
RecStudio: Towards a Highly-Modularized Recommender System
Defu Lian∗

liandefu@ustc.edu.cn
University of Science and Technology

of China

Xu Huang
xuhuangcs@mail.ustc.edu.cn

University of Science and Technology
of China

Xiaolong Chen
chenxiaolong@mail.ustc.edu.cn

University of Science and Technology
of China

Jin Chen
chenjin@std.uestc.edu.cn

University of Electronic Science and
Technology of China

Xingmei Wang
xingmeiwang@mail.ustc.edu.cn

University of Science and Technology
of China

Yankai Wang
echobelbo@mail.ustc.edu.cn

University of Science and Technology
of China

Haoran Jin
HaoranJin@mail.ustc.edu.cn

University of Science and Technology
of China

Rui Fan
jennahfr@mail.ustc.edu.cn

University of Science and Technology
of China

Zheng Liu
zhengliu1026@gmail.com

Huawei

Le Wu
lewu.ustc@gmail.com

Hefei University of Technology

Enhong Chen
cheneh@ustc.edu.cn

University of Science and Technology
of China

ABSTRACT
A dozen recommendation libraries have recently been developed to
accommodate popular recommendation algorithms for reproducibil-
ity. However, they are almost simply a collection of algorithms,
overlooking the modularization of recommendation algorithms
and their usage in practical scenarios. Algorithmic modularization
has the following advantages: 1) helps to understand the effec-
tiveness of each algorithm; 2) easily assembles new algorithms
with well-performed modules by either drag-and-drop program-
ming or automatic machine learning; 3) enables reinforcement
between algorithms since one algorithm may act as a module of
another algorithm. To this end, we develop a highly-modularized
recommender system – RecStudio, in which any recommendation
algorithm is categorized into either a ranker or a retriever. In the
RecStudio library, we implement 90 recommendation algorithms
with the pure Pytorch, covering both common algorithms in other
libraries and complex algorithms involving multiple recommenda-
tion models. RecStudio is featured from several perspectives, such
as index-supported efficient recommendation and evaluation, GPU-
accelerated negative sampling, hyperparameter learning on the
validation, and cooperation between the retriever and ranker. Rec-
Studio is also equipped with a web service, where the recommen-
dation pipeline can be quickly established and visually evaluated

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’23, July 23–27, 2023, Taipei, Taiwan
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9408-6/23/07. . . $15.00
https://doi.org/10.1145/3539618.3591894

on selected datasets, and the evaluation results are automatically
archived and visualized in a leaderboard. The project and docu-
ments are released at http://recstudio.org.cn.

CCS CONCEPTS
• Information systems → Recommender systems.

KEYWORDS
Recommender System, Modularization, Web Services, Multi-Stage

ACM Reference Format:
Defu Lian, Xu Huang, Xiaolong Chen, Jin Chen, Xingmei Wang, Yankai
Wang, Haoran Jin, Rui Fan, Zheng Liu, Le Wu, and Enhong Chen. 2023. Rec-
Studio: Towards a Highly-Modularized Recommender System. In Proceed-
ings of the 46th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR ’23), July 23–27, 2023, Taipei, Taiwan.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3539618.3591894

1 INTRODUCTION
Recommender systems provide an essential way to alleviate infor-
mation overload issues. These techniques not only improve user
experiences in diverse areas like e-commerce, online education, and
personal assistance, but also create great value for many high-tech
companies, such as Amazon, Google, Microsoft, and Taobao. As
a consequence, recommender systems have been a long-standing
research topic, producing many algorithms from both academia
and industry. Recent efforts have been devoted to develop unified
and reproducible frameworks [67, 85, 89] with standardizing in-
puts, model interfaces, and evaluation for accommodating popular
recommendation algorithms. These frameworks have been imple-
mented with many different programming languages like C++, Java,
Python, Matlab, and C#, and even different python deep learning
libraries, like TensorFlow and PyTorch. They have significantly
accelerated the development of open-source recommender systems.

2890

https://doi.org/10.1145/3539618.3591894
http://recstudio.org.cn
https://doi.org/10.1145/3539618.3591894
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3539618.3591894&domain=pdf&date_stamp=2023-07-18

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Defu Lian et al.

We have extensively investigated these frameworks, and observed
the following limitations:

• These frameworks are usually designed for research pur-
poses, barely considering their practical usage in real scenar-
ios. It is of low efficiency to conduct the evaluation on the held-out
datasets in most frameworks, since they have to make inferences
for each candidate item, even though the inference is implemented
by C++/C. A practical scalable recommender system usually calls
for a multi-stage workflow of cascade ranking, but there is currently
no framework to bring them together. This also leads to the gap be-
tween academia and industry, where the algorithms from academia
are difficult to test/deploy in the industry while the algorithms from
the industry are challenging to compare as baselines.

• These frameworks are almost simply a collection of algo-
rithms, overlooking the modularization of recommendation
algorithms. The implementation of algorithms only follows stan-
dard model interfaces, such that the evaluation protocol can be
standardized. However, the recommendation algorithms have al-
most identical architectures and share many common components
like data augmentation [77], negative sampling [46, 82], scoring
functions, encoders of sequence [39]/KG [80], feature interaction
operators [24, 87], debiasing [66] and loss functions. This squan-
ders the chance of creating better recommendation algorithms by
combining the best modules in each component.

To address these issues, we have initiated a project called Rec-
Studio for developing highly-modularized recommender systems.
In addition to the commonly-concerned reproducibility of existing
models and the standardization of evaluation protocol, RecStudio
adds new features for further facilitating the implementation of
existing algorithms or the development of new algorithms by dis-
assembling the recommendation algorithms into reusable modules.
These key features and capabilities of RecStudio are summarized in
the following six perspectives.

• Modularizing recommendation models. Though hundreds
of recommendation algorithms were proposed, these algorithms
only differ in small parts, like loss functions and feature encoders.
Therefore, it is essential to disassemble the recommendation algo-
rithms into small reusable blocks called modules, such that it is less
error-prone yet more convenient to implement existing algorithms
and assemble new excellent algorithms with these modules by ei-
ther drag-and-drop programming or automatic machine learning.

