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ABSTRACT

With the development of deep learning techniques, deep recom-
mendation models also achieve remarkable improvements in terms
of recommendation accuracy. However, due to the large number of
candidate items in practice and the high cost of preference compu-
tation, these methods also suffer from low efficiency of recommen-
dation. The recently proposed tree-based deep recommendation
models alleviate the problem by directly learning tree structure and
representations under the guidance of recommendation objectives.
However, such models have two shortcomings. First, the max-heap
assumption in the hierarchical tree, in which the preference for a
parent node should be the maximum between the preferences for
its children, is difficult to satisfy in their binary classification objec-
tives. Second, the learned index only includes a single tree, which
is different from the widely-used multiple trees index, providing
an opportunity to improve the accuracy of recommendation.

To this end, we propose a Deep Forest-based Recommender (De-
FoRec for short) for an efficient recommendation. In DeFoRec, all
the trees generated during training process are retained to form
the forest. When learning node representation of each tree, we
have to satisfy the max-heap assumption as much as possible and
mimic beam search behavior over the tree in the training stage.
This is achieved by DeFoRec to regard the training task as multi-
classification over tree nodes at the same level. However, the num-
ber of tree nodes grows exponentially with levels, making us to
train the preference model by the guidance of sampled-softmax
technique. The experiments are conducted on real-world datasets,
validating the effectiveness of the proposed preference model learn-
ing method and tree learning method.
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1 INTRODUCTION

Due to the excessive quantity of daily information, people severely
suffer from information overload in the information era. Recom-
mendation is an important means to address information overload
by providing a personalized ranking list on a set of information.
With the development of deep learning techniques, recommenda-
tion techniques also achieve remarkable development and improve-
ments in ranking performance. The widespread application of these
techniques has created great economic benefits for various kinds
of content providers in industrial companies.

Through the use of deep learning, we not only learn better
representations for users, items, and contexts but also provides
a more generalized expression for users’ preference scores via neu-
ral networks than the widely-used inner product in matrix factor-
ization. Both lead to stronger recommendation performance, as
shown in models like DIN [50], DIEN [49], NCF [14], CDL [43],
and CKE [46]. However, the use of the neural preference function
brings online-serving challenges for recommender systems due to
the high cost of preference computation. Generally speaking, im-
mediate responses to adaptive recommendations are prerequisites
for excellent customer experiences and custom retention. Existing
popular and well-performed graph-based indexes, e.g. HNSW [27],
quantization-based indexes, e.g. PQ[17], AQ [1] and SCANN [12],
and Hash-based indexes, e.g. SGDH [21] are usually built based on
inner product or Euclidean distance, such that they are not suitable
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for speeding up the recommendation of deep models. In particular,
neural networks based preference functions is not usually a valid
metric, and difficult to be compatible with Euclidean distance and
inner product. Therefore, two items being close in Euclidean or
inner-product space may have divergent neural preference scores.

To guarantee the compatibility between search indexes with the
neural preference functions, it should be a good solution to learn the
search indexes together with the recommendation model under the
guidance of recommendation objectives. The representative work
is the tree-based deep model (i.e. TDM [53] and its improved ver-
sion JTM [52]). These models use the balanced tree index, which is
constructed by hierarchically clustering item representations from
top to down. Given the tree, the top-k ranked items are obtained
by layer-wise beam search, which selects the k-largest tree-nodes
based on neural preference scores in each level from top to down.
In this way, beam search achieves logarithmic computation com-
plexity w.r.t. the number of items. To guarantee the accuracy of
beam search, these tree-based deep models rely on the following
max-heap assumption: the preference scores of query for a parent
node should be the maximum between the preference scores of
its children node. For the sake of satisfying the assumption, these
tree-based models cast the overall problem as a binary classification
problem by treating nodes in the path from the root to positive sam-
ples as positive and randomly sampled nodes as negative. However,
these tree models suffer from the following two drawbacks. First,
the max-heap assumption is not well satisfied by the used binary
classification objectives due to the lack of horizontal competition
among all tree nodes at the same level. Second, the learned index
only includes a single tree, which is different from the widely-used
multiple tree index in industrial libraries, such as Annoy. A sin-
gle tree may easily misuse data around the boundary, which can
be corrected by other trees of different structures. Therefore, this
drawback also provides an opportunity to improve the accuracy
of efficient recommendations and strike a better balance between
efficiency and accuracy.

We proposed Deep Forest-based Recommender (DeFoRec for
short) for compositing multiple trees. To guarantee that a set of
trees can bring improvements over a single tree, these trees should
be diversified. In DeFoRec, we keep all the trees and the corre-
sponding preference models generated during the training process
goes on to form the forest model. To satisfy the max-heap assump-
tion as much as possible, DeFoRec regards the training task as
multi-classification over tree nodes at the same level, which en-
ables horizontal competition among them and mimics beam search
behavior in the training stage. However, the number of tree nodes
in each level grows exponentially with levels, making the softmax
loss suffer from computational challenges. To promote the training
efficiency, we resort to sampled softmax for approximation, which
only requires a small number of sampled nodes to use. Addition-
ally, we propose a tree learning method that allow us to learn the
preference model and tree alternately.

To summarize, we have delivered the following contributions:

• We propose a Deep Forest-based Recommender to composite
multiple diversified trees for improving recommendation
accuracy while guaranteeing logarithmic time retrieval.

• We regard tree training as a layer-wise multi-classification
problem to satisfy the max-heap assumption as much as
possible and resort to the sampled softmax loss for efficient
optimization.

• we propose a tree learning method that allows us to learn
the preference model and tree index alternately.

