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ABSTRACT
At present, people are gradually becoming aware of financial man-
agement and thus fund recommendation attracts more and more
attention to help them find suitable funds quickly. As a user usually
takes many factors (e.g., fund theme, fund manager) into account
when investing a fund and the fund usually consists of a substan-
tial collection of investments, effectively modeling multi-interest
representations is more crucial for personalized fund recommenda-
tion than the traditional goods recommendation. However, existing
multi-interest methods are largely sub-optimal for fund recom-
mendation, since they ignore financial domain knowledge and
diverse fund investment intentions. In this work, we propose a
Disentangled Interest importance aware Knowledge Graph Neural
Network (DIKGNN) for personalized fund recommendation on Fin-
Tech platforms. In particular, we restrict the multiple intent spaces
by introducing the attribute nodes from the fund knowledge graph
as the minimum intent modeling unit to utilize financial domain
knowledge and provide interpretability. In the intent space, we
define disentangled intent representations, equipped with intent
importance distributions to describe the diverse fund investment
intentions. Then we design a new neighbor aggregation mechanism
with the learned intent importance distribution upon the interac-
tion graph and knowledge graph to collect multi-intent information.
Furthermore, we leverage micro independence and macro balance
constraints on the representations and distributions respectively
to encourage intent independence and diversity. The extensive ex-
periments on public recommendation benchmarks demonstrate
that DIKGNN can achieve substantial improvement over state-of-
the-art methods. Our proposed model is also evaluated over one
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real-world industrial fund dataset from a FinTech platform and has
been deployed online.
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1 INTRODUCTION
In the past decade, financial technology (FinTech) has already
greatly increased the convenience of financial services and given
everyone easy access to financial markets, especially in the asset
management industry. Empowered by technological advances such
as artificial intelligence and mobile computing, FinTech platforms
(e.g., Alipay1 operated by Ant Financial, Tencent LiCaiTong2 op-
erated by Tencent, Robinhood3, etc.) which sell funds via mobile
apps, have emerged as a new sales mode to reach a wide variety of
customers. Due to its quick and flexible service, this new mobile
channel for fund distribution is fast increasing its market share
compared to traditional channels. By end of 2018, about one-third
of the sales of funds has taken place on FinTech platforms [10].

Compared with general recommendations for e-commerce, de-
signing a personalized recommendation strategy for funds on Fin-
Tech platforms faces unique challenges due to complex finance
domain knowledge and diverse fund investment intentions. First,
without the assistance of finance domain knowledge, it is challeng-
ing to fully comprehend the relationship between funds and even

1https://www.alipay.com
2https://www.tenpay.com
3https://robinhood.com
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more challenging to make suitable recommendations. For example,
as shown in Figure 1, although "GF Growth Selective Hybrid C" and
"Fullgoal Precision Healthcare Flexible Allocation Hybrid" appear
to be unrelated at first glance, they actually have the same top
holding stock and both belong to the healthcare sector. Then the
purchase of the first fund implies a potential interest in the second
one. The second challenge is the diverse fund investment intentions.
Unlike straightforward purchasing intention of daily life goods, a
user usually takes many factors into account when investing a fund,
including seeking high expected return, balancing potential risk,
keeping optimistic about a specific industry, or simply trusting a
fund manager, etc. Therefore effectively modeling multi-interest
representations is more crucial for personalized recommendations
than traditional goods recommendations. For instance, as illustrated
in Figure 1, the funds existing in Alice’s historical behaviors cover
a wide variety of investment sectors, fund types, asset management
firms, etc. After analyzing Alice’s investment intentions through
her historical behaviors with fund domain knowledge, we find that
Alice has two main interests including hybrid healthcare sector
related funds and ETF link funds in the semiconductor sector.

Figure 1: An illustration of multi-faceted interests behind
historical interactions with funds on the FinTech platform.

Some recent works [32, 35, 38] have attempted to leverage knowl-
edge graph techniques to translate complex domain knowledge into
a structured representation that is accessible to both humans and
machines, while combining multi-interest learning for the recom-
mendation. Inspired by disentangled representation learning [19]
in the field of image, some GNN-based methods, such as Disen-
GCN [20] and DisenKGAT [44], design a graph disentangling mod-
ule equipped with neighbor routing and embedding propagation
mechanisms to characterize users’ diverse interests. The KG-based
methods, i.e., KGIN [40] and KTUP [2], seek to leverage the auxiliary
semantic information of knowledge graph to model multi-interests.

Despite their effectiveness, we argue that these methods neglect
the following considerations: (1) Fine-grained Knowledge-aware
Representation. In these studies, they fall short of capturing fine-
grained multi-interest representations using the knowledge graph
to its full potential. GNN-based models [20, 41] leverage dynamic
routing mechanisms to learn implicitly the representation of inter-
ests which are opaque to deeper understanding. Although KG-based
multi-interest models [2, 40] leverage the auxiliary knowledge of

items, they lack the ability of modeling complex fund interaction
behaviors (for example, a user may have multiple intents to interact
with a fund) because they use the relation as the minimum inter-
est modeling unit. (2)Multi-interest Importance Distribution.
The multi-interest based methods [20, 40, 41] mainly focus on ex-
tracting non-overlapping interests while ignoring differences in
interest importance. Therefore, they fail to capture the diverse fund
investment intentions accurately.

In this paper, we propose a new model, Disentangled Interest
Importance Aware Knowledge Graph Neural Network (DIKGNN) to
solve the foregoing issues. (1) We design Knowledge-aware Dis-
entangled Intent Modeling to learn disentangled intent represen-
tation in semantic intent spaces constrained by domain knowledge.
Specifically, we utilize the fund knowledge graph to introduce fi-
nance domain knowledge and regard the attribute nodes (the nodes
apart from fund nodes) from the fund knowledge graph as the min-
imum intent modeling unit to limit the distribution of attribute
nodes to one-hot vectors. In other words, each intent can be re-
garded as a hidden cluster of attribute nodes, thereby effectively
shaping the intent space while enhancing learning performance
and model explainability. Upon these intent spaces, we disentangle
the users and funds into multiple channels of independent represen-
tations to represent the diverse fund investment intentions. Then
an intent importance distribution is generated by the disentangled
representations to describe the preference for different intents. (2)
We carefully design Intent Importance-specific Aggregation to
aggregate neighbor information from separate intent spaces while
taking intent importance distribution into account. Considering
the heterogeneity of the interaction network and fund knowledge
graph, we correspondingly conduct the users’ behavior neighbor
aggregation and the funds’ knowledge neighbor aggregation to
collect the multi-interest representation and use the generated in-
tent importance distribution to discern aggregation weights. (3) We
propose an Independence and Balance Constraint. Specifically,
A micro independence constraint on disentangled representations
is designed to encourage intent independence and a macro balance
constraint on the intent importance distribution is used to increase
intent diversity. The final similarity score is obtained by fusing all
channel representations with the intent importance.