• Assembling both retrievers and rankers. A scalable recom-
mender system usually calls for a multi-stage workflow, as demon-
strated in Figure 2. Within the workflow, a retriever first selects a
small set of candidates from the entire items with high efficiency
and the cascade rankers are then used to refine the best items from
the retrieval results with highly expressive yet time-consuming net-
works. These different requirements lead to their use of different
architectures. RecStudio assembles and unifies both the retriever
and ranker, and implements the cascade ranker by embedding a re-
trievable ranker with the top-k functionality. This makes it possible
to scale online recommendations for massive items and to optimize
the entire multi-stage workflow simultaneously.

• Supporting efficient recommendation and evaluation
with ANNs indexes and multi-stage filters. The retriever is
equipped with an ANNs index [38], which is either incrementally
updated or rebuilt from scratch every several epochs, such that the

Data TripletDataset UserDataset SeqDataset ALSDataset

Query
Encoder

Item
Encoder

Scorer

Sampler

Loss Function

Embedding Layer

Index

Retriever Ranker

Graph Tree PQ Hash

Seq2SeqDataset

Implicit Explicit

Figure 1: The framework of RecStudio.

Candidate
Generation

Rankinghundreds dozens

Retriever Ranker

Item
Corpus

tens of
millions

Pre-Ranking
tens of

thousands

user history and context

Figure 2: Multi-stage workflow of scalable recsys.

top-k results can be retrieved from the retriever in sublinear time.
Based on the top-k results, RecStudio implements a novel efficient
method to compute the ranking metrics on the validation/testing
set with pure tensor operators. When embedding a retriever inside,
the ranker also supports the top-k functionality, which is called
the retrievable ranker. The retrievable ranker returns the top-k
results by retrieving a small set of candidates from the retriever
and refining the retrieval results based on the ranker’s inference.

• Accelerating negative sampling with GPU. Both the re-
triever and the retrievable ranker are usually trained on implicit
feedback, which is positive only and unlabeled. Therefore, nega-
tive samples have to be drawn from unlabeled data. The negative
sampling methods have evolved from static sampling (e.g. uniform
sampling [62] or frequency-based sampling [61]) to model-based dy-
namic sampling (e.g. dynamic negative sampling [82], cluster-based
sampling [46], or LSH sampling [68]). Though static sampling is
more efficient, it usually leads to slow convergence due to the large
divergence between sampling distributions and the real distribution.
Existing libraries almost draw negative samples when preparing
the datasets, so it is challenging for them to adopt model-based
dynamic sampling methods. RecStudio treats negative samplers as a
module of recommendation algorithms and implements both static
sampling and dynamic sampling with pure tensor operators so that
negative sampling can be accelerated with GPU.

• Learning hyperparameters on the validation set. The hy-
perparameters are usually tuned on the validation set, by exploring

2891

RecStudio: Towards a Highly-Modularized Recommender System SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

Table 1: Score Functions

Score function Formula

Inner Product [32, 62] 𝑟 = q𝑇 i

Cosine Similarity [54] 𝑟 =
q𝑇 i
|q| |i|

Squared Euclidean distance [27, 31] 𝑟 = ∥q − i∥22
MLP [30] 𝑟 = (𝑓𝜽𝑛 ◦ · · · ◦ 𝑓𝜽0) ([q; i])
ℓ𝑝 -Norm[2, 81] 𝑟 = ∥q − i∥𝑝
GMF [30] 𝑟 = 𝜎 (q ⊙ i)
GMFMLP [30] 𝑟 = 𝜎 (h𝑇𝑎 (q ⊙ i +W[q; i] + b))

the space for good values. The search algorithms can be grid search,
Bayesian optimization, evolutionary algorithms, or reinforcement
learning, which are integrated into most hyperparameter tuning
libraries like Ray Tune [51], Hyperopt [5], Scikit-Optimize [70], Mi-
crosoft NNI [56], and so on. In addition to hyperparameter tuning,
RecStudio also integrates the learning of some hyperparameters on
the validation set through (stochastic) gradient descent, based on
the gradient of validation loss with respect to the hyperparame-
ters. The learning of hyperparameters is much more efficient than
tuning, but it does not apply to all hyperparameters.

• Jointly optimizing the retriever and cascade rankers. In
addition to assembling both retrievers and rankers, RecStudiomoves
a step further, implementing all hitherto known joint optimization
algorithms between the retriever and cascade rankers. It realizes
cascading a retriever or a retrievable ranker before the ranker and
provides them with an interface of negative sampling and top-k
retrieval. In particular, the retriever may generate hard negatives
for the rankers’ training, while the rankers could transfer their
knowledge of ranking hard negatives to the retriever. This enables
a bidirectional information flow between the retriever and rankers.

2 RECSTUDIO DESIGN
The framework of RecStudio is illustrated in Figure 1, where recom-
mendation models are disassembled into several modules. We will
introduce the modules as follows.

2.1 Input Design
The flow from the raw data format to the model input involves
the following steps: (1) load data configuration (2) pre-process raw
data (3) split data for training and testing (4) build mini-batches.
Four dataset structure classes, i.e., TripletDataset, UserDataset, Se-
qDataset, Seq2SeqDataset and ALSDataset, are carefully designed
in this library to support all mainstream recommendation tasks,
which vary in the input format of the mini-batch data. Arbitrary
raw datasets in the .csv and .tsv format support these data struc-
tures to implement arbitrary recommenders and we collect popular
10 datasets in the latest version. Our library has the following three
careful designs for input to make it much easier to get started, more
convenient and more efficient.

User-friendly Configuration. The configuration of datasets
is particularly convenient in this brand-new library, which only
requires setting a few essential fields. These fields can be configured
flexibly. Currently, we support command line input, YAML format
configuration, python dictionary input, or importing configuration
files via the visual front-end page. Once the major fields are set, the
library automatically performs the data pre-processing, including

data filtering, missing value filling, id mapping, data split, etc., in
preparation for subsequent model learning.

Time-saving File Reading. Considering the general scenario
where a single dataset will be experimented with multiple times,
including different data splits and different recommendation algo-
rithms, the library is designed with a caching switch to store the
processed files in a binary file format for subsequent reading directly
from the disk into memory. In particular, given the considerably
large-scale dataset, the saved caching avoids the time-consuming
pre-processing procedure except for the first loading, such as data
filtering and id mapping, which will consume a large amount of IO,
and thus reduces the waiting time for data preparation.

