strategy.

3 PRELIMINARY
Cognitive Diagnosis Models. Before we step into our method,

we would like to first briefly introduce Cognitive Diagnosis Models

(CDMs). CDMs are developed to depict learner’s proficiency level

on specific knowledge concepts based on her responses to several

test items, i.e., 𝒖, 𝒗 ← 𝑅, where 𝒖, 𝒗 are the latent traits of learners

and items while 𝑅 is the responses data. Usually, the Learner Perfor-

mance Prediction task [30, 34] is used to learn the trait parameters

with the optimization target of minimizing the difference between

the predicted probability 𝑃 (𝑦𝑖 𝑗 ) and the true response 𝑟𝑖 𝑗 . Mostly,

the cross entropy is used as the loss function:

L = −
∑︁

𝑖,𝑗
(𝑟𝑖 𝑗 𝑙𝑜𝑔 𝑦𝑖 𝑗 + (1 − 𝑟𝑖 𝑗 𝑙𝑜𝑔 (1 − 𝑦𝑖 𝑗 ))) . (1)

(a) MIRT

User Traits Item Traits
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Figure 2: Comparison of MIRT and NeurlCD.

In the past decades, some CDMs have been proposed such as

DINA and IRT. Generally, CDMs contain two parts: (1) the repre-

sentations of trait features and (2) the interaction function (also

called Item Response Function, IRF). For example, IRT uses single-

dimension variables to represent the trait features and logistic func-

tion as the interaction function as follows:

𝑃 (𝑦𝑖 𝑗 |𝜃𝑖 , 𝑎 𝑗 , 𝑏 𝑗 ) =
1

1 + 𝑒−1.7𝑎 𝑗 (𝜃𝑖−𝑏 𝑗 )
, (2)

where 𝑎 𝑗 and 𝑏 𝑗 represent the discrimination and difficulty of item

𝑗 , and 𝜃𝑖 indicates the proficiency level of the learner 𝑖 . Using

multidimensional vectors to represent latent traits of both test

items and learners, IRT is extended to MIRT:

𝑃 (𝑦𝑖 𝑗 |𝜽 𝑖 , 𝒂 𝑗 , 𝑏 𝑗 ) =
1

1 + 𝑒−𝒂 𝑗𝜽𝑖+𝑏 𝑗
. (3)

Recently, some researchers introduce the deep learning into cogni-

tive diagnosis [32, 34, 36]. For example, Wang et al. [34] proposed

NeuralCD, which exploits neural networks to automatically learn

the interaction function and could be seen as the generalization

of many traditional psychometric CDMs. In these deep learning

models, extra model parameters are included. As shown in Figure 2,

we have the following general form of CDMs:

𝑦𝑖 𝑗 = M𝐶𝐷 (𝒖𝑖 , 𝒗 𝑗 ;𝚯𝐶𝐷 ), (4)

where 𝒖𝑖 and 𝒗 𝑗 respectively represents the trait parameters of

learners and items, and𝚯𝐶𝐷 is the model parameters. To be noticed

that, in these models, a psychometric relationship, called mono-

tonicity [24, 31], should be strictly maintained. The monotonicity

theory declares that learner’s proficiency is monotonic with the
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Figure 3: The illustration of ICD framework. The left-top part (a) shows how ICD incrementally learn from the streaming logs,
where details of CDM are presented in (b) compared with traditional methods and IUA is illustrated in (c).
probability of giving the right response to a test item, i.e.,

𝜕𝑓
𝜕𝑢 > 0.

In addition, some CDMs like DINA and NeuralCD can explicitly

use Q-matrix [29] labeled by experts to obtain knowledge-aware

latent features, i.e., a certain dimension of the trait can reflect the

proficiency on the corresponding concept (e.g., 𝑢𝑖𝑘 in NeuralCD is

the proficiency level of learner 𝑖 on concept 𝑘 .).

With Gradient Descent (GD) or Expectation Maximization (EM)

algorithm, we can learn the trait parameters and model parameters:

𝒖∗, 𝒗∗,𝚯∗𝐶𝐷 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝒖,𝒗,𝚯𝐶𝐷
L(𝑅,M𝐶𝐷 (𝒖, 𝒗;𝚯𝑪𝑫 )) . (5)

It is easy to know that contemporary CDMs learn the trait parame-

ters in a transductive way.

Problem Definition. In each time period 𝑡 + 1, denoting the accu-

mulated logs as 𝑅𝑡 = Δ𝑅1 + ...+Δ𝑅𝑡 , the learners in 𝑅𝑡 as𝑈𝑡 and the

items in 𝑅𝑡 as 𝑉𝑡 . The incremental logs are represented as Δ𝑅𝑡+1,
which might contain new learners and new items. We denote the set

of new learners as Δ𝑈𝑡 and new items as Δ𝑉𝑡 . Each record in logs

is a tuple (𝑢𝑖 , 𝑣 𝑗 , 𝑟𝑖 𝑗 ), where 𝑟𝑖 𝑗 is the score (transferred to binary,

i.e., 0 indicates wrong answer while 1, otherwise). Furthermore, we

have Q-matrix 𝑄 = {𝑄 𝑗𝑘 }𝑀×𝐿 , where 𝑄 𝑗𝑘 = 1 if the item 𝑣 𝑗 relates

to the knowledge concept 𝑐 𝑗 and 𝑄 𝑗𝑘 = 0 otherwise.𝑀 is the total

number of items and 𝐿 is the number of knowledge concepts. Here,

we assume the number of learners 𝑁 and the number of items𝑀

may increase with the incremental logs arriving, but the number

of knowledge concepts is set to be static. Our goal is to precisely

diagnose the trait parameters of all learners (i.e., 𝑈𝑡+1 = 𝑈𝑡 + Δ𝑈𝑡 )

and items (i.e., 𝑉𝑡+1 = 𝑉𝑡 + Δ𝑉𝑡 ):
Incremental Cognitive Diagnosis Problem. When the incre-

mental logs Δ𝑅𝑡+1 comes in the time period 𝑡 + 1, our goal is to
efficiently and effectively mine learners’ proficiency on concepts.

4 INCREMENTAL COGNITIVE DIAGNOSIS
To tailor cognitive diagnosis into the online scenario, we propose

an Incremental Cognitive Diagnosis (ICD) framework. In ICD, we

aim to solve two key issues: (1) how to accelerate the procedure ob-

taining the trait parameters of learners or items, especially for new

learners/items; (2) how to speed up the incremental update without

sacrificing effectiveness. As shown in Figure 3, our ICD includes

two main parts: CDM with Deep Trait Networks (DTNs) and Incre-

mental Update Algorithm (IUA). As illustrated in Figure 3(a), we

used the streaming logs to train the CDM with DTNs (i.e., the left

part of Figure 3(b)), where model parameters of DTNs are used to

deduce the trait parameters. Then, as illustrated in Figure 3(c), IUA

is used to update the model when incremental logs arrive, which

will have two branches based on the information consistency.