To summarize, the contributions of this paper are as follows,
• To the best of our knowledge, this is the first work tailored to
address the multi-interest problem in fund recommendation,
where traditional approaches are not generalizable due to
the unique characteristics including complex finance domain
knowledge and diverse investment intentions in fund field.

• We propose a novel Disentangled Interest Importance Aware
Knowledge Graph Neural Network (DIKGNN). It contains
a Knowledge-aware Disentangled Intent module, an Intent
Importance-specific Aggregation module, and an Indepen-
dence and Balance Constraint module, which provides better
model interpretability and more granular multi-interest rep-
resentation.

• We conduct extensive experiments on three public datasets
and one large-scale dataset collected from real-world Fin-
Tech platforms. The experimental results show significant
performance improvements compared with the state-of-the-
art methods. Further analysis is provided to demonstrate
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the robustness and effectiveness of DIKGNN. The model
has been deployed online to serve fund recommendation in
real-world FinTech platforms.

2 RELATEDWORK
2.1 General Recommendation
The general recommendation models could be roughly divided into
three types: shallow models, neural network-based models, and
GNN-based models. The typical examples of shallow models are
collaborative filtering [26], matrix factorization [14], and factor-
ization machines [23]. However, these methods encounter critical
challenges such as complex user behaviors or data input. To ad-
dress it, neural network-based models are proposed inspired by the
success of deep learning in computer vision and natural language
processing. For example, Neural Collaborative Filtering [8], NFM [8]
and Deep Matrix Factorization Models [45] respectively integrate
their corresponding shallow models with multi-layer perceptron
to represent the interaction between users and items. Another line
of work tries to apply GNN-based models [9, 39, 46] for recom-
mendation. Specifically, graph neural networks recursively utilize
embedding propagation and neighbor aggregation mechanisms
to access high-order neighbors’ information, rather than only the
first-order neighbors’ as the traditional methods do.

2.2 Knowledge Graph Based Recommendation
Existing KG-based recommendation approaches can be roughly
grouped into three categories: embedding-based, path-based, and
propagation-based methods. For embedding-based methods [2, 34,
48], they usually first embed entities and relations in KG via knowl-
edge graph embedding methods (e.g., TransR [18]), and then add
them as auxiliary information of items into the recommender model.
For example, CKE [48] utilizes TransR and feeds the learned item
embeddings of the knowledge graph into matrix factorization. How-
ever, the embedding-based methods focus more on item representa-
tion learning in KG while ignoring the high-order user-item interac-
tions for recommendations. Thus, they cannot capture the complex
dependencies of user-item relations for user preference learning.
The path-based methods [12, 29, 42, 47] aim to find different seman-
tic paths to connect users and items via entities in KG to guide
the recommendation process. For instance, KPRN [42] generates
path representations by composing the semantics of both enti-
ties and relations and integrating them into the recommendation.
Nevertheless, they highly depend on handcraft meta-path construc-
tion, which relies on domain knowledge and human efforts, and
aggregating information along different meta-paths is very time-
consuming. The propagation-based methods [35–37] have attracted
increasing attention in recent years, where the propagation process
is performed iteratively to extract auxiliary information from KG
for user preference learning. KGAT [38] first applies knowledge
graph embedding methods to obtain entity representations and
then propagate the representations over the user-item interaction
network and knowledge graph to collect the high-order informa-
tion. KCAN [32] proposes conditional attention on the knowledge
graph to capture the target-specific preference of users. Despite
successful applications, these methods ignore discrimination of

various interests by aggregating multifaceted preferences into a
single vector.

2.3 Multi-interest Recommendation
Some recent works have explored fund recommendation scenarios,
such as [11] and [4]. However, these studies do not consider the
multi-interests of users when purchasing funds. To identify the
diverse interests of users, recently many efforts have been made
on multi-interest recommendation [6, 17, 31] which can be mainly
divided into two lines. The first line of work learns multi-interest
representations from behavior collaborative signals. For example,
MIND [17] takes the first attempt to leverage the dynamic routing
mechanism [25] to represent users with multiple interests. Simi-
larly, DisenGCN [20] applies a dynamic routing mechanism on the
neighbor aggregation to model multiple interests. ComiRec [3] de-
signs multi-interest module to capture multiple interests from user
behavior sequences and an aggregation module with a controllable
factor to balance the recommendation accuracy and diversity. All
these works capture intents implicitly from the users’ multiple be-
haviors, it is hard to identify the semantics of each intent explicitly.
Another line of work focuses on constructing multi-interest repre-
sentations from the knowledge graphs. DisenKGAT [44] extends
DisenGCN into a KG-based setting and introduces knowledge atten-
tion into the disentangled GNN. In order to enhance interpretability,
KGIN [40] models each intent as an attentive combination of KG
relations to refine high-level concepts of user intents. We argue
that the existing approaches lack the ability to model complex fund
interaction behaviors because they use the relation as the minimum
interest modeling unit. Our method designs a Knowledge-aware
Disentangled Intent Module to capture entity-level intentions.

3 PRELIMINARY
We first introduce the notations and give a formal definition of our
task. In the fund recommendation system, users have implicit feed-
back, e.g. click or purchase. Let G = (V = {U,I},O = {(𝑢, 𝑖) |𝑢 ∈
U, 𝑖 ∈ I}) be the interaction graph, where U and I are the set of
users and funds. AndO is a set of the observed interactions in which
a sample (𝑢, 𝑖) ∈ O indicates a user 𝑢 has interacted with a fund 𝑖 .
Compared with the traditional recommendation scenarios, there
is an additional knowledge graph to introduce financial domain
knowledge in our task. Let G𝑘 = {(ℎ, 𝑟, 𝑡) |ℎ ∈ E, 𝑟 ∈ R, 𝑡 ∈ E}
be the knowledge graph, where ℎ, 𝑟 and 𝑡 denote the head node,
relation and tail node, E is the node set in the knowledge graph, and
R denotes the relation set in the knowledge graph. The E = {I, C}
is the node set that contains the set of funds I and the sets of
attribute nodes C. The nodes in the set C, such as fund sector and
fund manager, usually are the attribute information of funds.