Highly Parallelized Data Loader. Building multiple mini-
batches from the entire dataset for training requires a large amount
of communication, especially in the scenario of sequential recom-
mendations with large-scale datasets. In this way, we overwrite
the sampler class to achieve more efficient loaders. Specifically,
within each mini-batch, the sampler returns a batch of indexes
rather than a single index at once, which can be easily accom-
plished thanks to the intelligent slicing of tensors. Compared to the
native multi-process loader, we empower the library to perform a
highly automated parallelization with no user perception and with
no need to manually set the process numbers.

2.2 Model Design
2.2.1 General Design. After extensive surveys of current recom-
mendation models, we summarize and decouple the whole learning
schema into the following components: mapping function to en-
code the raw input, score function to predict the user preference,
and loss function to guide model learning. The mapping function
is determined by the current mainstream recommendation tasks,
presenting the encoders for retrievers and consisting of feature
embedding and interaction layers for rankers and we will intro-
duce them in the next section. scorer function usually calculates
the similarity between the given query and item and we currently
implement seven scoring functions as shown in Table 1. As for the
loss function, it calculates the deviation from the ground-truth labels
and then guides the model learning. We categorize existing loss
functions in recommendation models into three base classes, i.e.,
ListwiseLoss, PariwiseLoss and PointwiseLoss, as shown in Table 2. By
integrating different loss functions, the multi-task learning is eas-
ily implemented. In this way, we disassemble the implementation
of recommendation algorithms into reusable blocks to realize the
unified interface for existing models to avoid duplicate coding and
facilitate the implementation of user-defined models. Specifically,
we are able to quickly implement most of the currently available
models by concatenating the modules and making appropriate sub-
stitutions for each module, making the whole process as simple
as building blocks. In addition to the general processes described
above, RecStudio supports the following extensions, which cover
all directions of current research in recommender systems.

• Contrastive Learning first draws positive and contrastive
samples from the entire corpus or from the mini-batch, depending
on which the contrastive loss is calculated. We have implemented
the popular augmentation strategies as shown in Table 3, e.g., Item-
Crop, Mask, Substitution, Insertion, Reorder, Feature Clustering,
for sequential recommenders and EdgeDrop, NodeDrop, Feature

2892

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Defu Lian et al.

Table 2: Loss Functions

loss Formula Type Complexity Related Metric

SoftmaxLoss[16] 𝐿 = − log exp 𝑓𝜃 (𝑐,𝑘)∑𝑁
𝑖=1 exp 𝑓𝜃 (𝑐,𝑖)

Listwise O(𝑁) NDCG

BPRLoss[62] 𝐿 = − 1
|𝑆 |

∑
𝑖∈𝑆 log𝜎 (𝑓𝜃 (𝑐, 𝑘) − 𝑓𝜃 (𝑐, 𝑖)) Pairwise O(|𝑆 |) AUC

Top1Loss 𝐿 = − 1
|𝑆 |

∑
𝑖∈𝑆 (𝜎 (𝑓𝜃 (𝑐, 𝑖) − 𝑓𝜃 (𝑐, 𝑘)) + 𝜎 (𝑓𝜃 (𝑐, 𝑖)2)) Pairwise O(|𝑆 |) -

BinaryCrossEntropyLoss[28, 39] 𝐿 = −(log𝜎 (𝑓𝜃 (𝑐, 𝑘)) +
∑
𝑖∈𝑆 log(1 − 𝜎 (𝑓𝜃 (𝑐, 𝑖)))) Pairwise O(|𝑆 |) logloss

HingeLoss[31] 𝐿 = −𝑓𝜃 (𝑐, 𝑘) + (𝑓𝜃 (𝑐, 𝑗) −margin) Pairwise O(1) AUC
SampledSoftmaxLoss[7, 13] 𝐿 = − log exp(𝑓𝜃 (𝑐,𝑘)−log𝑄 (𝑘 |𝑐))∑

𝑖∈𝑆∪{𝑘} exp(𝑓𝜃 (𝑐,𝑖)−log𝑄 (𝑖 |𝑐)) Listwise O(|𝑆 |) NDCG

InfoNCELoss 𝐿 = − log exp(𝑓𝜃 (𝑐,𝑘))∑
𝑖∈𝑆∪{𝑘} exp(𝑓𝜃 (𝑐,𝑖))

Listwise O(|𝑆 |) DCG
BCEWithLogitLoss[24, 47, 59] 𝐿 = −

(
𝑦𝑘 log𝜎 (𝑓𝜃 (𝑐, 𝑘)) + (1 − 𝑦𝑘) log(1 − 𝜎 (𝑓𝜃 (𝑐, 𝑘)))

)
Pointwise O(1) logloss

MSELoss[12] 𝐿 = −(𝑦𝑘 − 𝑓𝜃 (𝑐, 𝑘))2 Pointwise O(1) MSE

Aug

data1

Aug

data2

Query

Encoder

Item

Encoder

Backbone

Model

Contrastive

Module

Encoder

Encoder
InfoNCE

Loss

Loss

Function
Scorer

Data

Contrastive

Loss

Rec

Loss

Loss

Data

Data

Figure 3: Contrastive Learning Framework in RecStudio.

Table 3: Contrastive Learning Models

Model Data Augmentation Model Type

CL4SRec [77] ItemCrop, Mask, Reorder Sequential

ICLRec [14] Feature Clustering Sequential

CoSeRec [53] Substitution, Insertion Sequential

SGL [76] EdgeDrop, NodeDrop Graph-based

NCL [52] Feature Clustering,
Neighbor Aggregation Graph-based

SimGCL [79] Random Noise
to hidden representations Graph-based

Clustering, Neighbor Aggregation, Random Noise for graph-based
recommenders, and support the InfoNCE objective functions. Specif-
ically, we design the following flow, as shown in Figure 3, to inte-
grate the contrastive learning module into the whole modularized
RecStudio. By selecting data augmentation methods in the con-
trastive module, a contrastive loss based on InfoNCE would be
added to the recommendation loss for the training procedure.