4.1 Deep Trait Network
As we discussed above, contemporary CDMs learn the trait param-

eters in a transductive way which are inefficient to process online

streaming data. Thus, we design Deep Trait Networks (DTNs) to

acquire the trait parameters in an inductive way. For better illustra-

tion, we highlight the difference between our proposed inductive

CDM with DTN and traditional transductive CDM in Figure 3(b).

Concretely, as shown in Figure 4, our DTNs consist of two indepen-

dent networks, one is DTN of Learner, i.e., L-DTN, and the other

one is DTN of Item, i.e., I-DTN. These two networks share the ex-

actly same architecture, but have different model parameters. Each

DTN is composed by three parts: (1) a deep trait embedding layer,

(2) a deep trait feature layer and (3) a non-sequential pooling layer.

As the two independent networks use the same architecture, we

use L-DTN as the example to explain how DTN works in detail.

We assume the input to L-DTN is the intact logs of a learner

𝑢 ∈ 𝑈 , which is a disordered interaction tuple sequence 𝑋 =

{𝑥0, 𝑥1, ..., 𝑥𝑛}. 𝑛 is the total number of logs and the interaction

tuple 𝑥𝑘 = {𝑣𝑘 , 𝑟𝑘 }. In Deep Trait Embedding Layer, we first use a

one-hot vector 𝒙𝑘 ∈ {0, 1}2𝑁 to represent the interaction tuple:

𝒙 𝑗

𝑘
=

{
1 if 𝑗 = 2 · 𝑣𝑘 + 𝑟𝑘 ,
0 otherwise.

(6)

After that, an embeddding layer is used to map the sparse one-hot

𝒙𝑘 into a low-dimension dense space, which can save the complexity

of model parameters:

X𝑘 = 𝒙𝑘E𝑑 . (7)

𝑬𝑑 ∈ R2𝑀×𝑑𝑒 is a weight matrix and𝑑𝑒 is the embedding dimension.
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Figure 4: Overview of DTNs.

Then, we use a feature module and a pooling layer to aggregate

the whole information of the logs to get the trait parameters. The

feature module consists of several 1d convolutional kernels. Each

kernel contains a filter 𝒘 ∈ R𝑑𝑒 , which is applied to produce a

higher-level trait features:

F𝑗 = 𝜎 (𝒘 · X𝑗 + 𝑏) . (8)

Here 𝑏 ∈ 𝑅 is a bias term and 𝜎 is a non-linear activation function

such as the relu.

As the numbers of logs differ in different learners, we hope to

find a length-free aggregate function to summarize the informa-

tion contained in the interaction sequence. Note that, the order of

different interaction tuples should have no effect on deducing the

trait parameters. To this end, we use average pooling, an order-free

operation, to implement the information aggregation:

T
𝑗 =

∑𝑛
𝑘=0
F 𝑗

𝑘

𝑛
. (9)

Obviously, average operation can receive interaction sequence with

a arbitrary length as the input. In practice, to reduce the space

complexity, we could incrementally calculate T 𝑗

𝑡+1 =
𝑛𝑡 T 𝑗

𝑡 +
∑𝑛𝑡+1

𝑘=0
F 𝑗

𝑘

𝑛𝑡+𝑛𝑡+1
by caching T 𝑗

𝑡 and 𝑛𝑡 . As for I-DTN used to acquire the trait pa-

rameters of the item, the first element 𝑣𝑘 in the interaction tuple 𝑥𝑘
should be replaced as the 𝑢𝑘 and the other parts are exactly same

as L-DTN. With the two DTNs, we can get the trait parameters of

the learner 𝑢 and item 𝑣 :

𝒖 = 𝐿 −𝐷𝑇𝑁 (𝑋𝑢 ),
𝒗 = 𝐼 −𝐷𝑇𝑁 (𝑋𝑣) .

(10)

Then we substitute 𝒖 and 𝒗 into Eq.(4) and train DTNs with Eq.(1).

Oncewe getwell trainedDTNs, we can use them for new learner/item

trait deducing. For example, for a new learner with logs 𝑋𝑢′ , we

can easily apply L-DTN to get her trait parameters in an inductive

way, i.e., 𝒖 ′ = 𝐿 − 𝐷𝑇𝑁 (𝑋𝑢′), which is time-efficient.

4.2 Incremental Update Algorithm
In this part, we want to solve the second issue, i.e., how to speed

up the incremental updating without sacrificing effectiveness. We

put forward an Incremental Update Algorithm (IUA) to address the

issue from two aspects: (1) reduce the update frequency and (2)

decrease update time.

4.2.1 Turning Point Analysis. Some incremental data has no extra

information that can help model to promote the effectiveness. The

information brought by these data is well contained in the accumu-

lated data. Therefore, as shown in the middle part of Figure 3(c),

in order to reduce the update frequency, we propose to find the

Turning Point (TP), which indicates the condition that we should

update the model parameters according to the incremental data.

To find TP is to figure out when it’s necessary to update an item’s

trait 𝑣 and a learner’s trait 𝑢 according to the incremental data Δ𝑅.
Notice that, when it’s necessary to update either an item’s or a

learner’s trait vector, the TP of L-DTN or I-DTN is reached and we

need to incrementally learn model parameters.

As the DTNs share the same architecture, here we use I-DTN

as the example to carry out the mathematical analysis. Note by

symmetry, the analysis can also be applied to find the TP of L-DTN.

Before detailed derivation, we first give the former definitions of

"Consistent learner" and "Consistent item’s record".

Definition 1. Consistent learner 𝑖 ∈ Δ𝑅: ∀ function 𝑔, item
𝑗 ∈ 𝑅, 𝐸 [𝑔(𝑢𝑖 , 𝑣 𝑗 )] = 1

𝑚 𝑗

∑
𝑖′∈𝑅 𝑔(𝑢𝑖′, 𝑣 𝑗 ) .

Definition 2. Consistent item’s record 𝑟𝑖 𝑗 ∈ Δ𝑅: learner 𝑖 is
consistent, ∀ function 𝑔, 𝐸 [𝑔(𝑢𝑖 , 𝑣 𝑗 , 𝑟𝑖 𝑗 )] = 1

𝑚 𝑗

∑
𝑖′∈𝑅 𝑔(𝑢𝑖′, 𝑣 𝑗 , 𝑟𝑖′ 𝑗 ).

𝑚 𝑗 is the number of learners that have answered 𝑗 in 𝑅. Here,

"consistency" means that the information in incremental data Δ𝑅
has been contained in accumulated data 𝑅, and that’s why we

can imply new learners’ features from accumulated records. In

DEFINITION 1, a consistent learner 𝑖’s interaction with each item 𝑗

is the average of learners who have answered 𝑗 in 𝑅, thus her profile

can be seen as sampled from the distribution of existing learners’

traits. DEFINITION 2 further considers whether her performance

on item 𝑗 is consistent with existing records. For example, if all the

learners in 𝑅 have answered 𝑗 correctly, but the consistent learner

𝑖 answered wrong, then we may say 𝑟𝑖 𝑗 is not consistent with item

𝑗 ’s history. We emphasize that analysis should be based on the

assumption of "Consistent learner". On the contrary, it’s unsuitable

to assume "Consistent item’s record", because under such condition,

current model has performed well on incremental data, and there

is no need to update items’ profiles any more.