Fund Recommendation. Given a user-fund interaction graph
G = (V = {U,I},O = {(𝑢, 𝑖) |𝑢 ∈ U, 𝑖 ∈ I}) and a fund knowl-
edge graph G𝑘 = {(ℎ, 𝑟, 𝑡) |ℎ ∈ E, 𝑟 ∈ R, 𝑡 ∈ E}, our task of fund
recommendation is to learn a score function Φ(𝑢, 𝑖) : U × I → R
that assigns how likely a user will interact with a fund in the future.

4 METHODOLOGY
In this section, we will introduce our proposed model Disentan-
gled Interest importance aware Knowledge Graph Neural Network
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(DIKGNN). The framework is shown in Figure 2. It consists of
three key components: (1) Knowledge-aware Disentangled Intent
Modeling. We first apply multiple channels of disentangled repre-
sentations with an intent importance distribution to describe the
diversity of intent. Especially, we introduce the fund knowledge
graph to utilize financial domain knowledge to limit the intent space.
(2) Intent Importance-specific Aggregation, which aggregates each
corresponding channel of representations from neighbors respec-
tively and considers the different preferences or importance of the
intents among users’ behavior neighbors and funds’ knowledge
neighbors propagation. (3) Independence and Balance Constraints,
which add an independence regularizer on disentangled represen-
tations to encourage independence of intent, along with a balance
constraint on the intent importance distribution to avoid distribu-
tion unbalance and thus increase the diversity of intent.

4.1 Knowledge-aware Disentangled Intent
Modeling

To better capture the diverse fund investment intentions and utilize
finance domain knowledge from the knowledge graph, we first
define the knowledge-aware disentangled intent space. The intent
space can be determined by representation, distribution, and vol-
ume. (1) Representation. To describe the multi-interest of users
and the multi-attribute of funds, the representation of each node is
defined as multiple channels of disentangled representations. Each
channel of representation denotes a distinct intent of the node. (2)
Distribution. The distribution of intent space for each node is
to describe the different impacts of the user for different intents.
For example, observed from the behaviors in Figure 1, the user
Alice may have two intents, i.e. "Healthcare" sector and "ETF" type
when she clicks funds. The two intents may be disentangled into
two channels of representations. But Alice may value more on the
sector "Healthcare" than the type "ETF", it can not be reflected
from the disentangled representations. So we give each channel of
representation an intent importance as the knowledge intent dis-
tribution. (3) Volume. The volume of the intent space determines
the range of representation and distribution, which reflects the
expressive ability of the intent space. Our analysis reveals that the
aforementioned intents can be described by the knowledge in the
knowledge graph, such as (𝐹𝑢𝑛𝑑1, 𝑓 𝑢𝑛𝑑𝑆𝑒𝑐𝑡𝑜𝑟, 𝐻𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒) and
(𝐹𝑢𝑛𝑑4, 𝑓 𝑢𝑛𝑑𝑇𝑦𝑝𝑒, 𝐸𝑇𝐹 ). Therefore, attribute nodes like "fundSec-
tor" and "ETF" in the knowledge graph can represent some aspect
of the latent intent of users. These attribute nodes are unambiguous
and do not have multiple aspects of semantics. We aim to cluster
each attribute node implicitly as one of the disentangled intent
spaces. The direct approach to achieving this goal is to use a sin-
gle representation for the attribute node. However, this method is
incompatible with the multiple representations of the user/fund
nodes, and it may harm the performance of neighbor aggregation.
To overcome this issue, we restrict the intent distribution by con-
straining the intent importance distribution of the attribute node as
a one-hot vector. In the following subsections, we will provide the
mathematical form of the Knowledge-aware Disentangled Intent
Modeling.

4.1.1 Initialization of Disentangled Representation. For each node
𝑢 ∈ V , we need to obtain multiple representation H0

𝑢 = {H0
𝑢𝑘
, 𝑘 =

0, 1, ..., 𝐾 − 1} with 𝐾 independent components to capture nodes’
multiple intents. To achieve this goal, we first project the node
feature X𝑢 into different channels to initialize the disentangled
representations in which each channel extracts distinct semantic
intent from the features.

H0
𝑢 = {H0

𝑢𝑘
= 𝜎 (W0

𝑘
X𝑢 ), 𝑘 = 0, 1, ..., 𝐾 − 1}, (1)

whereW0
𝑘
is the trainable parameters,H0

𝑢𝑘
∈ R𝑑/𝐾 is the 𝑘-th chan-

nel of representations,𝜎 is the activate function, e.g. LeakyReLU [21].
𝑑 is the total dimension of representations and the representation
dimension of each channel is 𝑑/𝐾 . It is worth highlighting that we
set the same total dimension of representations 𝑑 = 64 with the
other non-disentangled methods in the experiment which will not
increase the number of trainable parameters.

4.1.2 Knowledge Intent Importance Distribution. Since the impor-
tance of different intents is distinct over different nodes. For exam-
ple, the top heavily invested stock is more important to a fund than
the tail invested stock; A user may pay more attention to the risk
level of the fund than the fund manager. Therefore, the disentangled
representations are not enough to capture the accurate intents, we
also need to generate the intent importance distribution:

S0𝑢 = {S0
𝑢𝑘
, 𝑘 = 0, 1, ..., 𝐾 − 1}, (2)

where S0
𝑢𝑘

∈ R1 is the importance of the intent representation H0
𝑢𝑘

.
And the total importance of all intent is set as 1, i.e.,

∑
𝑘 S0𝑢𝑘 = 1.