• We evaluate the proposed methods with several real-world
datasets and validate the superiority of DeFoRec to the base-
lines and the effectiveness of tree learning method.

2 RELATEDWORK

Wefirst review recent advances of search efficient recommendations
and negative sampling in recommender systems, and then survey
recent important techniques for speeding up softmax computation.

2.1 Search-Efficient Recommendation

Search-efficient recommendation relies on building a search index,
including LSH [8], inverted index [2, 32], tree index [33, 34]1 and
graph index [27] for all items. The recommender system usually
uses the inner product for computing preference scores, and the
top-k recommendation can be cast into the maximum inner product
search (MIPS) problem. The search index is usually constructed
based on Euclidean distance and has been extended to the inner
product. This extension can be achieved by establishing the rela-
tionship between nearest neighbor search and MIPS [3, 31, 40], or
learning from either item representations [11, 19, 30, 51] or the
raw data directly [23, 26, 28, 47]. With the introduction of deep
learning into the recommender system, the preference score func-
tion becomes complicated, such that it is challenging to transform
from neural ranking to NNS or MIPS . Existing work either directly
used metric-based index[42], or learns search index from raw data
directly together with recommendation models [24, 52, 53].

2.2 Negative Sampling in RecSys

Negative sampling is an important method to address the negative
missing and exposure bias problems and to speed up the conver-
gence of recommender training [18, 22, 25]. It includes static sam-
pling, such as uniform sampling [37] and popularity sampling, and
adaptive sampling. The adaptive sampling is context-dependent,
whose representation work includes adaptive oversampling [37],
rejection sampling [16, 45], clustering-based sampling [22], and
dynamic negative sampling [48]. The core idea of these adaptive
samplers is that items with larger preference scores should be sam-
pled with higher probability.

2.3 Techniques of Speedup Softmax

Computation

In natural language applications, it is very computationally expen-
sive to represent an output distribution over the choice of a word
based on the softmax function. To address the efficiency, many
approximate algorithms were proposed. For example, hierarchical
softmax [29] and lightRNN [20] decomposed the probabilities, and
Contrastive Divergence [15] approximated the gradient-based on
MCMC. As an alternative, negative sampling is also widely used

1It is used in an industrial library ANNOY (https://github.com/spotify/annoy)
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Algorithm 1: Beam Search: Layer-wise Retrieval
1 Input: User 𝑢, tree, beam size 𝐵 and solution size 𝐾 , the

preference model 𝑝
1: Result set 𝐴 = Φ, candidate set 𝑄 = {𝑟𝑜𝑜𝑡 𝑛𝑜𝑑𝑒 𝑛1};
2: while Q is not empty do

3: Remove all the leaf nodes from 𝑄 and add these leaf nodes
into result set 𝐴 if Q contains leaf nodes;

4: Compute preference 𝑝 (𝑛 |𝑢) for each left node in set 𝑄 ;
5: Parents={the top-B nodes of Q according to 𝑝 (𝑛 |𝑢)};
6: Q={children of node 𝑛 |𝑛 ∈ Parents};
7: end while

8: return The top-K items w.r.t. the top-K leaf nodes according
to 𝑝 (𝑛 |𝑢), 𝑛 ∈ 𝐴.

in reducing the computational cost of training the models. The
representative work includes Noise-Contrastive Estimation [13]
with the unigram distribution as a sampler, Generative Adversarial
Networks [9, 44] with a neural-network empowered sampler, Self-
Contrast Estimator [10] by the model in the immediately preceding
epoch as a sampler, self-adversarial negative sampling [41] and
Kernel-based sampling [6] with the tree index.

3 TREE-BASED AND FOREST-BASED

RECOMMENDERS

In this section, we firstly recall the tree-based recommendationmod-
els, i.e. TDM and JTM. Then we elaborate the preference model’s
training process in TDM and JTM. We introduce how to form the
forest model lastly.

3.1 Tree-based index and the deep model

To tackle the top-k retrieval of the most preferred items, Zhu et
al. [52, 53] develop a max-heap like tree index which is compatible
with any advanced preference models. We reproduce their deep
model and the tree-based index in Figure 1. In the bottom right of
Figure 1, the example is a binary tree but any multi-way tree such
that each item of corpus is mapped to a leaf node is compatible in
fact. The rigorous max-heap tree satisfies the formulation that

𝑝 𝑗 (𝑛 |𝑢) =
max𝑛𝑐 ∈𝑛𝑜𝑑𝑒 𝑛′𝑠 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑝

( 𝑗+1) (𝑛𝑐 |𝑢)
𝛼 𝑗

(1)

where 𝑝 𝑗 (𝑛 |𝑢) denotes user 𝑢’s real preference to node 𝑛 at level 𝑗
and 𝛼 𝑗 is a layer-specific normalization term to make the sum of
preference scores in level 𝑗 equals to one. E.q. (1) illustrates that
the user’s preference to a node is proportional to the largest one of
the its children’s preference scores.

Top-k retrieval in recommendation is to find the k leaf nodes
with largest preference scores in the tree. If the real preference
𝑝 𝑗 (𝑛 |𝑢) can be available for any node at each level 𝑗 for user 𝑢,
we can find the top-k leaf nodes by only retrieving all the top-k
nodes at each layer from top layer to bottom layer. This retrieval
process guarantees to find the top-k leaf nodes because that the
top-k nodes with largest preference scores at level 𝑗 +1must belong
to the children of top-k nodes with largest preference scores at
layer 𝑗 . The max-heap tree index makes users can obtain the top-k
recommendation from coarse clusters to fine clusters until each

cluster only contains on leaf node. Furthermore, the time complexity
of the retrieval process is logarithmic w.r.t. the corpus size. The
layer-wise retrieval process is presented in Algorithm 1, where
𝑝 (𝑛 |𝑢) is exactly user 𝑢’s preference to node 𝑛 and we omit the
superscript (i.e. layer).