To evaluate the degree of inconsistency of new records, we focus

on the losses before and after incremental data coming. Specifically,

the training losses related to item 𝑗 on 𝑅 and 𝑅
⋃

Δ𝑅 are:

Loss𝑅 = − 1

𝑚 𝑗

∑︁
𝑖∈𝑅 𝑟𝑖 𝑗 · log 𝑓

(
𝑢𝑖 , 𝑣𝑗

)
+
(
1 − 𝑟𝑖 𝑗

)
· log

(
1 − 𝑓

(
𝑢𝑖 , 𝑣𝑗

) )
,

Loss𝑅∪Δ𝑅 = − 1

𝑚 𝑗 + 𝑛 𝑗

∑︁
𝑖∈𝑅∪Δ𝑅

𝑟𝑖 𝑗 · log 𝑓
(
𝑢𝑖 , 𝑣𝑗

)
+
(
1 − 𝑟𝑖 𝑗

)
· log

(
1 − 𝑓

(
𝑢𝑖 , 𝑣𝑗

) )
,

(11)

where 𝑛 𝑗 is the number of learners that answered 𝑗 in Δ𝑅. On
one hand, when the assumption of "Consistent item’s record" is

true, 𝐸 [Loss𝑅∪Δ𝑅] = Loss𝑅 , where the randomness comes from

the uncertainty of learners’ traits 𝑢𝑖 , 𝑖 ∈ Δ𝑅. On the other hand, if

𝐸 [Loss𝑅∪Δ𝑅] < Loss𝑅 , current model has generated well on incre-

mental data, and we no longer need to modify model parameters.

Therefore, it’s reasonable to estimate how much 𝐸 [Loss𝑅∪Δ𝑅] is
larger than Loss𝑅 , and the problem is summarized as below:

Given item 𝑗 ’s trait 𝑣 𝑗 trained well on 𝑅, and new responses Δ𝑅,
in which the learners are consistent. Ask in what range the updated
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value Δ𝑣 of 𝑣 𝑗 belongs to can we ensure that 𝐸 [Loss𝑅∪Δ𝑅 (Δ𝑣)] −
Loss𝑅 < 𝜖 . In particular, we have the following theorem.

Theorem 1. A necessary condition of 𝑣 𝑗 for the above problem is

∥Δ𝑣 ∥ >
KL

(
𝑝Δ𝑅 ∥𝑝Avg (𝑓 )

)
+ H (𝑝Δ𝑅 ) − Loss𝑅 −

𝑚 𝑗 +𝑛 𝑗

𝑛 𝑗
𝜖

[𝑝 ( |Δ𝑅+ |) · 𝑝 ( |𝑅− |) + 𝑝 ( |Δ𝑅− |) · 𝑝 ( |𝑅+ |) ] · 𝛽 𝑗

𝛿 𝑗

. (12)

We refer the reader to APPENDIX 7.1.1 for the detailed proof,

and we present the sketch here. Loss𝑅∪Δ𝑅 (Δ𝑣) is defined as:

Loss𝑅∪Δ𝑅 (Δ𝑣) = −
1

𝑚 𝑗 + 𝑛 𝑗

∑︁
𝑖∈𝑅∪Δ𝑅

𝑟𝑖 𝑗 · log 𝑓
(
𝑢𝑖 , 𝑣𝑗 + Δ𝑣

)
+
(
1 − 𝑟𝑖 𝑗

)
· log

(
1 − 𝑓

(
𝑢𝑖 , 𝑣𝑗 + Δ𝑣

) )
.

(13)

By the first-order Taylor expansion, it’s approximately equal to

Loss𝑅∪Δ𝑅 (Δ𝑣) ≈ −
1

𝑚 𝑗 + 𝑛 𝑗
{−𝑚 𝑗 · Loss𝑅 −𝑛 𝑗 · LossΔ𝑅

+
∑︁
𝑖∈Δ𝑅
[

𝑟𝑖 𝑗

𝑓
(
𝑢𝑖 , 𝑣𝑗

) − (1 − 𝑟𝑖 𝑗 )
1 − 𝑓

(
𝑢𝑖 , 𝑣𝑗

) ] ( 𝜕𝑓
𝜕𝑣
)𝑇 Δ𝑣 }.

(14)

According to the assumption of "Consistent learner", we can

derive a lower bound of 𝐸 [LossΔ𝑅] as
𝐸 [Loss(Δ𝑅) ] ≥ KL

(
𝑝Δ𝑅 ∥𝑝Avg (𝑓 )

)
+ H (𝑝Δ𝑅 ) , (15)

where KL

(
𝑝Δ𝑅 ∥𝑝Avg (𝑓 )

)
is the KL divergence between distribu-

tion of responses on Δ𝑅 and predicted results on 𝑅, H (𝑝Δ𝑅) is
the entropy of 𝑝Δ𝑅 . Besides, denote the lower bound of 𝑓

(
𝑢𝑖′, 𝑣 𝑗

)
·(

1 − 𝑓
(
𝑢𝑖′, 𝑣 𝑗

) )
as 𝛿 𝑗 , the upper bound of

 𝜕𝑓𝜕𝑣  as 𝛽 𝑗 , we also have:

𝐸 [
∑︁
𝑖∈Δ𝑅

𝑟𝑖 𝑗 − 𝑓
(
𝑢𝑖 , 𝑣𝑗

)
𝑓
(
𝑢𝑖 , 𝑣𝑗

)
·
(
1 − 𝑓

(
𝑢𝑖 , 𝑣𝑗

) ) ( 𝜕𝑓
𝜕𝑣
)𝑇 Δ𝑣 ]

≤
𝑛 𝑗𝛽 𝑗

𝛿 𝑗
·
[
𝑝
(��Δ𝑅+��) · 𝑝 ( |𝑅− |) + 𝑝 ( |Δ𝑅− |) · 𝑝 (��𝑅+��) ] · ∥Δ𝑣 ∥ . (16)

In order to ensure 𝐸 [Loss𝑅∪Δ𝑅 (Δ𝑣)] − Loss𝑅 < 𝜖 , combining

Eqs. (14),(15) and (16), we finally get

∥Δ𝑣 ∥ >
KL

(
𝑝Δ𝑅 ∥𝑝Avg (𝑓 )

)
+ H (𝑝Δ𝑅 ) − Loss𝑅 −

𝑚 𝑗 +𝑛 𝑗

𝑛 𝑗
𝜖

[𝑝 ( |Δ𝑅+ |) · 𝑝 ( |𝑅− |) + 𝑝 ( |Δ𝑅− |) · 𝑝 ( |𝑅+ |) ] · 𝛽 𝑗

𝛿 𝑗

. (17)