• Debiasing Learning is affiliated with backbone models and
these debiasing methods alleviate the bias by modelling different
tasks respectively or assigning inverse propensity scores to samples.
The whole framework is illustrated in Figure 4. By keeping the back-
bone unchanged but adding some additional modules or functions,
it is of great convenience to figure out how debiasing methods per-
form across different backbones, instead of re-implementing. And
until now, RecStudio is the only and first library for freely debiasing
backbones and we now support 9 common debiasing methods.

2.2.2 Retriever. Retriever models attempt to extract a subset of
items with high potential preferences from all candidates, under
the constraints of quick response. A common paradigm of retrievers

Loss

Function

Backbone
Query

Encoder

Item

Encoder

Scorer
Loss

Function
Frequency

query

item

OR

Propensity Module

Query

Encoder

Item

Encoder

Scorer
Loss

Function

Backbone for task 1

Query

Encoder

Item

Encoder

Scorer
Loss

Function

Discrepancy

Backbone for task 2

Discrepancy

Query

Encoder

Item

Encoder

Scorer
Loss

Function

Backbone

MLP

MLP

Fusion

query bias

item bias

click

click

Loss

Function

Loss

Function

MACR

CausE

DICE

IPS

RelMF

UBPR

PDA

Query

Encoder

Item

Encoder

Scorer

Figure 4: Debiasing Learning Framework in RecStudio.

Table 4: Debiasing Models

Model Issue Solution

IPS [66] Selection bias Propensities added to loss

RelMF [64] Selection bias
Positive-Unlabeled Propensities added to loss

UBPR [63] Selection bias
Positive-Unlabeled Propensities added to loss

CausE [8] Selection bias Missing-At-Random data

DICE [86] Conformity bias Disentangle task-specific
embeddings

PDA [83] Popularity bias Intervene

MACR [74] Popularity bias Counterfactual reason

ExpoMF [49] Selection bias EM algorithm

IPW [48] Selection bias Propensities added to loss

includes several steps: (1) give training samples, usually positive
only feedback, (2) sample negatives from unlabeled items according
to static distributions or model-based distributions, (3) encode the
user query according to the user’s contextual information or user
history through complex neural networks and encode the item
through a special neural network, (4) calculate the loss function
and optimize the model parameters, (5) search for the top-k relevant
items inference. The general algorithm libraries implement steps

2893

RecStudio: Towards a Highly-Modularized Recommender System SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

Table 5: Samplers in RecStudio

Type Sampler Examples

Static
Uniform BPR[62], SASRec[39]
Popularity-based AOBPR[61]
Inbatch CL4SRec[77], G-Tower[78]

Model-based

DNS DNS[82]
Reject Sampling CML[31], WARP[75]
LSH Sampling MONGOOSE[11], LSH-PFE[68]
Cluster Sampling PRIS[46]
MIDX Sampling FastVAE[13]

1-2 during the data pre-process phase (data loader), usually on the
CPU, and then convert the data to the GPU for steps 3-4, after
which traverse the whole item candidates for step 5. Nevertheless,
we creatively implement GPU-based samplers and access to ANN
search to meet the requirements of both efficiency and accuracy.

Negative sampling has evolved from static sampling to model-
based sampling to achieve more efficient convergence. Static sam-
pling methods, including uniform and frequency-based sampling,
are independent of the model change, and as a result, sampling
has been integrated into data pre-processing in existing libraries.
Despite their high efficiency, static sampling approaches are prone
to slow convergence due to the huge deviation between the sam-
pling distribution and the real distributions. The dynamic model-
based samplers, where the sampling distribution is reliant on the
predicted preference, assist in fast convergence but are not well
supported in the pre-processing step. Data transfer from memory
to GPU consumes a significant amount of IO, and thus prevents
the efficient model-based sampling process. RecStudio introduces a
single sampling module, where the negative sampling is treated as a
PyTorch module, to implement both the static and dynamic model-
based samplers, with the aim of accelerating the sampler with GPU.
Specifically, we utilize the result of query encoding as the input of
the sampler and calculate the corresponding sampling probability
for each query, which can be obtained directly from the PyTorch
tensor operation. The sampler then returns the indexes of items
with the sampling probability based on the calculated probability.
The entire process is deployed on the GPU, remarkably accelerating
the computation of probabilities, rather than in a CPU-based data
pre-processing step as in existing solutions. Furthermore, we unify
the interface, including initialization, update with epoch/batch in-
creasing and sampling, which enables most sampling strategies to
be implemented. Up to now, we have implemented eight samplers
in RecStudio, as illustrated in Table 5, involving both static and
model-based dynamic samplers.

Another key feature for retrievers is that we have assembled
fast top-k research in RecStudio to provide the retrieved ranking
list, which is commonly implemented by enumerating all candidate
items in existing libraries. With the increasing number of candidate
items or incrementally updated items, trivial solutions require the
calculation from the scratch, such as rebuilding the index, which
takes much more cost. To facilitate the efficient search, we equip
RecStudiowith the interface for fast ANN search, which can support
third-party fast search with GPU, e.g., FAISS[38], SCANN [25] and
BLISS[26] or a custom index structure, e.g., tree-based [19, 20, 88]
or graph-based indexes. These GPU-based ANN indexes enable fast
top-k research to achieve the high efficient inference.

2.2.3 Ranker. The ranker aims to perform a more accurate ranking
on the top-k items returned by retrievers, which often takes all data
as input into a simple and big network to embed the interaction
relationships between the fields. This leads to the ranker not having
a separate item encoder like the retriever. The ranker is usually
decomposed into several parts, including the dense embedding mod-
ule, the explicit interaction module and the DNN module. We have
implemented FM layer [24, 59], CrossNet layer [73], DIN layer [87],
CIN layer [47] and MLP layer [15] for the high-order interaction
module to model high-order interaction between sparse features.
These modules can be flexibly combined, including horizontal con-
catenation, such as FM and MLP combined into DeepFM, or vertical
stacking, such as DNN networks. Depending on these layers, we
have implemented 29 rankers in Recstudio.