However, the real preference 𝑝 𝑗 (𝑛 |𝑢) is unavailable and various
kinds of prediction models can be used to estimate the preference.
The prediction model used in TDM and JTM can be seen in the
left part of Figure 1. The inputs of the prediction model are the
history of user behaviours (i.e. the items that the user interacted
with sorted by interaction time) and the node. The user profile (e.g.
age, gender, height and so on) can be used to enhance model if these
information is available. The user behaviours are partitioned into
several time windows and zero padding is used to make up the time
windows if some items are missing. Each time window outputs
the weighted average embedding where the wight is calculated
by an activation unit. Seeing the activation unit in the top right
part of Figure 1, the concatenation (of the item embedding, point-
wise product between item embedding and node embedding, node
embedding) is fed into the MLP and the output is the activation
weight. The concatenation (embedding of user profile, each output
of time windows, node embedding) is fed into MLP to generate the
like and dislike probabilities in preference model. PReLU is used as
the activation function and batch normalization is applied to the
MLP in preference model.

3.2 Learn the preference model and the tree

In tree-based recommendation systems, we need to learn the pref-
erence model (i.e. the neural network model to measure the scores
between users and nodes) and the tree (i.e. the bijective mapping
relationships between items and the leaf nodes of the tree). We
use 𝜋 (·) to denote the bijective mapping between items and leaf
nodes in latter content, i.e. 𝜋 (𝑖𝑡𝑒𝑚𝑖 ) = 𝑛𝑙𝑒𝑎𝑓 means that the leaf
node 𝑛𝑙𝑒𝑎𝑓 represents the item 𝑖𝑡𝑒𝑚𝑖 . The preference model and
the tree can be learned alternately. Concretely, fix the bijective
mapping 𝜋 (·) when learning the preference model and fix the pref-
erence model when learning the bijective mapping 𝜋 (·). Repeat the
alternate learning process until both the two parts converge.

To learn the preference model, TDM and JTM regard the training
task as a binary classification problem essentially. Supposing user
𝑢 has an interaction with an item which is corresponding to a leaf
node is 𝑛𝑙𝑒𝑎𝑓 , 𝑛𝑙𝑒𝑎𝑓 and its ancestors are positive nodes with label
1 but all the left nodes are negative nodes with label 0. Then the
training loss for user 𝑢 is

L(𝑢,𝑌+
𝑢 , 𝑌

−
𝑢 ) = −

∑
𝑛∈𝑌 +

𝑢

𝑦𝑢 (𝑛) log 𝑝 (𝑦𝑢 (𝑛) = 1|𝑢)

−
∑
𝑛∈𝑌−

𝑢

(1 − 𝑦𝑢 (𝑛)) log 𝑝 (𝑦𝑢 (𝑛) = 0|𝑢).
(2)

𝑌+
𝑢 and 𝑌−

𝑢 denote the positive node set and negative node set for
user 𝑢 respectively. 𝑦𝑢 (𝑛) denotes the label of node 𝑛 for user 𝑢.
𝑝 (𝑦𝑢 (𝑛) = 1|𝑢) and 𝑝 (𝑦𝑢 (𝑛) = 0|𝑢) denote the like and dislike
probabilities for user 𝑢 to node 𝑛, which are exactly corresponding
to the two outputs of preference model. Using all negative nodes
to train the model is unacceptable both in time consuming and
memory consumption. Both TDM and JTM draw a negative node
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Figure 1: The tree-based deep model in TDM and JTM.

set (denoted as 𝑆−𝑢 ) uniformly from all the negative nodes. Then
L(𝑢,𝑌+

𝑢 , 𝑆
−
𝑢 ) is used as training loss.

Regrading the training task as a binary classification problem
leads to three shortcomings. 1).The max-heap assumption is not
well satisfied due to the lack of horizontal competition among all
tree nodes at the same level. 2). The retrieval is conducted by a layer-
wise stream (e.g. Algorithm 1) but the training process doesn’t
include layer-wise mode which can lead to a gap between train-
ing and prediction. 3). There are much more negative nodes than
positive nodes which can make the negative nodes dominate the
training loss. At the same time, the imbalance between negative
and positive nodes leads to extra computation burden to find the
proper size of sampled negative nodes. To overcome these shortcom-
ings, we regard the preference model learning task as a multi-class
classification problem which will be elaborated in latter sections.

Both TDM and JTM utilize the hierarchical clustering to update
the tree structure. TDM clusters all the items recursively by k-means
using the item embedding until each cluster only contains one item.
The recursive clustering process can form a tree structure and the
item in the each final cluster is exactly mapped to a leaf node. JTM
assigns all the items to each node from top layer to bottom layer
such that the sum of the log likelihoods for all user on each layer
can be maximized. Interested readers can refer to the content of
TDM [53] and JTM [52] for more details about how to learn the
trees respectively. In our work, we propose a new tree learning
method which is compatible with the our proposed preference
model learning mode.