Several conclusions can be found from the theorem. First, when

the true response distribution on Δ𝑅 is similar to the predicted

distribution on 𝑅, (i.e., KL

(
𝑝Δ𝑅 ∥𝑝Avg (𝑓 )

)
is small), current 𝑣 𝑗 well

fits Δ𝑅, and the demand to update Δ𝑣 weakens. Meanwhile, there

exists a trade-off between it and H (𝑝Δ𝑅). For example, when the

records in Δ𝑅 are homogeneous (e.g., all responses are "correct"),

H (𝑝Δ𝑅) is small but KL

(
𝑝Δ𝑅 ∥𝑝Avg (𝑓 )

)
can be high. Second, when

increase 𝑛 𝑗 , the right part of Eq. (17) becomes higher, indicating

that it will be more convincing to update the item’s trait with more

incremental data. Last but not least, we reiterate that the above

derivation can be symmetrically applied to Δ𝑢 of learner 𝑖’s profile,

which should be based on the assumption of "Consistent item" and

"Consistent learner’s record".

Definition 3. Consistent item 𝑗 ∈ Δ𝑅: ∀ function 𝑔, learner
𝑖 ∈ 𝑅, 𝐸 [𝑔(𝑢𝑖 , 𝑣 𝑗 )] = 1

𝑚𝑖

∑
𝑗 ′∈𝑅 𝑔(𝑢𝑖 , 𝑣 𝑗 ′).

Definition 4. Consistent learner’s record 𝑟𝑖 𝑗 ∈ Δ𝑅: item 𝑗 is
consistent, ∀ function 𝑔, 𝐸 [𝑔(𝑢𝑖 , 𝑣 𝑗 , 𝑟𝑖 𝑗 )] = 1

𝑚𝑖

∑
𝑗 ′∈𝑅 𝑔(𝑢𝑖 , 𝑣 𝑗 ′, 𝑟𝑖 𝑗 ′).

Here,𝑚𝑖 represents the number of items that 𝑖 has answered in 𝑅.

Different from THEOREM 1, we can derive a tighter bound of ∥Δ𝑢∥
based on the monotonicity assumption of learners’ proficiency:

Theorem 2. A necessary condition of 𝑢𝑖 for the problem is

∥Δ𝑢 ∥ >
KL

(
𝑝Δ𝑅 ∥𝑝Avg (𝑓 )

)
+ H (𝑝Δ𝑅 ) − Loss𝑅 − 𝑚𝑖+𝑛𝑖

𝑛𝑖
𝜖√︃

[𝑝 ( |Δ𝑅+ |) · 𝑝 ( |𝑅− |) ]2 + [𝑝 ( |Δ𝑅− |) · 𝑝 ( |𝑅+ |) ]2 · 𝛽𝑖
𝛿𝑖

. (18)

The proof is presented in APPENDIX 7.1.2. It should be noticed

that monotonicity assumption applies only to learners’ profiles, so

Eq. (18) is invalid for items. In summary, by setting a threshold 𝜌

for updated value, the update condition of DTN is

Turning Point: There exists a learner 𝑖 satisfying Eq. (19) or an
item 𝑗 satisfying Eq. (20):

KL

(
𝑝Δ𝑅 ∥𝑝Avg (𝑓 )

)
+ H (𝑝Δ𝑅 ) − Loss𝑅 − 𝑚𝑖+𝑛𝑖

𝑛𝑖
𝜖√︃

[𝑝 ( |Δ𝑅+ |) · 𝑝 ( |𝑅− |) ]2 + [𝑝 ( |Δ𝑅− |) · 𝑝 ( |𝑅+ |) ]2 · 𝛽𝑖
𝛿𝑖

≥ 𝜌, (19)

KL

(
𝑝Δ𝑅 ∥𝑝Avg (𝑓 )

)
+ H (𝑝Δ𝑅 ) − Loss𝑅 −

𝑚 𝑗 +𝑛 𝑗

𝑛 𝑗
𝜖

[𝑝 ( |Δ𝑅+ |) · 𝑝 ( |𝑅− |) + 𝑝 ( |Δ𝑅− |) · 𝑝 ( |𝑅+ |) ] · 𝛽 𝑗

𝛿 𝑗

≥ 𝜌. (20)

4.2.2 Momentum Update. After we find the turning point, another
question remains to be answered: how can we reduce the training

time? An intuitive way is to only perform updating based on the

incremental data, i.e.,

𝚯

′ ← Δ𝑅 (M(𝚯)) . (21)

However, as we discussed before, such an approach might lower

the effectiveness due to the rapidly changing encoder that reduces

the key representations’ consistency. Thus, inspired by MoCo [9],

we use a momentum update strategy to update the model param-

eters, which is illustrated in the right-bottom part of Figure 3(c).

Specifically, the model parameters of DTN before updating are de-

noted as 𝚯 and the model parameters after incrementally updated

on the incremental data are denoted as 𝚯

′
. We update 𝚯 by:

𝚯← 𝛼𝚯 + (1 − 𝛼)𝚯′ . (22)

Here 𝛼 ∈ [0, 1) is a momentum coefficient. By the momentum up-

date, we can balance the incremental and accumulated information,

therefore avoid the overfitting on the incremental data.

4.2.3 Stableness Penalty. By previous steps, we have already im-

plemented an efficient and effective update method from the per-

spective of accurate prediction. However, we should emphasize that

our final target is not only make CDMs well perform on Learner

Performance Prediction task [31, 34], but to acquire a robust rep-

resentations of traits. As we mentioned before, because cognitive

diagnosis usually serves as the upstream task, therefore, the trait

representations should be kept as stable as possible. Thus, in ad-

dition to keep model parameters evolve smoothly, we also need

to keep our predicted trait parameters as stable as possible. To

achieve this, we add a stableness penalty into Eq.(1) and get the

loss function of ICD:

L𝐼𝐶𝐷 = 𝛽L + (1 − 𝛽)
∑︁

𝑏
(𝒖′

𝑏
− 𝒖𝑏 )2 + (𝒗′𝑏 − 𝒗𝑏 )

2, (23)

where 𝛽 ∈ (0, 1] is a hyper-parameter. 𝒖 ′
𝑏
and 𝒗 ′ are the trait

parameters of the learner and item after incremental updating

while 𝒖𝑏 and 𝒗𝑏 are the original ones.
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Statistics ASSISTments MATH

# users 4,163 10,268

# items 17,746 917,495

# knowledge concepts 123 1,488

# response logs 324,572 864,722

Table 1: The statistics of two datasets.

1-ID

2-ID1-ID

(T-2)-ID (T-1)-ID

2-ID

3-ID

T-ID

5-ID4-ID T-ID

4-ID3-ID T-ID

Training Testing Unobservable

… … …

…

…

…

Inc.

…1-ID

Accum.