In addition, we support the cascading rankers, where the ranker
module consists of several independent rankers cascaded together,
as shown in Figure 2. Each ranker filters fewer preferred items
according to the top-k ranked results for the next ranker and has
its own learning parameters. Cascading rankers can be updated
by two methods, including the multi-stage workflow and joint
learning, and further exposition is in the following section. Such
cascading rankers provide increasingly accurate ranking lists with
more expressive and elaborate networks and thus improve the
overall recommendation quality.

2.3 Model Training
Most existing recommendation algorithm libraries generally imple-
ment a single model training, commonly including the process
of forward computation and backward update. Considering the
real and complex deployment under industrial scenarios, which
typically consist of at least two categories of models, i.e., retriever
and ranker, to improve the recommendation quality, RecStudio is de-
signed to enable themulti-stage workflow to get closer to the real
industrial scenarios and provide the potential for the connection of
the academy and industry. Specifically, the retriever extracts a set
of items from the entire candidates with extremely high efficiency,
followed by rankers reranking the items with more accurate but
time-consuming networks. All models are optimized separately, but
with different input from the last model. That is to say, the current
model is trained according to the output of the previous model
and only affects the input of the next following model. RecStudio
enables such training paradigms simultaneously and allows to scale
to online recommender systems for numerous items.

Furthermore, joint optimization for retrievers and rankers
is equipped with RecStudio, where retrievers and rankers are in-
fluenced by each other. To be specific, we design the interface of
negative sampling, which provides hard negatives for both retriev-
ers and rankers, and the interface of top-k retrieval for inference.
Rather than a rank-oriented loss, the retriever is additionally opti-
mized by a distilled loss from the more expressive ranker to learn
more precise results, realizing the bidirectional workflow for train-
ing retrievers and rankers. All hitherto known joint optimization
algorithms, including Rankflow [57], and CoRR [33], are imple-
mented in RecStudio. All methods can be easily integrated into
RecStudio depending on the unified interface by varying the objec-
tive loss, where both retrievers and rankers are updated within the

2894

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Defu Lian et al.

same epoch. Such joint optimization workflow may shed new light
on industrial deployments for more accurate ranking performance.

The multi-stage workflow relies on the inference result from the
previous model and we next describe the inference procedure for
these different situations.

2.3.1 Retriever Inference. As aforementioned, ANN indexes are
built on the item embeddings for retrievers, which allows for fast
and accurate top-k retrieval under numerous items. Given the well-
trained item embeddings, we provide the interface of the ANN
indexes, including custom index structures and the third-party
library, e.g., FAISS[38], where the similarity of item embeddings is
encoded. After the user query encoding, the most relevant index
centers are selected and the corresponding items are retrieved. In
this manner, Recstudio achieves efficient inference rather than trivial
enumeration over the entire item set.

2.3.2 Cascade Ranker Inference. Under the multi-stage workflow
in RecStudio, if the ranker is a subsequent model of a retriever
of a ranker, the inference process becomes more efficient, where
only the top-k ranked items from the preceding model are required
to calculate the preference scores. Given the top-k results from
the retriever, we first gather the features of items and calculate
the preference scores after the interaction layers. These candidate
items are then refined depending on the calculated scores to provide
more precise top-k results. Rankers commonly involve complex and
time-consuming networks, which occupy much time for calculating
the preference over the entire item set, accompanied by the huge
IO to gather item features. Therefore, it is more efficient to perform
a partial computation on only the top-k-ranked items because it
takes much less time.

2.3.3 Non-Retrievable Ranker Inference. This situation refers to
the independent ranker, where the ranker is trained independently
without any preceding input. It is unrealistic for the ranker to score
every item in order to determine the preference scores without the
previously filtered items. Therefore, the top-k operation is not sup-
ported for a single ranker, that is to say, a single ranker could only
support rating prediction and CTR tasks, where only the prediction
for a pair of the given user and item is required.

2.4 Hyperparameter Setting
2.4.1 Hyperparameter Tuning. Hyperparameters play a significant
role in the performance of recommenders and the choice of the
appropriate value for hyperparameters is challenging under huge
search space. The hyperparameters are tuned depending on the vali-
dation dataset whereas themodel parameters are learned depending
on the training dataset. In RecStudio, we can switch between three
methods to determine the value of hyperparameters. The first one
is manual setting, where users are able to run script files with
different settings of hyperparameters and manually choose the
value with the best performance. The second one is the support
of the third-party automatic tuning library, i.e., NNI [56], where
users may obtain the appropriate hyperparameters after setting
the tuning method and tuning range in NNI. The common tuning
methods include grid search [42, 43], random search [4], heuristic
method [36, 44, 58], bayesian search [18, 35, 45]. In order to further

t

L

t

L
Train Batch

oldt ,
Cache

vL

1t

t

t

t
v

t
v LL




 







 ˆ

ˆ

1t

Model Forward Hyper Forward

),(tt ),(11  tt 
Vali

d Ba
tch

Assumed Update

tg Real Update

Real Update

),,(ˆ t
t

tt Lf 








Figure 5: Hyperparemater learning workflow

save the time and effort to adjust hyperparameters, we design an
automatic learning-based solution assembled within the optimizer.

2.4.2 Hyperparameter Learning. RecStudio now features an inte-
grated hyperparameter learning system, which, in addition to updat-
ing model parameters, can also update weight decay using learning
methods, eliminating the need to manually search for continuous
weight decay and allowing for more efficient discovery of its ap-
propriate value. The architecture of the hyperparameter learning
system is depicted in Figure 5. Model parameters(𝜽) and weight
decay(𝜆) are alternately learned through the following five stages:

• Prepare.Model parameters 𝜽 𝑡 and weight decay 𝜆𝑡 , are calcu-
lated from the 𝑡𝑡ℎ step and inputted for the 𝑡 + 1𝑡ℎ step. Initially,
𝜽 𝑡 is randomly initialized and 𝜆𝑡 is set user-specifically.