In the fund recommendation, different nodes have different dis-
tributions and there are two types of nodes. The first one is user and
fund node V = {U,I} which contain multiple semantic intents,
e.g., users’ multi-interest and funds’ multi-attribute. The distribu-
tion of these nodes is diverse. Another one is the attribute node
which contains the nodes in the knowledge graph except funds,
C = E/I. In general, their semantics are univocal, e.g., risk level,
fund manager, fund type, and so on. These nodes can be regarded as
potential intents for users’ behaviors. Therefore, the attribute node
contains only one intent, and the intent distribution of the attribute
node approximates a one-hot distribution which is a sparse vector
with only one non-zero dimension. In such a way, we restrict the
volume of each channel of intent space. Motivated by this phenom-
enon, we leverage an attentive mechanism to guide the learning of
the intent importance distribution.

S0
𝑢𝑘

= Softmax𝑘 (LeakyReLu(W0
𝑠𝑘
H0
𝑢𝑘

/𝜏𝑢 )), (3)

where W0
𝑠𝑘

is a trainable parameter and LeakyReLu is a non-linear
activation. The 𝜏𝑢 is the temperature parameter [16]. By the tem-
perature scaling, we give each node 𝑢 a parameter 𝜏𝑢 to control
the diverse intent distribution. When the 𝜏𝑢 is bigger, the result
of Softmax is closer to the uniform distribution. When the 𝜏𝑢 is
smaller, the result of Softmax is closer to one-hot distribution. So,
we give a smaller 𝜏𝑢 for the attribute node to obtain a sparse intent
distribution. We set the temperature parameter of all user/fund
nodes as a constant 𝜏𝑣 = 1 and the temperature parameter of all
attribute nodes as a constant 𝜏𝑐 = 0.5.

4.2 Intent Importance-specific Aggregation
In fund recommendation, the clicking or buying behavior is much
lower than in traditional daily goods recommendation on e-commerce
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Figure 2: The framework of our proposed DIKGNN.

platforms. Therefore, it is crucial to import GNNs to aggregate
neighbors’ information in the interaction graph and knowledge
graph and enrich multi-interest information. In this subsection, we
focus on how to incorporate a neighborhood aggregation scheme
into the disentangled knowledge graph learning task. Prior disen-
tangled GNN-based methods typically use dynamic routing on the
relations as minimum interest modeling, but they are insufficient
for preserving the granular structure information of complex funds.
Additionally, previous methods neglect to handle the intent impor-
tance distribution, which leads to inaccurate characterization of
users’ and funds’ intents. To address these limitations, we intro-
duce our intent importance-specific aggregation module on the
interaction and knowledge graph.

4.2.1 Aggregation over Interaction Graph. First, we define the ag-
gregation process over interaction graph. On the user-fund inter-
action graph, the users and funds include multiple intents. In this
aggregation, we aim to retain more information for each intent, in-
stead of choosing only one channel of intent for each neighbor like
previous disentangled GNNs by neighbor routing. Therefore, we
aggregate all the channels of intent representations of all neighbors
and control the importance by the intent importance distribution:

Ĥ𝑡+1
𝑢𝑘

=
∑︁

𝑣∈NG (𝑢 )
S𝑡
𝑢𝑘

S𝑡
𝑣𝑘
𝐴𝑡
𝑘
(𝑢, 𝑣)H𝑡

𝑣𝑘
, 𝑘 = 0, 1, ..., 𝐾 − 1, (4)

where H𝑡
𝑢𝑘

is the disentangled representation of node 𝑢’s 𝑘-th
channel after 𝑡 aggregation layers. And S𝑡

𝑢𝑘
is the node 𝑢’s intent

importance distribution which is calculated like the Equation 3
with the H𝑡

𝑢𝑘
as input. NG (𝑢) means node 𝑢’s neighbor set on the

interaction graph G. 𝐴𝑡
𝑘
(𝑢, 𝑣) denotes the similarity of node 𝑢 and

𝑣 on the 𝑘-th channel. We learn it by a dense layer and normalize it
by softmax over all neighbors:

𝐴𝑡
𝑘
(𝑢, 𝑣) = Softmax𝑣∈NG (𝑢 ) (W

𝑡
𝑎𝑘

[H𝑡
𝑢𝑘

| |H𝑡
𝑣𝑘
] + b𝑡

𝑎𝑘
), (5)

whereW𝑡
𝑎𝑘
, b𝑡
𝑎𝑘

are trainable parameters and | | is the concatenation
operator. By this equation, the aggregated representations can have
a positive correlation with three patterns, i.e., the user’s preference
to the intent space S𝑡

𝑢𝑘
, the fund’s importance trend to the intent

attribute space S𝑡
𝑣𝑘

and the similarity of user and fund among the
certain intent space 𝐴𝑡

𝑘
(𝑢, 𝑣). However, all these terms are lower

than 1 in the aggregation procedure, we add a layer normaliza-
tion [1] after obtaining the aggregated representations to avoid
vanishing gradient:

H𝑡+1
𝑢𝑘

= LayerNorm𝑘 (Ĥ𝑡+1𝑢𝑘
). (6)

4.2.2 Aggregation over Knowledge Graph. In the knowledge graph,
the knowledge relations have different types and represent different
semantics. We must distinguish the influence of different types of
relations. Besides, different from the interaction graph, there are two
types of aggregation in the knowledge graph based on the type of
target node. For the user/fund nodes, the aggregation should retain
more information to describe multi-interest. While for the attribute
nodes, the aggregation should learn its neighbors’ common intent
and only keep the corresponding channel of intent representation.
For example, the attribute node "Healthcare" in the Figure1 has three
neighbors Fund 1, 2, 3, only one channel of the funds is related to
the attribute node "Healthcare" and other channels are useless for
the aggregation of the attribute node "Healthcare". Therefore, we
design aggregation by the intent importance distribution as follows:

Ĥ𝑡+1
𝑝𝑘

=
∑︁

(𝑟,𝑞) ∈NG𝑘 (𝑝 )
S𝑡
𝑝𝑘
S𝑡
𝑞𝑘
𝑀𝑡
𝑟𝑘
(𝑝, 𝑞)H𝑡

𝑝𝑘
, 𝑘 = 0, 1, ..., 𝐾 − 1, (7)

where NG𝑘 (𝑝) is the neighbors of node 𝑝 which contains both
neighbor nodes and related relations. And𝑀𝑡