Figure 5: Illustration of experimental process. The incremen-
tal training process is shown as the arrow from testing 2-ID
to training 2-ID.

5 EXPERIMENTS
5.1 Experimental Setup
We use two real-world datasets in the experiments, i.e., ASSIST-

ments
1
and MATH. ASSISTments (ASSISTments 2009- 2010 "skill

builder") is an open dataset collected by the ASSISTments online

tutoring systems. The MATH dataset supplied by iFLYTEK Co.,

Ltd. was collected from Zhixue.com
2
a widely-used online learning

system, which contains mathematical test items and logs of high

school examinations. Table 1 shows basic statistics of the datasets.

We filter out learners with less than 15 and 30 response logs for AS-

SISTments and MATH respectively to guarantee that each learner

has enough data for diagnosis.

Experimental Process. Inspired by Huang et al. [10], as il-

lustrated in Figure 5, the experimental process includes: 1. the

experimental data sorted by timestamp is divided into 𝑇 disjoint

continuous parts with a similar scale. We call the 𝑖-th incremental

data part 𝑖-ID; 2. 𝑖-ID is used as the incremental training set of

CDMs; 3. (𝑖 + 1)-ID is used to simulate the online incremental logs.

In addition, (𝑖 + 1)-ID is also used as the testing set to evaluate

CDMs; 4. We repeat steps 2 and 3 from 𝑖 = 1 until 𝑖 = 𝑇 − 1.
Baselines. To evaluate the performance of our ICD, four well-

knownCDMs, i.e., IRT [17], DINA [4],MIRT [22] andNeuralCD [34],

are used as backbone methods. In MIRT, the dimension of latent

trait features of both learner and item unitedly is set as 3, while

in DINA and NeuralCD, we set the dimension as the number of

knowledge concepts, i.e., 123 in ASSISTments and 1488 in MATH.

As we discussed in Sec. 2, because advanced incremental learning

methods could not directly used for CDMs, therefore, we use two

vanilla training strategies. One is "Full Training" (Full) and the other

one is "Incremental Training" (Inc.). When incremental data comes,

"Full" takes all training sets (i.e., "Accumulated." (Accum.) and "In-

cremental" (Inc.) in Figure 5) to retrain the model, while "Inc" only

takes the incremental data (i.e., "Inc.").

Implementation Details.We initialize parameters in all net-

works with Xavier initialization [8] and we use the Adam algo-

rithm [11] for optimization. In ICD, 𝜖 is set as 0.01 and 𝜙 is set as

1
https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data

2
https://www.zhixue.com/

Metrics

ASSISTments MATH

Acc AUC DOA Acc AUC DOA

IRT

Inc. 0.652 0.588 - 0.706 0.566 -

Full 0.713 0.729 - 0.744 0.659 -

ICD 0.656 0.755 - 0.732 0.727 -

DINA

Inc. 0.517 0.541 0.518 0.454 0.653 0.492

Full 0.675 0.718 0.676 0.563 0.707 0.522

ICD 0.680 0.676 0.665 0.781 0.759 0.554

MIRT

Inc. 0.645 0.625 - 0.697 0.588 -

Full 0.714 0.724 - 0.646 0.641 -

ICD 0.673 0.670 - 0.777 0.774 -

NeuralCD

Inc. 0.657 0.558 0.475 0.770 0.766 0.491

Full 0.720 0.750 0.643 0.774 0.757 0.516

ICD 0.724 0.758 0.664 0.797 0.792 0.617

Table 2: Learner performance prediction results of 𝑇 -ID.

0.3. In addition,the first 10% ·𝑇 training sets are used as warmup

training set where "Inc" transductive CDMs and ICD-CDMs will

be trained in the full training way to implement initialization. All

models are implemented by Pytorch using Python and all experi-

ments are run on a Linux server with two Intel(R) Xeon(R) E5-2650

v4 CPUs and a NVIDIA Tesla K80 GPU. Our code is available at

https://github.com/bigdata-ustc/EduCDM.

5.2 Evaluation Metrics
Classification Metrics. Because we cannot obtain the true knowl-

edge proficiency of learners, it is hard to directly evaluate the

performance of a cognitive diagnosis model. Following previous

works [31, 34], as the diagnostic result is usually acquired through

learners performance prediction task, performance on the predic-

tion task can indirectly evaluate the model based on some classifi-

cation metrics such as Accuracy, AUC.
Degree of Agreement. Following previous works [31, 34], we

adopt Degree of Agreement (DOA) to further investigate the mono-

tonicity based on concepts. Specifically, if learner 𝑖 has a better

mastery on knowledge concept 𝑘 than learner 𝑗 , then 𝑖 is more

likely to answer item 𝑙 related to 𝑘 correctly than 𝑗 . For concept 𝑘 ,

𝐷𝑂𝐴(𝑘) is formulated as:

𝐷𝑂𝐴(𝑘) =
∑𝑁

𝑖=1

∑𝑁
𝑗=1 𝛿 (𝜃𝑖𝑘 , 𝜃 𝑗𝑘 )

∑𝑀
𝑙=1 𝐼𝑙𝑘 ∧𝐽 (𝑙, 𝑖, 𝑗) ∧ 𝛿 (𝑟𝑖𝑙 , 𝑟 𝑗𝑙 )∑𝑁

𝑖=1

∑𝑁
𝑗=1 𝛿 (𝜃𝑖𝑘 , 𝜃 𝑗𝑘 )

∑𝑀
𝑙=1 𝐼𝑙𝑘 ∧𝐽 (𝑙, 𝑖, 𝑗) ∧ [𝑟𝑖𝑙 ≠ 𝑟 𝑗𝑙 ]

. (24)

𝜃𝑖𝑘 is the proficiency of learner 𝑖 on concept 𝑘 . 𝛿 (𝑥,𝑦) = 1 if 𝑥 > 𝑦

and 𝛿 (𝑥,𝑦) = 0 otherwise. 𝐼𝑙𝑘 = 1 if item 𝑙 contains concept 𝑘 and

𝐼𝑙𝑘 = 0 otherwise. 𝐽 (𝑙, 𝑖, 𝑗) = 1 if both learner 𝑖 and 𝑗 did item 𝑙 and

𝐽 (𝑙, 𝑖, 𝑗) = 0 otherwise. We average 𝐷𝑂𝐴(𝑘) on all concepts (i.e.,

𝐷𝑂𝐴) to evaluate the quality of diagnostic result.

StablenessAn important issue of cognitive diagnosis for the online

scenario is to keep the traits as stable as possible after incremental

updating. Therefore, we useManhattan Distance to evaluate models

from the perspective of keeping the traits stableness:

𝑆 =
∑︁𝑁

𝑖=1

∑︁𝑀

𝑗=1
|T′𝑗 − T𝑗 |/𝑀𝑁, (25)

where𝑀 is the dimension of traits and 𝑁 is the instance number

of traits, the overall stableness metric is the micro average value of

learner traits stableness and item traits stableness, i.e.,

𝑆 = (𝑁𝑢𝑆𝑢 + 𝑁𝑣𝑆𝑣)/(𝑁𝑢 + 𝑁𝑣), (26)

where 𝑁𝑢 and 𝑛𝑣 are the instance number of learners and items.
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Figure 6: The experimental results of 1-ID to 𝑇 − 1-ID on ASSISTments.
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Figure 7: Influence of 𝛼 and 𝛽. 𝛼 balances the information
for accumulated data and incremental data while 𝛽 balances
the prediction accuracy and traits stableness.