3.3 Forest-based index

The retrieval is only conducted on the last generated tree by the
last updated preference model both in TDM and JTM. However, the
previous generated trees and preference models may also provide
some good candidates. We keep all the generated trees and the
corresponding preference models to form the Deep Forest-based
Recommender. In prediction, each tree is retrieved by using the
corresponding preference model to generate some candidates. Af-
ter retrieving the whole forest, we rank all the candidates by a
user-specified discriminator. The discriminator outputs the user’s
preference to certain item. For example, the discriminator can be
the inner product between user embedding and item embedding
or it can be a pre-trained neural collaborative filtering [14], e.g.
DIN [50], DIEN [49] and so on. In our experiments, we choose the
last updated preference model as the discriminator to rank the all
the candidates mapping to the leaf nodes on the last updated tree.
Lastly, top-k items are recommended among the ranked items.

4 MULTI-CLASS CLASSIFICATION TRAINING

MODE

To address the shortcomings of training mode in TDM and JTM,
we develop a layer-wise training mode in this section. Firstly, we
regard the training task as a multi-classification problem at each
layer. Secondly, we develop a tree-based sampling method which
makes the training process efficient.
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4.1 Multi-class cross entropy loss

TDM and JTM regard the training task as a binary classification
problem and binary cross entropy is used as the training loss. In
this way, each node contributes to the training loss individually.
However, the layer-wise retrieval is conducted from top layer to
bottom layer and we need to compare the candidates with each
other node at the same layer. There is a gap between training and
prediction in TDM and JTM. We propose the layer-wise training
mode which regards the training task as a multi-class classification
problem. Concretely speaking, at layer 𝑗 who consists of 𝑐 ( 𝑗) nodes,
each node is corresponding to a class. For user 𝑢, the positive node
with label 1 can be obtained by looking back upon from leaf node
to root node like the authors do in TMD and JTM. The remaining
𝑐 ( 𝑗)−1 nodes are the negative nodeswith label 0 w.r.t. to the positive
node. We adjust the preference mode in Figure 1 slightly to fit the
multi-class classification problem. We remove the softmax module
and make the last layer of the preference model only contains one
neuron. After the adjustment, the preference model only outputs
one value. For user 𝑢, 𝑜 𝑗

𝑖
represents user 𝑢’s preference to the 𝑖-th

node at layer 𝑗 and 𝑝 𝑗
𝑖
denotes the probability that the 𝑖-th node is

positive node at layer 𝑗 , where

𝑝
𝑗
𝑖
=

exp𝑜 𝑗
𝑖∑𝑐 ( 𝑗)

𝑘=1 exp𝑜 𝑗
𝑘

. (3)

The multi-class cross entropy is used as the training loss at layer 𝑗 ,
i.e.

L 𝑗 (𝑢) = −
𝑐 ( 𝑗)∑
𝑖=1

𝑦
𝑗
𝑖
log 𝑝 𝑗

𝑖
= (log

𝑐 ( 𝑗)∑
𝑖=1

exp(𝑜 𝑗
𝑖
)) − (

𝑐 ( 𝑗)∑
𝑖=1

𝑦
𝑗
𝑖
𝑜
𝑗
𝑖
) . (4)

where 𝑦 𝑗
𝑖
is the label of 𝑖-th node at layer 𝑗 . From E.q. (4) and

E.q. (3), we can know that all the nodes contribute to the training
loss simultaneously at layer 𝑗 which may relieve the gap between
training and prediction. For user 𝑢, the training loss w.r.t. the whole
tree can be written as

L(𝑢) =
∑

𝑗 ∈𝑎𝑙𝑙 𝑙𝑎𝑦𝑒𝑟𝑠
L 𝑗 (𝑢) . (5)

It is obvious that we no longer suffer from the imbalance of posi-
tive node size and negative node size that happens in binary-class
classification problem.

4.2 Sampled softmax

To compute the training loss (i.e. (E.q. (5)) for user 𝑢, we need to
calculate the partition function

∑𝑐 ( 𝑗)
𝑖=1 exp𝑜 𝑗

𝑖
at each layer 𝑗 . How-

ever, the calculation of partition function is unacceptable both in
time complexity and memory consumption which both increase
linearly w.r.t. the corpus size.

Sampled softmax is proposed to approximate full softmax during
model training [4, 5]. Instead of calculating the training loss E.q.
(4) over all classes, only the positive class and𝑚 negative classes
are considered where the𝑚 negative classes are sampled from all
the negative classes according to certain probability distribution
𝒒 with replacement. In the rest of the paper, we use 𝑠 𝑗 to denote
the training samples at layer 𝑗 and use 𝑞

𝑠
𝑗

𝑖

(1 ≤ 𝑖 ≤ 𝑐 ( 𝑗)) to denote

the probability that the 𝑖-th term of 𝑠 𝑗 can be sampled from the

negative nodes of layer 𝑗 . We suppose 𝑠 𝑗1 is always the positive
class and the rest terms of 𝑠 𝑗 are negative classes of layer 𝑗 without
loss of generality. For example,𝑚 = 6 and the sample set is 𝑠 𝑗 =
{3, 5, 7, 8, 2, 7, 4}. The 𝑠 𝑗 indicates that the 3-rd node of layer 𝑗 is the
positive node and the 7-th node is sampled twice while other nodes
(i.e. indexed at 5,8,2,4) are sampled once each.