𝑟𝑘
(𝑝, 𝑞) is the impor-

tance of the knowledge relationships (𝑝, 𝑟, 𝑞).
By the design of temperature parameters, for user/fund node, the

intent distribution S𝑡
𝑝𝑘

is uniform, so we can obtain all the informa-
tion. As for the attribute node, the intent distribution S𝑡

𝑝𝑘
is one-hot,

so we can only preserve one related intent in the aggregation. So
the two types of aggregation can be unified into the above common
framework. For the influence of different types of relations, we
learn the𝑀𝑡

𝑟𝑘
(𝑝, 𝑞) by the knowledge-aware attention mechanism:

𝑀𝑡
𝑟𝑘
(𝑝, 𝑞) = Softmax(𝑟,𝑞) ∈NG𝑘 (𝑝 )kg_score(H

𝑡
𝑝𝑘
,H𝑡
𝑞𝑘
, 𝑟 ), (8)

where kg_score is the similarity of knowledge relations, and it
can be measured by any knowledge graph representation learning
method [27]. For simplicity, we just use a simplemethod TransH [43]:

kg_score(H𝑡
𝑝𝑘
,H𝑡
𝑞𝑘
, 𝑟 ) = (H𝑡

𝑝𝑘⊥ + d𝑟 )𝑇H𝑡𝑝𝑘⊥, (9)

H𝑡
𝑝𝑘⊥ = H𝑡

𝑝𝑘
−w⊤

𝑟 H
𝑡
𝑝𝑘
w𝑟 , H𝑡𝑞𝑘⊥ = H𝑡

𝑞𝑘
−w⊤

𝑟 H
𝑡
𝑞𝑘
w𝑟 (10)
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It firstmaps the node representation into relation space (H𝑡
𝑝𝑘⊥,H

𝑡
𝑞𝑘⊥)

and then measures the inner product similarity in the relation space.
As a result, we can obtain the disentangled intent representations
from the knowledge graph. We also add a layer normalization layer.

Finally, for fund nodes in both the interaction graph and knowl-
edge graph, we just simply concatenate their aggregated repre-
sentation of each channel respectively and transform them into
multiple latent spaces by dense layers. We recursively conduct the
aggregation 𝐹 times to obtain the high-order structure informa-
tion. For briefness, the number of aggregation layers is set as 2.
After these aggregations among the two networks, we can obtain
the final disentangled representations H𝐹

𝑢𝑘
and intent importance

distribution S𝐹𝑢 .

4.3 Independence and Balance Constraint
The intent represents a different aspect of information. By the in-
formation theory [5], if the representations are not independent, it
contains redundant information and is less informative to describe
user intents. (1) In our limited representation dimensions, we en-
courage our disentangled representations to be independent for
better capacity and explainability with micro independence con-
straint. (2) Besides, we also obtain the knowledge intent importance
distribution compared with previous disentangled GNNs. Hence,
we can also conduct our model in the macro-level by limiting the
total average distribution over all nodes to be balanced.

4.3.1 Micro Independence Constraint. To constrain the disentan-
gled representations independently, we add a distance correlation
index. This index is equal to zero only if the two inputs are indepen-
dent. Since the attribute nodes are univocal and only one channel
of representation is meaningful, we just apply independence con-
straint on user and fund nodes. We define the micro independence
constraint over any two channels as follows:

L𝑐𝑜𝑟 =
∑︁
𝑘

∑︁
𝑘!=𝑘 ′

dCor
(
H𝐹·𝑘 .H

𝐹
·𝑘 ′

)
(11)

where H𝐹·𝑘 = [H𝐹
𝑢1𝑘

; ...;H𝐹
𝑢𝑀𝑘

;H𝐹
𝑖1𝑘

; ...;H𝐹
𝑖𝑁 𝑘

] ∈ R(𝑀+𝑁 )× 𝑑
𝐾 is the

final user/fund representations with 𝑀 = |U| and 𝑁 = |I |. The
distance correlation dCor [30] is defined as:

dCor
(
H𝐹·𝑘 ,H

𝐹
·𝑘 ′

)
=

dCov
(
H𝐹·𝑘 ,H

𝐹
·𝑘 ′

)
√︂
dVar

(
H𝐹·𝑘

)
· dVar

(
H𝐹·𝑘 ′

) , (12)

where dCov is the covariance matrix of two representations and
dVar is the variance matrix of each representation.

4.3.2 Macro Balance Constraint. In the macro level, we limit the
total average distribution over all nodesV∪E are uniform to avoid
distribution unbalance and thus increase the diversity of intents.
We use the information entropy [28] to constrain:

L𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = −Entropy(
∑
𝑢∈V∪E S𝐹

𝑢0∑
𝑘

∑
𝑢∈V∪E S𝐹

𝑢𝑘

, ...,

∑
𝑢∈V∪E S𝐹

𝑢,𝐾−1∑
𝑘

∑
𝑢∈V∪E S𝐹

𝑢𝑘

),

(13)
where Entropy(p1, .., pK−1) is defined as

∑
𝑘=0,...,𝐾−1 −𝑝𝑘 log(𝑝𝑘 )

and the
∑
𝑢∈V∪E S𝐹

𝑢𝑘
is the sum of intent importance value of all

nodes. The loss gets the minimum value when the sum of the intent
importance value is equal to

∑
𝑢∈V∪E S𝐹

𝑢0 = ... =
∑
𝑢∈V∪E S𝐹

𝑢,𝐾−1.

4.4 Model Prediction
Having obtained the final representations H𝐹

𝑢𝑘
and knowledge in-

tent importance distribution S𝐹𝑢 , we define the score function Φ to
estimate how likely a user will have interacted with a fund:

Φ(𝑢, 𝑣) =
∑︁
𝑘

S𝐹
𝑢𝑘

S𝐹
𝑣𝑘
(H𝐹𝑇
𝑢𝑘

H𝐹
𝑣𝑘
), (14)

which is the sum of the inner product of each intent representation
weighted by the intent importance. Then, we use pairwise Bayesian
personalized ranking loss [24] to make the scores of positive sam-
ples larger than the negative ones:

L𝑟𝑒𝑐 =
∑︁

(𝑢,𝑖 ) ∈O,(𝑢,𝑗 ) ∈O−
−ln 𝜎 (Φ(𝑢, 𝑖) − Φ(𝑢, 𝑗)), (15)

where O is a positive sample set, each positive instance is an ob-
served user-item interaction, and O− is the negative sample set,
each instance is randomly sampled from the items that the user
does not adopt before to pair the user as a negative one; 𝜎 is the
sigmoid function.