• Model Forward. The training batch is propagated forward at
this stage. The associated loss without regularization(𝐿) is obtained.
By deriving 𝐿 tomodel parameters, we can obtain the corresponding
derivatives 𝜕𝐿

𝜕𝜽 𝑡 . At this time, 𝜽 𝑡,𝑜𝑙𝑑 and 𝒈𝑡 are duplicated from 𝜽 𝑡

and 𝜕𝐿
𝜕𝜽 𝑡 and cached for further updates. Since we do not wish to

change their values during the subsequent procedure, we cut off all
ties between (𝜽 𝑡 , 𝜕𝐿

𝜕𝜽 𝑡) and (𝜽 𝑡,𝑜𝑙𝑑 , 𝒈𝑡). Any operations to (𝜽 𝑡 , 𝜕𝐿
𝜕𝜽 𝑡)

will not have any effect on (𝜽 𝑡,𝑜𝑙𝑑 , 𝒈𝑡,𝑜𝑙𝑑).
• Assumed Update. Assumed model parameter 𝜽 𝑡 is calculated

by the function 𝑓 (𝜽 𝑡 , 𝜕𝐿
𝜕𝜽 𝑡 , 𝜆

𝑡). Under different optimizers, the spe-
cific form of 𝑓 is different. In case of SGD, 𝑓 has the following form:
𝜽 𝑡 = 𝜽 𝑡 − 𝜂 𝜕𝐿

𝜕𝜽 𝑡 − 2𝜂𝜆𝑡𝜽 𝑡 , where 𝜂 represents learning rate.
•Hyper Forward.Hyper forward is conductedwith the purpose

of updating 𝜆𝑡 by its gradient. Valid batch is first input to the
model(with parameters as 𝜽 𝑡) in order to calculate validation loss
𝐿𝑣 . By applying the Chain Rule, derivative of 𝐿𝑣 with respect to
𝜆𝑡 could be calculated by 𝜕𝐿𝑣

𝜕𝜆𝑡
=

𝜕𝐿𝑣

𝜕𝜽 𝑡

𝜕𝜽 𝑡

𝜕𝜆𝑡
. Thus, 𝜆𝑡+1 can be easily

obtained by SGD or Adam optimizers.
• Real Update. After 𝜆𝑡+1 is obtained, 𝜽 𝑡,𝑜𝑙𝑑 and 𝒈𝑡 are loaded

into the model. A real update to model parameters could be con-
ducted by a user-specified optimizer. A new version of model pa-
rameters 𝜽 𝑡+1 and 𝜆𝑡+1 are provided for the next iteration.

In Hyper Forward stage, 𝜕𝐿𝑣
𝜕𝜽 𝑡

and 𝜕𝜽 𝑡

𝜕𝜆𝑡
are calculated differently.

The former could be obtained by the automatic backward function
provided by PyTorch. However, the latter should be calculated
manually. For example, if SGD is used in the Assumed Update stage,
𝜕𝜽 𝑡

𝜕𝜆𝑡
equals to −2𝜂𝜽 𝑡 where 𝜽 𝑡 indicates 𝜽 𝑡,𝑜𝑙𝑑 rather than 𝜽 𝑡 .

To expand the user’s flexibility for automatic parameter learn-
ing, it remains optional for users to choose whether to use the

2895

RecStudio: Towards a Highly-Modularized Recommender System SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

Figure 6: Efficient Topk with Mask

def topk(self, query, k, user_history):
Get top K+|I_train| items
m = user_history.size(1)
if self.use_index:

score, topk_items = self.ann_index.search(query, k+m)
else:

scores = self.score_func(query, self.item_vector)
score, topk_items = torch.topk(scores, k + m)

Mask items in I_train with Boolean operation
existing, _ = user_history.sort()
idx_ = torch.searchsorted(existing, topk_items)
idx_[idx_ == existing.size(1)] = existing.size(1) - 1
mask_ = torch.gather(existing, 1, idx_) == topk_items
score[mask_] = -torch.inf
score, idx = score.topk(k)
topk_items = torch.gather(topk_items, 1, idx)
return score, topk_items

automatic parameter learning module and the update interval of
hyperparameters. In future updates of RecStudio, we will integrate
automatic learning of multiple hyperparameters and develop the
learning methods of discrete hyperparameters.

2.5 Evaluation Design
2.5.1 Evaluation Metrics. RecStudio equips with a number of eval-
uation metrics, which cover value-based, CTR-based and ranking-
based. The value-based metrics are designed for rating prediction,
targeting measuring the difference between the predicted and true
ratings, such as Mean Average Error (MAE) and Root Mean Square
Error (RMSE). The CTR-based metrics are designed for the CTR
task, which models the probability of user clicks. Common metrics
used in the task are AUC and logloss. The ranking-based metrics
include the widely used ranking-aware metrics, such as Recall,
NDCG, Precision, MRR, MAP. Those metrics measure the ranking
performance of the recommendation lists. To achieve efficient eval-
uation, we have implemented GPU-enabled tensor operations and
eliminated the dependencies on other libraries.

Another important point is that, different from most existing
libraries, which filter the interacted items of training data for the
top-k results depending on the set operation, we design and im-
plement a more efficient top-k computation strategy. Specifically,
we return actual 𝐾 + |𝐼𝑡𝑟𝑎𝑖𝑛 | items, where |𝐼𝑡𝑟𝑎𝑖𝑛 | denotes the num-
ber of interacted items in the training data, and filter the items
depending on the Boolean operation. The detailed coding example
refers to Figure 6. It is worth noticing that all operations can be
conducted on GPUs, without the need to transfer data from GPU to
memories for the set computation, achieving efficient and effective
top-k retrieval and ensuring only uninteracted items are contained.

2.5.2 Evaluation for Cascading Rankers. As we aforementioned, an
independent ranker model can only support rating prediction and
CTR prediction, and it is not available to compute the rank-oriented
metrics. For cascaded rankers, we can achieve efficient evaluation
by only predicting the preference scores over the latest given top-k
items. Since the previous model returns the high-ranked items with
a wider range, most of the positive samples would be selected in
the candidate pool for ranking, and the successive high-precision

(a) Running an existing model

(b) Implementing a new model with block building

Figure 7: Code examples for RecStudio Usage
model is able to rank these positive samples higher, which improves
the overall accuracy.