However, we don’t use the outputs w.r.t. sampled nodes of 𝑠 𝑗 to
approximate the loss directly. The slight adjustment is conducted
for each output by

𝑜
𝑗

𝑠
𝑗

𝑖

=


𝑜
𝑗

𝑠
𝑗

𝑖

− ln(𝑚𝑞 𝑗
𝑠
𝑗

𝑖

) 𝑖 𝑓 𝑦
𝑠
𝑗

𝑖

= 0

𝑜
𝑗

𝑠
𝑗

𝑖

− ln(1) 𝑖 𝑓 𝑦
𝑠
𝑗

𝑖

= 1
(6)

This adjustment can guarantee the sampled softmax is unbiased
when𝑚 is infinite (i.e.𝑚 → ∞) [5]. The training loss is calculated
over the adjusted outputs and the original training loss E.q. (4) at
layer 𝑗 can be adjusted to

L̂ 𝑗 (𝑢) = −
𝑚+1∑
𝑖=1

𝑦
𝑗

𝑠
𝑗

𝑖

log𝑝 𝑗
𝑖
= (log

𝑚+1∑
𝑖=1

exp(𝑜 𝑗
𝑠
𝑗

𝑖

)) − (
𝑚+1∑
𝑖=1

𝑦
𝑗

𝑠
𝑗

𝑖

𝑜
𝑗

𝑠
𝑗

𝑖

). (7)

where

𝑝
𝑗
𝑖
=

exp𝑜 𝑗
𝑠
𝑗

𝑖∑𝑚+1
𝑘=1 exp𝑜 𝑗

𝑠
𝑗

𝑘

. (8)

The training loss w.r.t. the whole tree for user 𝑢 becomes

L̂(𝑢) =
∑

𝑗 ∈𝑎𝑙𝑙 𝑙𝑎𝑦𝑒𝑟𝑠
L̂ 𝑗 (𝑢) . (9)

Up to now, we haven’t specified how to sample𝑚 negative nodes
at each layer. The previous literature [5, 6] has proved that proper
specified sampling distribution 𝒒 used in sampled softmax can lead
to unbiased estimator of gradient for the original loss (i.e. E.q. (4)
and E.q. (5)). We state their theorem in a different way so that the
theorem can be compatible with our tree index.

Theorem 1 (Theorem 2.1 of [6]). The gradient of loss E.q. (7)
(or E.q. (9)) w.r.t. sampled softmax is an unbiased estimator of the
gradient of the loss E.q. (4) (or E.q. (5)) w.r.t. full softmax if and only
if 𝑞 𝑗

𝑖
∝ exp𝑜 𝑗

𝑖
holds where 1 ≤ 𝑖 ≤ 𝑐 ( 𝑗) & the 𝑖-th node isn’t a

positive node at layer 𝑗 .

This theorem indicates that if the sampling probability is pro-
portional to the exponential of preference w.r.t. the negative node
then we can get the training loss’s unbiased estimator of gradient.
However, it still leads to linear time complexity w.r.t. the corpus size
to make 𝑞 𝑗

𝑖
∝ exp𝑜 𝑗

𝑖
as calculating the full softmax. To address this

problem, the previous literature [6, 35] develops the kernel-based
methods to approximate the full softmax for inner product models.
However, their kernel-based methods aren’t suitable to our model
as our preference model is a complicated neural network. Uniform
sampling is easy to understand and can be implemented quickly.
Concretely, at layer 𝑗 , each negative node is sampled uniformly with
replacement until𝑚 negative nodes are sampled. The 𝑖-th node of
layer 𝑗 is sampled with probability 𝑞 𝑗

𝑖
= 1

𝑐 ( 𝑗)−1 probability at each
sampling operation. Besides simpleness, uniform sampling deserves
another import advantage that it can lead to good exploration abil-
ity. As every negative node can be chosen with equal chance, the
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sampled nodes deserve good diversity among each other. Further-
more, uniform sampling doesn’t introduce any extra computational
burden (e.g kernel-based sampling methods require to compute the
kernel to get the distribution 𝑞.) so that the training process can be
quick. In our experiments, we choose uniform sampling to get the
negative nodes at each layer, i.e. 𝑞 𝑗

𝑖
= 1

𝑐 ( 𝑗)−1 at E.q. (6).

5 TREE LEARNING

Here we introduce how to update the tree (i.e. update the bijective
mapping 𝜋 (·)) when the preference model is fixed. We regard the
level of root node as level 0 and the level of leaf nodes as level 𝑙𝑚𝑎𝑥 .
A𝑖 = {(𝑢 ′, 𝑖 ′) |𝑖 ′ = 𝑖𝑡𝑒𝑚𝑖 } means A𝑖 consists of all the user-item
pairs where the item is exactly the 𝑖-th item. 𝑏 𝑗 (𝜋 (𝑖𝑡𝑒𝑚𝑖 )) denotes
leaf node 𝜋 (𝑖𝑡𝑒𝑚𝑖 )’s ancestor node at level 𝑗 . At first, we use the
way of TDM and JTM to construct the initial tree. The tree is used
to represent the user interests’ hierarchical information so that
similar items should organized in close positions on the level 𝑙𝑚𝑎𝑥

of the tree. It’s natural to rely on the category information of items
to build the initial tree. Firstly, we shuffle all the categories and put
the items together if they share the same category id. If the item
belongs to more than one category, a random one is assigned to the
item for uniqueness. Secondly, all the items locating in one category
are partitioned into two equal parts recursively until each part only
contains one item. In this way, we can construct a near-complete
binary tree from root node to leaf nodes and some simple balancing
strategy can be used to adjust the tree. We use the binary tree in
our experiments. In fact, any multi-way tree can be constructed by
such way if we partition each cluster into more nearly equal parts
at each iteration.