We alternatively optimize this recommendation loss with the
independence loss (Equation 11) and balance loss (Equation 13), the
total objective function is shown as follows:

L𝑡𝑜𝑡𝑎𝑙 = L𝑟𝑒𝑐 + 𝜆 ∗ L𝑐𝑜𝑟 + 𝛽 ∗ L𝑏𝑎𝑙𝑎𝑛𝑐𝑒 , (16)

where 𝜆 and 𝛽 are the hyperparameters to control the weight of
the constraints.

4.5 Time & Space Complexity
4.5.1 Time Complexity. The time cost of our proposed DIKGNN
mainly comes from two parts, knowledge-aware disentangled in-
tent modeling and the intent importance-specific aggregation. The
time complexity of knowledge aware disentangled intent modeling
is𝑂 (( |V|+|E|)𝐾𝑑) where |V| is the number of nodes in interaction
graph, |E | is the number of the nodes in the knowledge graph. 𝐾 is
the number of intent representations and 𝑑 is the total embedding
size. For the intent importance-specific aggregation the time com-
plexity if 𝑂 (( |G| + |G𝑘 |)𝐹𝐾𝑑) where |G| and |G𝑘 | are the number
of edges in the interaction graph and knowledge graph. 𝐹 is the
number of graph layers. It is easy to see that the time complexity of
our model is linear to the number of nodes and edges in the graph,
which is comparable to the start-of-the-art baselines.

4.5.2 Space Complexity. While we slice the node representations
into 𝐾 channels, we set the same total dimension of all represen-
tations (i.e., 𝑑 = 64) with the other non-disentangled methods.
The used space of our model is mainly determined by the repre-
sentations of all nodes and the space complexity of our model is
O((|V| + |E|)𝑑) which is also the same as the space complexity of
the state-of-the-art baselines.

5 EXPERIMENT
In this section, we conduct extensive experiments on several tasks
to demonstrate the effectiveness of DIKGNN. We use three public
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Table 1: Statistics of the datasets.

MovieLens Last-FM Yelp Fund

Network

#Users 6,036 23, 566 45,919 266,902
#Items 2,445 48, 123 45, 538 20,019
#Interactions 376,886 3, 034, 796 1, 185, 068 861,159
#Density 0.026 0.027 0.0005 0.00016

Knowledge
Graph

#Entities 182,011 58, 266 90, 961 33,571
#Relations 12 9 42 8
#Triplets 1,241,995 464, 567 1, 853, 704 40,665

benchmark datasets, i.e., MovieLens, Last-FM, Yelp, and one in-
dustrial dataset Fund from a real FinTech platform to answer the
following research questions:

• RQ1: Do the users have multi-interests and different pref-
erences on the intents in real-world fund recommendation
scenarios?

• RQ2: How does our proposed DIKGNN perform compared
with the state-of-the-art models?

• RQ3: How do different parameters (e.g., the learning rate,
intent number, the temperature parameter of the attribute
node 𝜏𝑐 , knowledge intent importance distribution) affect
the results of DIKGNN?

• RQ4: How does DIKGNN perform on real-world FinTech
platforms?

5.1 Experimental Settings
5.1.1 Dataset Description. We conduct the experiment on the Fund
dataset sampled from a real-world FinTech platform. The real-world
FinTech platform aims to recommend funds for users. We obtain
the dataset from online exposure samples over two weeks. The click
samples are used as positive samples and the non-click samples
are negative samples. The financial knowledge graph is collected
based on public fund information from securities companies and
fund institutions. The knowledge graph contains multiple relation-
ships between funds and other attributes, such as (Fund, fundSector,
Plate), (Fund, Holding, Stock), (Fund, ManagerIs, Manager), (Fund,
track, Index), and so on. Since there are no public fund recommen-
dation datasets, we also add three publicly available benchmark
datasets to prove our effectiveness over the state-of-the-art base-
lines. MovieLens4 is a widely used movie dataset including movie
ratings collected by the GroupLens Research website. Last-FM5 is a
music dataset that contains social network, tag, and music artist
information for users who listen to the Last.fm online music sys-
tem. Yelp6 is a business dataset that integrates the information of
businesses, reviews, and user data collected from the 2018 edition
of Yelp challenge. Following the method of KCAN [32], the related
knowledge graphs of the three public benchmarks are pre-processed
by matching the entities of the open knowledge graph with the
items by their title names. The detailed statistics of the datasets are
summarized in Table 1. The density in the table is calculated by
#𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠
#𝑈𝑠𝑒𝑟𝑠∗#𝐼𝑡𝑒𝑚𝑠 . We can find that Fund dataset is much more sparse
than other datasets.

4https://grouplens.org/datasets/movielens/1m/
5https://grouplens.org/datasets/hetrec-2011//
6https://www.yelp.com/dataset/challenge/

5.1.2 Evaluation Metrics. In the evaluation phase on the public
benchmark, we adopt two evaluation tasks in recommendation
scenarios for all methods: Top-K recommendation and CTR(Click
Through Rate) prediction. (1) To evaluate Top-K recommendation,
we use the leave-one-out strategy used in other works [8], and fol-
low the same protocols [32]: Hit Ratio@K(Hit@K) and Normalized
Discounted Cumulative Gain@K(NDCG@K) [7], where K is set as
10 by default. (2) In the CTR task, we use interacted items by users
as positive items and randomly sampled items as negative items.
The area under the curve(AUC) [22] is set to be the evaluation
metric. We report the average results w.r.t. the metrics for all users
in the test set.

5.1.3 Alternative Baselines. We compare DIKGNN with state-of-
the-art methods, covering KG-free(NMF, GAT, DisenGCN), GNN-
based(CKE, KGAT, KCAN) and disentangledGNN-based(DisenKGAT,
KGIN) methods:

• NMF [8] is a factorization machine model for prediction
under sparse settings. The origin algorithm does not consider
a knowledge graph.