5.3 Experimental Results
5.3.1 Learner Performance Prediction. The experimental results of

𝑇 -id are shown in Table 2. The result of each CDM is recorded in

three sub-rows: "Inc.", "Full" and "ICD". For better illustration, we

underline the best results for each CDM and bold the best results of

all models. From the table, we can find "Full" significantly outper-

forms "Inc." on all three metrics. This indicates that including more

data to retrain the CDM can promote the prediction effectiveness.

Meanwhile, we notice that our "ICD" consistently outperforms "Inc."

and achieves the best results on almost all metrics, even compared

with "Full". These observations indicate that our method can help

CDM promote the diagnosis precision (i.e., Acc and AUC) and well

maintain the monotonicity (i.e., DOA
3
). Summarily, we have the

conclusion that our ICD can help CDMs promote the diagnosis

precision with fewer data.

5.3.2 Training Effectiveness and Efficiency. As shown in Figure 6,

we can see that CDMs with full training strategy are usually more

effective, while the efficiency of them is much lower than the in-

cremental baselines. As for our method, although ICD needs more

training time than "Inc." because DTNs contain more model param-

eters, its performance in terms of effectiveness is quite satisfactory,

even though compared with "Full" baselines. Therefore, we could

say our ICD realize a good balance between effectiveness and effi-

ciency. Meanwhile, as illustrated in Figure 6(5), we find ICD-CDMs

sometimes do not update the model parameters even there is in-

cremental data. The reason why our ICD "skip" some training sets

(i.e., fewer update numbers than "Full" and "Inc" CDMs) is that our

method has the capacity of detecting whether the information in

the incremental data contains in accumulated data by TP analy-

sis. Specially, we find ICD-NeuralCD seems automatically reach

an "early stop", which we guess is an another important factor to

explain why ICD-CDMs could outperform other baselines. Conse-

quently, we might say the ability of analyzing the turning point can

not only reduce update frequency to promote the time efficiency of

ICD but also help the model to refine the information contained in

3
The reason why IRT and MIRT do not have the results on DOA is that there are no

clear correspondence between their latent features and knowledge concepts.

the data. In short, ICD can help CDMs achieve the better prediction

effectiveness without sacrificing too much training efficiency.

5.3.3 Parameter Sensitive. In ICD, the trade-off parameter 𝛼 and 𝛽

play crucial roles in balancing accumulated and incremental infor-

mation, which greatly influence the model effectiveness and trait

stableness. We carry out the parameter sensitive experiments on

ASSISTments to see the influence of 𝛼 and 𝛽 .

Momentum 𝛼 .When 𝛼 is smaller, the model pays more atten-

tion the information from the incremental data. Conversely, as 𝛼 is

larger, the model is allowed to focus more on the influence from

original data. We perform an experiment on different 𝛼 , where we

set 𝛽 = 1 to avoid the influence from 𝛽 . As shown in the left part of

Figure 7, when 𝛼 increases, the accuracy first increases, but then

decreases. This indicates that properly including the information

from accumulated data and incremental data is beneficial. When 𝛼

is too small or too large, the accuracy drops considerably. Mean-

while, we also notice that when 𝛼 increases, stableness gradually

decays, This suggests concentrating more on incremental data will

bring in more unstableness. These results prove it is vital to balance

the information from accumulated data and incremental data, and

support our motivation of using a momentum update strategy.

PenaltyWeight 𝛽 .When 𝛽 is smaller, the model put more stress

on maintaining the trait stableness, otherwise, the promoting of

prediction accuracy. An experiment on different 𝛽 is conducted

in the condition where 𝛼 = 0 to avoid the influence from 𝛼 . As

shown in right part of Figure 7, when 𝛽 increases, the accuracy will

decrease, while the trait stableness is promoted. Thus, 𝛽 is a factor

balancing the model effectiveness and trait stableness, which can

be adjusted based on different needs.

5.3.4 Learner Clustering. We select the learners appearing at the

most beginning and visualize the trait representation vectors in dif-

ferent time periods utilizing the T-SNE method [19] to see how the

trait representation evolves. We show the trait vectors diagnosed by

NeuralCD with two training strategies in Figure 8. From Figure 8(a),

we can see, those learners with higher proficiency (i.e. the green

ones) are grouped into the left part, while the learners with lower

proficiency are grouped to the right. This suggests that the trait

representation learned by our method could effectively reflect the

learner proficiency. Meanwhile, compared with NeuralCD trained

by "Inc" (i.e., Figure 8(b)), the trait vectors obtained by our method

evolves more smoothly, which proves that our method can well

maintain the stableness of traits.

6 CONCLUSION
In this paper, we proposed a novel Incremental Cognitive Diagnosis

(ICD) framework for intelligent education. Specifically, we designed
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Figure 8: Learner traits clustering in different time periods.
The deeper green color indicates the higher proficiency while
the deeper red color represents the lower proficiency.

the DTN to acquire the trait parameters of learners and items in

an inductive way, which can solve the new learner/item problem.

Meanwhile, to balance the predicting effectiveness and training

efficiency, we proposed an Incremental Update Algorithm (IUA),

where a turning point was mathematically given and a momentum

update strategy was introduced. Furthermore, we added the stable-

ness penalty to the loss function to keep the stableness of traits. As a

general framework, ICD can be applied to most of CDMs. Extensive

experiments demonstrate the effectiveness and robustness of ICD.

In the future, we will continue working on exploring how to further

reduce the time complexity and space complexity of our method.

Meanwhile, we are going to exploit the monotonicity to pretrain

DTNs. In addition, we would like to apply our ICD to some other

online diagnosis scenarios such as games and medical diagnosis.
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7 APPENDIX
7.1 Proof of Turning Point
7.1.1 Proof of THEOREM 1. For Loss𝑅∪Δ𝑅 (Δ𝑣), we do a first-order
Taylor expansion of log 𝑓

(
𝑢𝑖 , 𝑣 𝑗 + Δ𝑣

)
, log

(
1 − 𝑓

(
𝑢𝑖 , 𝑣 𝑗 + Δ𝑣

) )
:

log 𝑓
(
𝑢𝑖 , 𝑣 𝑗 + Δ𝑣

)
≈ log 𝑓

(
𝑢𝑖 , 𝑣 𝑗

)
+ 1

𝑓
(
𝑢𝑖 , 𝑣 𝑗

) ( 𝜕𝑓
𝜕𝑣
)𝑇Δ𝑣,

log

(
1 − 𝑓

(
𝑢𝑖 , 𝑣 𝑗 + Δ𝑣

) )
≈ log

(
1 − 𝑓

(
𝑢𝑖 , 𝑣 𝑗

) )
− 1

1 − 𝑓
(
𝑢𝑖 , 𝑣 𝑗

) ( 𝜕𝑓
𝜕𝑣
)𝑇Δ𝑣 .