3 RECSTUDIO USAGE
In this section, we show how to use RecStudio with three code illus-
trations. We discuss the usage description in three parts: running
an existing model, implementing a new model, and employing the
web service for the recommendation pipeline.
3.1 Running an Existing Model
3.1.1 Running Models with Specified Hyperparameters. We illus-
trate the general workflow for running existing models in RecStudio,
as shown in Figure 7(a). First, one should prepare a dataset con-
figuration for dataset loading and filtering, which should contain
dataset download links, names and columns of user/item/interac-
tion files, and other auxiliary parameters. Then some parameters
should be provided to split the dataset into train/valid/test. Ad-
ditionally, the training and evaluation procedure requires some
experimental configurations, such as batch size. Note that all the
configurations could be obtained by a YAML-format file, a python
dict or command line.

3.1.2 Running Models with Auto-tuned Hyperparameters. As men-
tioned in Section 2.4, RecStudio features automatic tuning of hy-
perparameter for training based on NNI [56]. By specifying the
hyperparameters’ search space and tuning method as well as NNI’s
settings like trialConcurrency andmaxTrialNumber, one can quickly
find the best solution for a model. The results can be visualized in
a web service, which is auto-generated by NNI.

3.2 Implementing a New Model
On top of the modularization of RecStudio, one can implement a
recommendation model easily by block building or from scratch.

2896

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Defu Lian et al.

3.2.1 Programming by Building Blocks. In RecStudio, Retriever con-
sists of six components: query encoder, item encoder, score function,
sampler, loss function, and an optional index structure. One could
implement a model by specifying these components, which is just
like the game of “building blocks”. RecStudio is empowered with
extensive encoder blocks, such as Multi-Layer Perceptron, Trans-
former encoder, GRU encoder and CNN encoder. The score function
can be selected from Table 1 while the loss function can be picked
from Table 2. The valid negative samplers are shown in Table 5. The
ANN index can be one of the FAISS[38] indexes or SCANN [25], as
long as specified in the configuration file.

Similarly, since the major difference between rankers lies in in-
teraction layers, one can implement a ranker within RecStudio in a
block-building style, by specifying how to model feature interac-
tions, like cascading explicit interaction layers, followed by some
implicit interaction layers. After specifying the loss function, one
can include the debiased module for debiasing learning and the
contrastive module for contrastive learning.

3.2.2 Programming from Scratch. When implementing a retriever
from scratch, the user could inherit the base retriever class by
instantiating several functions as follows:
(1) Implementing the "get_dataset_class()" function. In this func-

tion, the user is required to assign a dataset class to control
the dataset output. Until now, we have implemented four types
of dataset classes as shown in Figure 1, namely TripletDataset,
UserDataset, SeqDataset, and ALSDataset.

(2) Implementing the "get_query/item_encoder()" function, which
builds the encoders as modules.

(3) Implementing the "get_score/loss_func()" function. Those two
functions represent the score prediction and training loss calcu-
lation as mentioned above.

(4) Implementing the "get_sampler()" function. This function is
used to configure the negative sampling method.
When implementing a ranker, the user could inherit the base

ranker class, by overriding the explicit feature interaction function
“get_interaction_layers()”, the implicit interaction function “score()”,
and the loss function “get_loss_func()”.

3.3 A WebService for Pipeline and Benchmark
3.3.1 Build Recommendation Pipeline. Thanks to the modulariza-
tion design of RecStudio, we build a web service for users to build
recommendation pipelines like building blocks. Here some steps
are listed for detailed usage of the service.

• Upload a dataset. User could upload their own dataset by pro-
viding configuration, such as dataset name and dataset download
link. The dataset is then automatically downloaded for future use.

• Upload a model. The model could be also uploaded with a
python script file, which should be programmed either by building
blocks or from scratch.

•Build a pipeline.Once themodel and dataset are uploaded, we
could use them to establish a recommendation pipeline for training
and evaluation. The pipeline for a single model (either retriever or
ranker) consists of a dataset and a model. The pipeline of a cascade
ranker consists of a dataset, and a pipeline container with retrievers
and rankers inside. The supported container includes independent
training, ICC [21], RankFlow [57], and CoRR [33], which specify

Figure 8: Recommendation pipeline with the web service

how to connect retrievers and rankers for training and inference.
One example of the pipeline is illustrated in Figure 8.

• Training and Logs. A training job could be submitted once
the pipeline is built. Hyperparameter tuning is supported in the job
configuration, where users could specify search space and tuning
method. Besides, there are several types of logs are provided in the
service, like console logs, tensorboard logs. The metrics and loss
values can be plotted in real-time when the training goes on.

3.3.2 Automatic Benckmarking. Upon the completion of the train-
ing jobs, the training dataset information, the training hyperparam-
eters and the evaluation metrics are automatically sent to a backend
database. Therefore, from this database, we establish a database
view for archiving the optimal performance of all models on each
dataset with each setting. The database view is then connected with
a front webservice, which can automatically generate a leaderboard
w.r.t a selected dataset with a specified setting. In other words, as
long as specifying the dataset name and the settings like split and
filtering, any user can observe the performance results of various
models in this case and sort them according to any selected metric.

4 INSIGHTS AND DISCUSSIONS
4.1 Comparison with Existing Libraries
With the recent boom in recommender systems, a significant num-
ber of open-source libraries for recommender systems have oc-
curred from both industry and academia. We summarize these
libraries with plenty of characteristics in Table 6. According to
the table, with the popularity of python language and machine
learning frameworks, the majority of algorithmic frameworks in re-
cent years have been implemented using python-based frameworks.
From the perspective of model type, most recent libraries support
deep-learning-based recommenders since 2015 but overlook the
traditional yet effective machine-learning-based models. Recstudio
implements both traditional algorithms and current popular deep-
learning-based models under the PyTorch framework. In addition,
Recstudio is equipped with a fast ANN index structure for effi-
cient inference, as well as the GPU-accelerated negative sampling
module, which enables high efficiency with massive items.

Recstudio offers an extraordinary user-friendly interaction pro-
cess, particularly including model building and automatic hyper-
parameters. On the one hand, the modularized model allows users

2897

RecStudio: Towards a Highly-Modularized Recommender System SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

Table 6: Comparison with existing recommender system libraries.