Given the old mapping 𝜋 and each interaction pair set A𝑖 , once
we fix the preferencemodel, we assign each item to each node of tree
step by step from root node to leaf nodes to get the new mapping
𝜋 . Firstly, all items are assigned to the root node, i.e. current level
𝑙 = 0. Then, we try to assign all the items to the nodes of level
𝑚𝑖𝑛(𝑙𝑚𝑎𝑥 , 𝑙 + 𝑑) (where 𝑑 is a small number and we use 𝑑 = 7 in
our experiments). The number of assigned items for node 𝑛 at level
𝑚𝑖𝑛(𝑙𝑚𝑎𝑥 , 𝑙 + 𝑑) should be the number of the leaf nodes of the sub-
tree who regards the node 𝑛 as root node. The assigned item set
w.r.t. each node at level𝑚𝑖𝑛(𝑙𝑚𝑎𝑥 , 𝑙 +𝑑) has no intersection and the
union is exactly the whole item set (i.e. all the items will be assigned
to the nodes at level𝑚𝑖𝑛(𝑙𝑚𝑎𝑥 , 𝑙 + 𝑑) disjointly.). For the 𝑖-th item
𝑖𝑡𝑒𝑚𝑖 which is assigned to root node, it need to be assigned to one of
the node at level𝑚𝑖𝑛(𝑙𝑚𝑎𝑥 , 𝑙 +𝑑) and it has 𝑐 ≤ 2𝑑 candidate nodes
as we use the binary tree. Without loss of generality, we denote
these candidate nodes as 𝑛1, 𝑛2, . . . , 𝑛𝑐 and the user 𝑢’s (𝑢 ∈ A𝑖 )
preference to node 𝑛 𝑗 (1 ≤ 𝑗 ≤ 𝑐) is denoted as 𝑜 𝑗𝑢 computed by the
fixed preference model. We define 𝑖𝑡𝑒𝑚𝑖 ’s matching score to node
𝑗 (1 ≤ 𝑗 ≤ 𝑐) as follows

𝑆𝑐𝑜𝑟𝑒 (𝑖𝑡𝑒𝑚𝑖 , 𝑛 𝑗 ) =
∑

(𝑢,𝑖𝑡𝑒𝑚𝑖 ) ∈A𝑖

log 𝑝 (𝑛 𝑗 |𝑢) (10)

where 𝑝 (𝑛 𝑗 |𝑢) = exp𝑜 𝑗
𝑢∑𝑐

𝑘=1 exp𝑜
𝑘
𝑢

. We rank the 𝑐 scores and assign 𝑖𝑡𝑒𝑚𝑖

to the node with the maximum matching score with 𝑖𝑡𝑒𝑚𝑖 . If the
number of assigned items breaks the limitation (i.e. the number of
assigned items to each node is exactly the number of leaf nodes
who regard the current node as root), we assigned 𝑖𝑡𝑒𝑚𝑖 to the node

with second largest matching score with 𝑖𝑡𝑒𝑚𝑖 or even successive
nodes if the number of assigned items still breaks the limitation. By
this way, we can assign each item belonging to the root to a node
at level𝑚𝑖𝑛(𝑙𝑚𝑎𝑥 , 𝑙 +𝑑). Now, we regard 𝑛1, . . . , 𝑛𝑐 as root nodes of
𝑐 sub-trees and repeat the process recursively to assign the items
to higher layers until each leaf node is assigned a item. Finally,
we can get the new mapping 𝜋 ′. To compute the matching score
(i.e. E.q. (10)), we need to compute the denominator

∑𝑐
𝑘=1 exp𝑜

𝑘
𝑢 ,

so the number 𝑑 need to be small to fit the time complexity and
computational resource.

In fact, our tree learning strategy also carries on the hierarchical
clustering from coarse grain to fine grain and 𝑑 controls the grain
size. The main difference between ours and the one in JTM is the
calculation of matching scores. The matching score in JTM can be
calculated by sumup the log-likelihood probability as the preference
model output the probability directly but our strategy relies on the
softmax probability when calculating the matching scores.

6 EXPERIMENTS

In this section, we study the performance of our proposed method.
Firstly, We verify that regarding the preference model training task
as the multi-class classification problem is superior over regard-
ing it as binary-class classification problem. Secondly, we study
the effectiveness of our proposed method compared with some
classical baseline. Thirdly, we study the effectiveness of the tree
learning method. At last, we sense the influence of varying the
number of sampled nodes and the beam size when we conduct the
beam search on the tree model. The used preference model in our
proposed method is adjusted from the preference model of Figure
1 by setting the last layer only contains one neuron and removing
the softmax function. Following the settings of preference model
in TDM and JTM, the preference model takes at most𝑀 user-item
interactions as input user behavior features and split them into 𝑁
time windows by time order.𝑀 is set to be 69 and 𝑁 is set to be 10.
Each of the 10 time windows contains [1, 1, 1, 2, 2, 2, 10, 10, 20, 20]
(sum up to 69; if the length of behavior history is less than 69, pad
the absence by zero) interactions.

The paper JTM argues that hierarchical user preference represen-
tation brings to two benefits, i.e. level independence and precision
description. Given a user behavior sequence 𝒄 = {𝑐1, 𝑐2 · · · , 𝑐𝑁 }
where 𝑐𝑖 is the 𝑖-th item the user interacts with, then the user behav-
ior sequence is represented as 𝒄 𝑗 = {𝑏 𝑗 (𝑐1), 𝑏 𝑗 (𝑐2), · · · , 𝑏 𝑗 (𝑐𝑁 )} at
layer 𝑗 , where 𝑏 𝑗 (𝑐𝑖 ) denotes the corresponding ancesotor node of
item 𝑐𝑖 . We resort to the category information to initialize the tree
like previous section mentioned. The experiments are conducted on
two real-world datasets.MINDSmall Dev

2 (abbreviated asMIND)
consists of the interactions from 50,000 users on 5,369 news. We
filter the dataset by removing the users who read no more that

2https://drive.google.com/drive/folders/1MucMieAUkjbAZVka3mxTaGuGvXbA1SYT

Table 1: Dataset

Dataset #User #Item #Interaction
MIND 26,712 5,367 2,427,016
Movie 57,534 10,675 9,704,223
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Table 2: Verify the superiority of multi-class classification over binary-class classification for tree model.