• GAT [33] introduces multi-head attention mechanism into
neighbor aggregation.

• CKE [48] combines collaborative filtering with the knowl-
edge representation learning in the embedding space.

• KGAT [38] extends GAT and introduces graph attention
into the knowledge graph, and the attention relies on the
knowledge relation.

• KCAN [32] introduces conditional attention in the knowl-
edge recommendation on target-specific subgraphs to cap-
ture user preference.

• DisenGCN [20] uses neighborhood routing among the neigh-
bors to obtain disentangled node representations.

• DisenKGAT [44] extends DisenGCN into a KG-based setting
and introduces knowledge attention into the disentangled
GNN.

• KGIN [40] models each intent as an attentive combination
of KG relations to refine high-level concepts of intent and
make the intent representation disentangled.

For knowledge graph-free based methods which do not consider
knowledge graphs originally, we ignore the type of knowledge re-
lations and simply combine the adjacency matrix of the interaction
network and knowledge graph into a single one for introducing
knowledge graph.

5.1.4 Parameter Settings. We implement the DIKGNNmodel in Py-
Torch. For a fair comparison, we adopt Adam [13] as the optimizer
for all models, and fix the number of intent 𝐾 as 4 and total embed-
ding size 𝑑 of all intents as 64 for disentangled GNN-based mod-
els(DisenGCN, DisenKGAT, KGIN and our DIKGNN), and fix the
size of embeddings 𝑑 as 64 for other models(CKE, NMF, GAT, KGAT,
KCAN). The number of GNN layers is set as 2 for all GNN-based
methods. Without specification, in our DIKGNN, we fix the temper-
ature parameter of the attribute node 𝜏𝑐 as 0.5 for all datasets. The
learning rate is tuned in {0.01, 0.025, 0.05, 0.1}, and the coefficients
of the constraint loss are searched in {1𝑒 − 2, 5𝑒 − 2, 1𝑒 − 1, 5𝑒 − 1}.
Moreover, in Section 5.4, we study their influence by varying 𝐾 in
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Figure 3: The probability that user clicks the cluster w.r.t. the
cluster id.

{1, 2, 4, 8}, 𝜏𝑐 in {0, 0.5, 1} and whether to apply knowledge intent
importance distribution.

5.2 Data Analysis (RQ1)
In this subsection, we will analyze whether there are multi-interest
and intent importance issues in the real fund recommendation
scenario. However, there is no explicit intent label in the dataset.
So we use a simple cluster method (K-means [15]) to cluster all the
funds by their attributes into 20 classes and each class can implicitly
represent the intent of users. And then for each user, we count the
clicked funds in the past 14 days and calculate the probability that
the user clicks the corresponding cluster of the fund. The mean
value and standard deviation of the probability for each cluster are
shown in Figure 3. The bar indicates the mean value and the error
bar indicates the standard deviation. We can see that there are many
non-zero values for all clusters which demonstrates the existence
of the multi-intent. Besides, the standard deviation in the error bar
is extremely large. It indicates that the different users have very
different intents.

5.3 Performance Comparison (RQ2)
We report the empirical results of all methods on the public datasets
in Table 2 and Table 3 evaluated with Top-K recommendation and
CTR prediction respectively. From the performance comparison,
we get the following observations:

• Our proposed DIKGNN consistently outperforms all the base-
lines of three datasets on both Top-K recommendation and
CTR prediction. It demonstrates the effectiveness of our pro-
posed method DIKGNN. Moreover, DIKGNN outperforms
other disentangled KG-basedmethods DisenKGAT and KGIN
in all experiments since they neglect to consider the multi-
interest importance distribution. It indicates the effectiveness
of the intent importance distribution to capture the intent
accurately.

• The relative improvements of DIKGNN over the best base-
lines is larger in the sparsest dataset yelp and Fund than
those of other datasets. It demonstrates our design is more
stable for sparse datasets and it is important for fund rec-
ommendation which is more sparse than traditional goods
recommendation.

Table 2: Hit@10 and NDCG@10 in top-K recommendation.

Dataset MovieLens Last-FM Yelp Fund
Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10

NFM 0.384 0.204 0.697 0.421 0.775 0.491 0.588 0.367
GAT 0.482 0.260 0.511 0.293 0.694 0.419 0.737 0.505
CKE 0.293 0.158 0.606 0.383 0.741 0.480 0.476 0.341
KGAT 0.467 0.252 0.699 0.437 0.799 0.502 0.701 0.476
KCAN 0.668 0.365 0.771 0.506 0.810 0.527 0.856 0.642

DisenGCN 0.555 0.292 0.726 0.478 0.777 0.490 0.751 0.507
DisenKGAT 0.645 0.359 0.747 0.489 0.790 0.504 0.809 0.562

KGIN 0.669 0.376 0.785 0.527 0.794 0.513 0.778 0.608
DIKGNN 0.683 0.377 0.803 0.541 0.840 0.567 0.873 0.682

Table 3: AUC value in CTR prediction.

Dataset MovieLens Last-FM Yelp Fund
NFM 0.809 0.904 0.908 0.823
GAT 0.849 0.826 0.910 0.861
CKE 0.530 0.850 0.915 0.577
KGAT 0.841 0.905 0.922 0.915
KCAN 0.907 0.923 0.937 0.935

DisenGCN 0.864 0.903 0.922 0.891
DisenKGAT 0.895 0.914 0.935 0.895

KGIN 0.906 0.931 0.942 0.919
DIKGNN 0.909 0.932 0.949 0.948

(a) (b)

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

0.905

0.91

0.915

0 0.02 0.04 0.06 0.08 0.1 0.12

AU
C

Learning rate

0.892

0.894

0.896

0.898

0.9

0.902

0.904

0.906

0.908

0.91

0.912

0 1 2 3 4 5 6 7 8 9

AU
C

Intent number

0.898

0.9

0.902

0.904

0.906

0.908

0.91

0 0.2 0.4 0.6 0.8 1 1.2

AU
C

Temperature parameter of attribute node

(c)

0.875

0.88

0.885

0.89

0.895

0.9

0.905

0.91

0.915

1 0
AU

C
Whether to apply

knowledge intent importance distribution

(d)

Figure 4: The impact of (a) learning rate, (b) intent number.
(c) temperature parameter of attribute node, (d) knowledge
intent importance distribution.