(27)

As 𝑣 𝑗 is the locally optimal solution of Loss𝑅 , we also have:∑︁
𝑖∈𝑅
[𝑟𝑖 𝑗 ·

1

𝑓
(
𝑢𝑖 , 𝑣 𝑗

) − (
1 − 𝑟𝑖 𝑗

)
· 1

1 − 𝑓
(
𝑢𝑖 , 𝑣 𝑗

) ] ( 𝜕𝑓
𝜕𝑣
)𝑇 = 0. (28)

Combined with Eqs. (27),(28), Loss𝑅∪Δ𝑅 (Δ𝑣) is approximated by

Loss𝑅∪Δ𝑅 (Δ𝑣) ≈ −
1

𝑚 𝑗 + 𝑛 𝑗
{−𝑚 𝑗 · Loss𝑅 −𝑛 𝑗 · LossΔ𝑅

+
∑︁
𝑖∈Δ𝑅
[

𝑟𝑖 𝑗

𝑓
(
𝑢𝑖 , 𝑣 𝑗

) − (1 − 𝑟𝑖 𝑗 )
1 − 𝑓

(
𝑢𝑖 , 𝑣 𝑗

) ] ( 𝜕𝑓
𝜕𝑣
)𝑇Δ𝑣}.

(29)

To estimate 𝐸 [Loss𝑅∪Δ𝑅 (Δ𝑣)], we have to evaluate 𝐸 [LossΔ𝑅],
𝐸 [∑𝑖∈Δ𝑅

𝑟𝑖 𝑗−𝑓 (𝑢𝑖 ,𝑣𝑗 )
𝑓 (𝑢𝑖 ,𝑣𝑗 ) ·(1−𝑓 (𝑢𝑖 𝑣𝑗 )) (

𝜕𝑓
𝜕𝑣 )

𝑇Δ𝑣] respectively. On one hand,

due to the assumption of "Consistent learner", 𝐸 [LossΔ𝑅] equals to

𝐸 [−
∑

𝑖∈Δ𝑅 𝑟𝑖 𝑗 · log 𝑓
(
𝑢𝑖 , 𝑣𝑗

)
+
(
1 − 𝑟𝑖 𝑗

)
· log

(
1 − 𝑓

(
𝑢𝑖 , 𝑣𝑗

) )
𝑛 𝑗

]

= − 1

𝑛 𝑗

∑︁
𝑖∈Δ𝑅
[
𝑟𝑖 𝑗

𝑚 𝑗

∑︁
𝑖′∈𝑅

log 𝑓
(
𝑢𝑖′ , 𝑣𝑗

)
+
(1 − 𝑟𝑖 𝑗 )
𝑚 𝑗

∑︁
𝑖′∈𝑅

log

(
1 − 𝑓

(
𝑢𝑖′ , 𝑣𝑗

) )
] .

(30)

Define 𝑝
(��Δ𝑅+��) ≜ 1

𝑛 𝑗

∑
𝑖∈Δ𝑅 𝑟𝑖 𝑗 , 𝑝 ( |Δ𝑅− |) ≜ 1

𝑛 𝑗

∑
𝑖∈Δ𝑅 (1−𝑟𝑖 𝑗 )

are the proportions of correct/wrong answers in Δ𝑅; Avg(𝑓 +
𝑅
) ≜

1

𝑚 𝑗

∑
𝑖′∈𝑅 𝑓 (𝑢𝑖′, 𝑣 𝑗 ),Avg(𝑓 −𝑅 ) ≜

1

𝑚 𝑗

∑
𝑗 ′∈𝑅 (1 − 𝑓 (𝑢𝑖′, 𝑣 𝑗 )) are the

average predicted probabilities of learners in 𝑅 correctly/wrongly

responding 𝑗 . From the Geometric-Means Inequality,

𝐸 [Loss(Δ𝑅) ] ≥ −
[
𝑝
(��Δ𝑅+��) · log(Avg(𝑓 +𝑅 )) + 𝑝 ( |Δ𝑅− |) · log (Avg(𝑓 −𝑅 ) ) ]
= KL

(
𝑝Δ𝑅 ∥𝑝Avg (𝑓 )

)
+ H (𝑝Δ𝑅 ) .

(31)

On the other hand, 𝐸 [∑𝑖∈Δ𝑅
𝑟𝑖 𝑗−𝑓 (𝑢𝑖 ,𝑣𝑗 )

𝑓 (𝑢𝑖 ,𝑣𝑗 ) ·(1−𝑓 (𝑢𝑖 𝑣𝑗 )) (
𝜕𝑓
𝜕𝑣 )

𝑇Δ𝑣] can
be calculated similarly:

𝐸 [
∑︁
𝑖∈Δ𝑅

𝑟𝑖 𝑗 − 𝑓
(
𝑢𝑖 , 𝑣 𝑗

)
𝑓
(
𝑢𝑖 , 𝑣 𝑗

)
·
(
1 − 𝑓

(
𝑢𝑖 , 𝑣 𝑗

) ) ( 𝜕𝑓
𝜕𝑣
)𝑇Δ𝑣]

=

[ ∑︁
𝑖∈Δ𝑅

𝑟𝑖 𝑗

𝑚 𝑗

∑︁
𝑖′∈𝑅

1

𝑓
(
𝑢𝑖′, 𝑣 𝑗

)
·
(
1 − 𝑓

(
𝑢𝑖′, 𝑣 𝑗

) ) ( 𝜕𝑓
𝜕𝑣
)𝑇

−
𝑛 𝑗

𝑚 𝑗
·
∑︁
𝑖′∈𝑅

1(
1 − 𝑓

(
𝑢𝑖′, 𝑣 𝑗

) ) ( 𝜕𝑓
𝜕𝑣
)𝑇
]
· Δ𝑣

=

[
𝑛 𝑗

𝑚 𝑗
·
∑︁
𝑖′∈𝑅

𝑝
(��Δ𝑅+��) − 𝑓

(
𝑢𝑖′, 𝑣 𝑗

)
𝑓
(
𝑢𝑖′, 𝑣 𝑗

)
·
(
1 − 𝑓

(
𝑢𝑖′, 𝑣 𝑗

) ) ( 𝜕𝑓
𝜕𝑣
)𝑇
]
· Δ𝑣 .