Dataset Algorithm Topk=20 Topk=40 Topk=60
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

MIND JTM 0.437 0.273 0.310 0.353 0.419 0.351 0.304 0.518 0.351
DeFoRec 0.531 0.333 0.379 0.408 0.477 0.404 0.339 0.569 0.390

Movie JTM 0.158 0.079 0.092 0.145 0.139 0.120 0.135 0.187 0.133
DeFoRec 0.173 0.088 0.103 0.155 0.150 0.130 0.143 0.199 0141

Table 3: Compare with classical baselines.

Dataset Algorithm Topk=20 Topk=40 Topk=60
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

MIND

Item-CF 0.364 0.243 0.269 0.337 0.419 0.342 0.304 0.537 0.357
FM 0.373 0.243 0.271 0.348 0.439 0.356 0.317 0.567 0.374
BPRMF 0.436 0.276 0.312 0.369 0.445 0.369 0.324 0.559 0.376
Youtube 0.470 0.305 0.342 0.403 0.493 0.407 0.353 0.613 0.412
TDM 0.448 0.281 0.319 0.362 0.428 0.359 0.310 0.528 0.358
JTM 0.554 0.352 0.399 0.429 0.508 0.427 0.356 0.604 0.412
DeFoRec 0.593 0.375 0.426 0.452 0.530 0.449 0.370 0.621 0.427

Movie

Item-CF 0.056 0.033 0.037 0.094 0.109 0.088 0.110 0.182 0.119
FM 0.084 0.044 0.051 0.107 0.122 0.099 0.117 0.196 0.128
BPRMF 0.089 0.043 0.050 0.105 0.113 0.093 0.113 0.180 0.119
Youtube 0.190 0.098 0.113 0.175 0.179 0.150 0.162 0.235 0.164
TDM 0.141 0.070 0.081 0.131 0.126 0.108 0.124 0.171 0.121
JTM 0.185 0.097 0.112 0.167 0.167 0.143 0.155 0.223 0.156
DeFoRec 0.215 0.111 0.129 0.189 0.186 0.161 0.171 0.242 0.171

15 news. 26,712 users, 5,367 movies and 27,270,160 interactions
are left. 3,000 users are randomly selected as validation data and
3,000 users are randomly selected as test data and the left users
are regarded as training data. MovieLens 10M

3(abbreviated as
Movie) is a movie rating dataset which contains 1,000,054 rating
records from 69,878 users to 10,677 movies. The users who rate at
least 15 movies can be kept. Then 57,534 users, 10,675 movies and
2,427,016 rating records are left. 6,000 users are randomly selected
as validation data and 6,000 users are randomly selected as test data
and the left users are regarded as training data. The information of
datasets is summarized in Table 1. The dimension of item embed-
ding and node embedding is set to be 24. All the experiments are
repeated 10 times and the average value is reported. For validation
users and test users, the first half behaviors are regarded as the
interaction history and the second half behaviors are regarded as
ground truths. To evaluate the performance of each method, we use
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 , 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 and 𝐹 -𝑚𝑒𝑎𝑠𝑢𝑟𝑒@𝐾 as the metrics. Sup-
pose P(𝑢) (|P(𝑢) | = 𝐾) denotes the recalled set w.r.t. user 𝑢 and
G(𝑢) denote the ground truth set. Then

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 (𝑢) = |P(𝑢) ∩ G(𝑢) |
𝐾

, 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 (𝑢) = |P(𝑢) ∩ G(𝑢) |
|G(𝑢) | ,

(11)
and

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒@𝐾 (𝑢) = 2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 (𝑢) · 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 (𝑢)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 (𝑢) + 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 (𝑢) . (12)

3https://grouplens.org/datasets/movielens/10m/

6.1 Superiority of Multi-class classification loss

TDM and JTM use the binary cross entropy i.e. (E.q. (2)) to train
the preference model. Our proposed method regard the training
task as a mulit-class classification problem. To verify multi-class
classification is superior to train the preference model over binary-
class classification, We train the preference model on the initial
trees of the two datasets. As the only difference between TDM and
JTM is the how to update the tree but we don’t update the tree
here, so TDM and JTM share the results. As we test the influence
of parameters in the last subsection, so we just present the used
parameter settings in this subsection. For MIND, we sample 40
times negative nodes over positive nodes (i.e.𝑚 = 40 in E.q. (6) for
our method and 9 times negative nodes over positive nodes for JTM.
ForMovie, we sample 60 times negative nodes and 8 times negative
nodes over positive nodes for ours method and JTM respectively.
The beam size is set to be 150, i.e. we select at most 150 items to
expand when we conduct beam search on the tree. The results are
presented in Table 2. We can know that the results of our method
significantly outperforms JTM for all cases on both datasets. The
results indicate that regarding preference model training task as
a multi-class classification problem is better than regarding it as
binary classification problem.

6.2 Comparisons with other baselines

We also compare our methods with the following methods.
Item-CF [39] : It is a basic collaborative filtering algorithm. We
implement it by our-self and the Pearson correlation coefficient is
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Figure 2: Results when we increase the number of tree.

used to measure the similarity between items.
FM [36]: It is designed for factorization task. We use the imple-
mentation provided by DeepMatch4.
BRPMF [38] : The matrix factorization is used for Bayesian per-
sonalized ranking. We use the open-source code 5.
Youtube [7]: It is the recommender system used in Youtube which
uses the inner products as the preference scores between users and
items. After all the user embedding and item embedding are learnt
by the DNN model, Exact KNN search is used to find the top-K
items for users in prediction. We use the implementation provided
by DeepMatch with the same source as FM.