• The CKE andNFM achieve the worst results since they do not
deal with the domain knowledge in the knowledge graph and
they also do not have disentangled representations to cap-
ture the multi-interest. And the performance of DisenKGAT
over DisenGCN, and KGIN over KGAT also validate the im-
portance of dealing with these two issues respectively.

5.4 Hyper-parameter Sensitivity (RQ3)
In this section, hyper-parameter sensitivity studies on DIKGNN are
also conducted to investigate the effectiveness with different hyper-
parameters — especially, how the learning rate, the number of the
intent 𝐾 , the temperature parameter of the attribute node 𝜏𝑐 and
knowledge intent importance distribution influence our model. For
brevity, we only report the AUC results with the smallest MovieLens
dataset, and we can observe similar trends on other datasets.
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5.4.1 Impact of Learning Rate. To study the influence of learning
rate, we vary the learning rate in the range of {0.001, 0.005, 0.01
, 0.025, 0.05, 0.1} and demonstrate the performance comparison in
Figure 4(a). We observe that the AUC metric increases significantly
from 0.001 to 0.025 in the learning rate, but decreases slowly from
0.05 to 1, and increases slowly between 0.025 and 0.05. Thus select-
ing a suitable learning rate is important.

5.4.2 Impact of Intent Number. We then consider varying the num-
ber of the intent 𝐾 in the range of {1, 2, 4, 8} and summarize the
empirical results in Figure 4(b). We find that the performance can
be improved significantly by augmenting the intent number from
1 to 4. Especially, the performance of DIKGNN is the worst when
𝐾 = 1, indicating that the model has the worst performance when
the model does not capture the multi-interests. It further proves the
effectiveness of disentangling multiple interests of users. And the
performance drops when the number of the intent from 4 to 8. The
reasons could be that the embedding dimension of each channel
become too small to represent the intent when the the number of
the intent increases (e.g., 𝑑

𝐾
= 8 when 𝐾 = 8).

5.4.3 Impact of Temperature Parameter of Attribute Node. In the
proposed model, the intent importance distribution of user/fund
node tends (controlled by 𝜏𝑣 ) to be average, but the intent distri-
bution of the attribute node (controlled by 𝜏𝑐 ) tends to be sparse.
We distinguish user/fund nodes from attribute nodes by setting
different temperature parameter of node 𝜏𝑢 . The larger 𝜏𝑢 , the more
average the intention distribution, the smaller 𝜏𝑢 , the more sparse
the intention distribution. We fix the user/fund node 𝜏𝑣 as 1 and
vary the attribute node 𝜏𝑐 in the range of {0, 0.5, 1} to conduct
parameter sensitivity analysis, the performance comparison is in
Figure 4(c). If the 𝜏𝑐 is too small, it is equivalent to the complete
average without attention, but if 𝜏𝑐 = 1, it is equivalent to no dis-
tinction on the user/fund nodes and attribute nodes. They are not
as good as the effect of 𝜏𝑐 = 0.5 which indicates the effectiveness
of introducing domain knowledge by limiting the volume of intent
space by the attribute node of knowledge graph.

5.4.4 Impact of Knowledge Intent Importance Distribution. We con-
duct the ablation study on knowledge intent importance distribu-
tion to verify its effect, and the performance result is shown in
Figure 4(d). The left bar is our DIKGNN and the right bar is one
variant of our model to remove the knowledge intent importance
distribution. We can find that applying knowledge intent impor-
tance distribution in DIKGNN can get obvious benefits. This also
demonstrates assigning different importance to different intentions
can help to capture the accurate intents.

5.5 Online A/B Test (RQ4)
We deploy our proposed model DIKGNN on the fund recommen-
dation platform and conduct online A/B test(i.e., bucket tests) for
two weeks. For the time and business limitations, we can not run
all the previous baselines in this online setting and just compare
with the latest deployed model KCAN which is the best baseline
in our sampled offline Fund dataset. CTR (Click-Through-Rate), a
widely used industry metric, is used to measure the performance
of methods online. Besides, we also take two purchase metrics, i.e.,
fund purchase UV(Unique Visitor) and fund purchase volume as our

Table 4: Relative improvement on A/B test.

Metrics CTR Fund Purchase UV Fund Purchase Volume
%Imp. 0.86% 3.17% 4.36%
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Figure 5: Performance comparison on baseline and DIKGNN.

metrics. Detailed performance metrics on fund recommendation
are shown in Table 4. We can see that our model achieves signif-
icant improvement over the online baseline and thus our model
had deployed online to replace the previous model. Besides, we
also analyze our model on the hit@K and diversity of the recom-
mendation. We first compare the performance of DIKGNN with
the online baseline on Hit@K. In the Hit@K setting, 𝐾 in Hit@K
ranges in {5, 10, 15, 20}. It can be seen that the effect of DIKGNN is
significantly better than the baseline on every 𝐾 in Figure 5(a).

Then we verify whether our model will harm the diversity. To
compare diversity, we select users who have clicked on funds in
the last 14 days and analyze diversity from different perspectives of
the funds, i.e., the number of fund types, fund institutions and fund
managers. We report the average results w.r.t. diversity for all users
we selected. From Figure 5(b), we find the diversity of our model is
also obviously improved compared to the online deployed model,
which has a positive impact on the ecology of fund recommendation.
This benefits from describing the multi-interests accurately in the
fund recommendation by DIKGNN.

6 CONCLUSION
To solve the data sparsity and product complexity issue in the
fund recommendation, we propose a novel model named Disentan-
gled Interest Importance Aware Knowledge Graph Neural Network
(DIKGNN) to utilize the finance domain knowledge and capture di-
verse fund investment intentions. We first apply multiple channels
of disentangled intent representations, equipped with an intent
importance distribution to describe the intent diversity. Next, we re-
strict the multiple intent spaces by introducing the attribute nodes
from the fund knowledge graph to utilize financial domain knowl-
edge. Then we design the users’ behavior neighbor aggregation
and the funds’ knowledge neighbor aggregation to aggregate each
corresponding channel of representations from neighbors to obtain
multi-intent information. Last, we add an independence regularizer
on disentangled representations and a balance cluster constraint
on the intent importance distribution to increase the diversity of
intent.
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