(32)

Combined with Eq. (28), Eq. (32) further becomes

𝐸 [
∑︁
𝑖∈Δ𝑅

𝑟𝑖 𝑗 − 𝑓
(
𝑢𝑖 , 𝑣 𝑗

)
𝑓
(
𝑢𝑖 , 𝑣 𝑗

)
·
(
1 − 𝑓

(
𝑢𝑖 , 𝑣 𝑗

) ) ( 𝜕𝑓
𝜕𝑣
)𝑇Δ𝑣]

=

[
𝑛 𝑗

𝑚 𝑗
·
∑︁
𝑖′∈𝑅

𝑝
(��Δ𝑅+��) − 𝑟𝑖′ 𝑗

𝑓
(
𝑢𝑖′, 𝑣 𝑗

)
·
(
1 − 𝑓

(
𝑢𝑖′, 𝑣 𝑗

) ) ( 𝜕𝑓
𝜕𝑣
)𝑇
]
· Δ𝑣

=
𝑛 𝑗

𝑚 𝑗
·
[ ∑︁
𝑖′∈𝑅−

𝑝
(��Δ𝑅+��)

𝑓
(
𝑢𝑖′, 𝑣 𝑗

)
·
(
1 − 𝑓

(
𝑢𝑖′, 𝑣 𝑗

) ) ( 𝜕𝑓
𝜕𝑣
)𝑇

−
∑︁
𝑖′∈𝑅+

𝑝 ( |Δ𝑅− |)
𝑓
(
𝑢𝑖′, 𝑣 𝑗

)
·
(
1 − 𝑓

(
𝑢𝑖′, 𝑣 𝑗

) ) ( 𝜕𝑓
𝜕𝑣
)𝑇
]
· Δ𝑣 .

(33)

Denote the lower bound of 𝑓
(
𝑢𝑖′, 𝑣 𝑗

)
·
(
1 − 𝑓

(
𝑢𝑖′, 𝑣 𝑗

) )
as 𝛿 𝑗 , the

upper bound of

 𝜕𝑓𝜕𝑣  as 𝛽 𝑗 , then Eq. (33) is bounded by:

𝐸 [
∑︁
𝑖∈Δ𝑅

𝑟𝑖 𝑗 − 𝑓
(
𝑢𝑖 , 𝑣 𝑗

)
𝑓
(
𝑢𝑖 , 𝑣 𝑗

)
·
(
1 − 𝑓

(
𝑢𝑖 , 𝑣 𝑗

) ) ( 𝜕𝑓
𝜕𝑣
)𝑇Δ𝑣]

≤
𝑛 𝑗 𝛽 𝑗

𝛿 𝑗
·
[
𝑝
(��Δ𝑅+��) · 𝑝 ( |𝑅− |) + 𝑝 ( |Δ𝑅− |) · 𝑝 (��𝑅+��) ] · ∥Δ𝑣 ∥ .

(34)

In order to ensure 𝐸 [Loss𝑅∪Δ𝑅 (Δ𝑣)] − Loss𝑅 < 𝜖 , combine

Eqs. (29),(31) and (34), we finally get

∥Δ𝑣 ∥ >
KL

(
𝑝Δ𝑅 ∥𝑝Avg (𝑓 )

)
+ H (𝑝Δ𝑅) − Loss𝑅 −

𝑚 𝑗+𝑛 𝑗

𝑛 𝑗
𝜖

[𝑝 ( |Δ𝑅+ |) · 𝑝 ( |𝑅− |) + 𝑝 ( |Δ𝑅− |) · 𝑝 ( |𝑅+ |)] · 𝛽 𝑗

𝛿 𝑗

. (35)

Note that an example of the ideal situation is that all the re-

sponses in𝑅 andΔ𝑅 are "correct" ("wrong"), and the predicted proba-

bilities of themodel trained on𝑅 are 1 (0). Then,KL

(
𝑝Δ𝑅 ∥𝑝Avg (𝑓 )

)
+

H (𝑝Δ𝑅) equals 0, and Eq. (35) holds naturally. Under such situation,

we do not need to update the item’s trait 𝑣 𝑗 .

7.1.2 Proof of THEOREM 2. The above analysis can be similarly

applied to learner 𝑢. However, according to monotonicity assump-

tion, each element of
𝜕𝑓
𝜕𝑢 is positive. Thus by denoting Δ𝑢+ ≜

(𝑚𝑎𝑥{Δ𝑢𝑘 , 0}, 𝑘 = 1, 2, ..., |Δ𝑢 |),Δ𝑢− ≜ −(𝑚𝑖𝑛{Δ𝑢𝑘 , 0}, 𝑘 = 1, 2, ..., |Δ𝑢 |)
(Δ𝑢 = Δ𝑢+ − Δ𝑢−), we have −

 𝜕𝑓𝜕𝑢  · ∥Δ𝑢−∥ ≤ ( 𝜕𝑓𝜕𝑢 )𝑇 · Δ𝑢 =

( 𝜕𝑓𝜕𝑢 )
𝑇 · Δ𝑢+ − ( 𝜕𝑓𝜕𝑢 )

𝑇 · Δ𝑢− ≤
 𝜕𝑓𝜕𝑢  · Δ𝑢+. A tighter upper bound

of Eq. (34) is therefore derived as follows:

𝐸 [
∑︁
𝑗 ∈Δ𝑅

𝑟𝑖 𝑗 − 𝑓
(
𝑢𝑖 , 𝑣 𝑗

)
𝑓
(
𝑢𝑖 , 𝑣 𝑗

)
·
(
1 − 𝑓

(
𝑢𝑖 , 𝑣 𝑗

) ) ( 𝜕𝑓
𝜕𝑢
)𝑇Δ𝑢]

≤ 𝑛𝑖𝛽𝑖

𝛿𝑖
·
[
𝑝
(��Δ𝑅+��) · 𝑝 ( |𝑅− |) · Δ𝑢+ + 𝑝 ( |Δ𝑅− |) · 𝑝 (��𝑅+��) · ∥Δ𝑢−∥]

≤ 𝑛𝑖𝛽𝑖

𝛿𝑖
·
√︃
[𝑝 ( |Δ𝑅+ |) · 𝑝 ( |𝑅− |)]2 + [𝑝 ( |Δ𝑅− |) · 𝑝 ( |𝑅+ |)]2 · ∥Δ𝑢∥ .

(36)

The last inequality in Eq. (36) comes from Cauthy-Schwarz Inequal-

ity and the fact that ∥Δ𝑢∥2 = ∥Δ𝑢+∥2 + ∥Δ𝑢−∥2.

7.2 Detailed Result of Learner Clustering.
We show the detailed evolution of Sec. 5.3.4 in Figure 9. It is easy

to see that, the trait vectors got by our method get grouped at

10-ID while the vectors got by INC-NeuralCD get grouped until
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Figure 9: Learner traits clustering in different time periods. The deeper green color indicates the higher proficiency while the
deeper red color represents the lower proficiency.

30-ID. Meanwhile, we could find that the trait vectors got by our

method keep the same relevant location along with the incremental

training, while the vectors acquired by the baseline changes a lot.

Thus, we could say that our method can get the accurate trait

vectors more efficiently and make the trait vectors stable along

with the incremental training.
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