For our method, JTM and TDM we use the same setting as sub-
section 6.1 and 10 trees are learnt to form the forests for our algo-
rithm, TDM and JTM respectively. The preference model trained on
the last updated tree is regarded as the discriminator to rank all the
candidates generated from each tree for our method, JTM and TDM
respectively. For Item-CF, FM and BPRMF, we tune several most
important hyper-parameters based on validation set. Concretely,
the number of factors and BPRMF, the number of neighbors for
Item-CF. For Youtube, the dimension of user embedding and item
embedding is set to be 24 and the hidden unit number of three
fully connected layers are 128,64,24 respectively. Additionally, The
negative number in Youtube is set to be the same as our method on
each dataset.

4https://github.com/shenweichen/DeepMatch
5https://github.com/SpringtoString/BPR-Torch

The results are exhibited in Table 3. We can see that our method
significantly outperforms the classical baseline like Item-CF, FM,
BPRMF under different metric measure and different Topk on both
datasets. The Youtube also performs quite well especially onMovie.
This phenomenon may be caused by two reasons. Firstly, Youtube
is desigened for video recommendation andMovie is exactly video
rating dataset. Secondly, after the user embedding and item em-
bedding are learnt by Youtube, we use exact KNN search to find
the item embedding with maximum inner product with query user.
Exactly KNN search scans all items with linear time complexity.
All the results in Table 3 indicate the superiorities of our proposed
method.

6.3 Effectiveness of updating the tree

As stated in previous sections, We train the preference model and
update the tree alternately for ours method, JTM and TDM. In
prediction, each tree is retrieved by the corresponding preference
model to generate a candidate set. All the candidates generated
by each tree are mapped to the leaf nodes of the last updated tree
so that we can choose the last updated preference model as the
discriminator to rank all the candidates. Top-K items can be re-
turned from the ranked items. The experiments are conducted on
both two datasets and the numbers of sampled negative nodes are
the same as ones in the above subsections. Beam size is 150 and
Topk=40. The results are presented in Figure 2 w.r.t. the three met-
rics respectively. We can see that our method outperforms JTM
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Table 4: The influence of beam size.

Dataset MIND Movie
Beam size 100 150 200 100 150 200

P JTM 0.356 0.353 0.352 0.145 0.145 0.143
DeFoRec 0.408 0.408 0.407 0.156 0.155 0.154

R JTM 0.421 0.419 0.418 0.140 0.139 0.137
DeFoRec 0.477 0.477 0.476 0.151 0.150 0.149

F JTM 0.353 0.351 0.350 0.120 0.120 0.119
DeFoRec 0.404 0.404 0.403 0.131 0.130 0.129

and TDM steadily as the number of tree increases. The experiment
results of JTM and TDM in paper [52] have indicated that the tree
learning method of TDM doesn’t work well and it can even learn a
worse tree. Our results also verify the fact. Overall, all these results
indicate that the proposed tree learning method is effective.

6.4 Tune parameters

At first, we investigate the influence of beam size when we conduct
beam search on the tree. The number of sampled negative nodes are
the same as ones in previous subsections for our method and JTM
respectively. Topk is set to be 40 and all the results are obtained
on the initial trees of the two datasets. The results are presented
in Table 4 where P means precision, R means recall and F means
F-measure. We can see that beam size has no significant influence
when we conduct beam search on the trees with trained preference
model of ours method or JTM. Larger beam size can even damage
the performance of preference model slightly. This phenomenon
may be because that we can’t learn a exact preference model and
larger beam size lead to more candidates to rank. But the inexact
preference model makes more mistakes when it needs to rank more
candidates.

Too small number of sampled negative nodes may lead to weak
exploration and too many sampled negative nodes can exacerbate
the imbalance between number of positive nodes and number of
negatives for TDM and JTM. We vary the number (i.e.𝑚, which
means the number of negative nodes is𝑚 times larger than number
of positive nodes) of sampled negative nodes for our method and
JTM. The experiments are conducted on the initial trees w.r.t.MIND

and Movie respectively. Beam size is set to be 100 and TopK is
set to be 20. The precision is reported in Figure 3. We can know
that the performance increases very slightly for our methods as𝑚
increasing. However, the performance of JTM first increases and
then decreases in general. This phenomenon meets our expectation
that too many sampled negative nodes can aggravate the imbalance
between negative nodes and positive nodes for binary-class entropy
loss so that degrading the performance.

7 CONCLUSION

The existed tree-base recommendation systems (e.g. TDM and JTM)
regard the preference model training task as a binary-class classifi-
cation problem. Their training mode can suffers from the imbalance
between the number of positive nodes and the number of negative
nodes. Further, there is a gap between training and prediction as the
lacking of competition among nodes at the same layer. To address
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Figure 3: Vary the number of negative nodes.

these problem, We develop a layer-wise training mode that regrad-
ing the training task as a multi-class classification problem and we
provide the tree learning strategy to update the tree. To implement
our training mode efficiently, we sample negative nodes at each
layer by the guidance of sampled softmax theory. The retrieval is
conducted only on the last updated tree in both TDM and JTM. We
utilize all the trees to form the Deep Forest-based recommendation
system. Each tree is retrieved and all the generated candidates on
each tree are ranked by a user-specified discriminator. The experi-
mental results validate the effectiveness of our proposed training
mode and the Deep Forest-based recommender.
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