Library Languages #Models ModelType Modularized HT𝑎 ANNs𝑏 NS𝑐 ReleaseTime

MyMediaLite[22] C# 61 ML(unspecified) No Manual No CPU 2010
Crab[9] Python 2 ML(unspecified) No manual No CPU 2011

LibFM[60] C++ 1 ML(ranker) No manual No - 2014
LibRec[23] Java 93 ML(unspecified) No manual No CPU 2014
Surprise[34] Python 11 ML(unspecified) No manual No CPU 2015
LightFM[40] Python 1 ML(retriever) No manual No CPU 2015

Case Recommender[17] Python 27 ML(unspecified) No manual No CPU 2015
RankSys[10] Java 8 ML(unspecified) No manual No CPU 2016
Spotlight[41] PyTorch 8 DL(unspecified) No tuner No CPU 2017

Recommenders[37] Tensorflow 31 DL(unspecified) No tuner No CPU 2018
Cornac[65] Tensorflow 45 DL(unspecified) No tuner No CPU 2018

DeepCTR[67] Tensorflow 29 DL(ranker) Yes manual No - 2018
NeuRec[6] Tensorflow 33 DL(unspecified) No manual No CPU 2019

DaisyRec[69] PyTorch 13 DL(unspecified) No tuner No CPU 2019
ReChorus[71] PyTorch 18 DL(unspecified) No manual No CPU 2020
Beta-recsys[55] PyTorch 24 DL(unspecified) No manual No CPU 2020
RecBole[84] PyTorch 73 DL(unspecified) No tuner No CPU 2020
TFRS[1] Tensorflow 2 DL(retriever+ranker) Partial manual Yes GPU(DNSonly) 2020
Elliot[3] Tensorflow 50 DL(unspecified) No tuner No CPU 2021

FuxiCTR[89] Pytorch 44 DL(ranker) Yes tuner No - 2021

RecStudio Pytorch 90 ML/DL(retriever+ranker) Fully tuner/learner Yes GPU 2022
𝑎 HT: hyperparameter tuning, 𝑏 ANNs: ANN search indexes, 𝑐 NS: negative sampling

to build models like building blocks without worrying about spe-
cific training processes, calculation of evaluation metrics, and other
repetitive but tedious steps. In order to implement an algorithm,
users only need to determine the recommendation task, determine
the data type accordingly, and build each module of the model.
Although Recstudio is not the framework that implements the
most algorithms, it is possible to quickly implement existing or
self-designed models with user-friendly usage. Moreover, Recstu-
dio provides a visual interaction page for newcomers to quickly
build their models by dragging and dropping each module on the
page and adding configurations. This is especially beneficial for
newcomers to get started and attract more interest and research
in recommender systems. On the other hand, users are relieved of
the need for manual yet time-consuming tuning for hyperparame-
ters. Recstudio supports the automatic setting for hyperparameters,
where users are merely required to specify the range of the hyper-
parameters and the values will be determined automatically by the
automatic tuning library or the learning-based solution.

4.2 Insights
Recstudio now supports the modularizing recommendation models,
which benefits the convenient model building, and the drag-and-
drop programming with Web Service. Furthermore, such modu-
larized Recstudio shows the following insights for step-further
research for recommenders:

• Urgent benchmarks for modules. Existing benchmarks
provide comparisons of the overall algorithm, typically such as the
CTR benchmarks [89], but the benchmark for a single module is
missing. Plenty of algorithms can be implemented by combining
different modules, and if we know the effect of individual models,
we may seek for better-performing algorithms.

• Automatic choices of modules. These modules now can be
assembled like building blocks, leaving the user with the decision of
which block to pick. It is intriguing and meaningful to automate the
module selection process, whichmay free up a significant amount of
manpower for algorithm design. Each module can simply be viewed
as a component in neutral architecture search [90], and intelligent
search algorithms can be designed based on the characteristics of
the recommendation task.

• Joint optimization for multi-stage workflow. The multi-
stage workflow tends to produce more accurate recommendation
results, especially with cascading rankers [72], but it currently only
supports independent learning, where the well-learned models
output top-k retrieved items to guide the successive model. This
results in a large deviation in distributions for different models,
which incurs less accurate results. Therefore, we will integrate var-
ious model types for the workflow and perform joint optimization
to achieve a better global ranking approximation.

• Improving few-featured models from enriched infor-
mation. A lot of algorithms currently encode users and items
only relying on ID information, such as MultiVAE [50] and Light-
GCN [29], which show superiority in terms of both efficiency and
effectiveness. But it is difficult to assemble other information, such
as side information and contextual information, into these meth-
ods. Improving information utilization for such models is also very
interesting, such as a generic model with pre-training modules and
a unified framework for distillation from large-scale models.

ACKNOWLEDGMENTS
The work was supported by grants from the National Key R&D
Program of China (No. 2021ZD0111801) and the National Natural
Science Foundation of China (No. 62022077).

2898

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Defu Lian et al.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: a system for large-scale machine learning.. In Osdi, Vol. 16.
Savannah, GA, USA, 265–283.

[2] Qingyao Ai, Vahid Azizi, Xu Chen, and Yongfeng Zhang. 2018. Learning heteroge-
neous knowledge base embeddings for explainable recommendation. Algorithms
11, 9 (2018), 137.

[3] Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta, Fe-
lice Antonio Merra, Claudio Pomo, Francesco Maria Donini, and Tommaso
Di Noia. 2021. Elliot: a comprehensive and rigorous framework for reproducible
recommender systems evaluation. In Proceedings of the 44th international ACM
SIGIR conference on research and development in information retrieval. 2405–2414.

[4] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of machine learning research 13, 2 (2012).

[5] James Bergstra, Daniel Yamins, and David Cox. 2013. Making a science of
model search: Hyperparameter optimization in hundreds of dimensions for vision
architectures. In International conference on machine learning. PMLR, 115–123.

[6] Xiangnan He Xiang Wang Bin Wu, Zhongchuan Sun and Jonathan Staniforth.
2019. NeuRec. https://github.com/wubinzzu/NeuRec

[7] Guy Blanc and Steffen Rendle. 2018. Adaptive sampled softmax with kernel based
sampling. In International Conference on Machine Learning. PMLR, 590–599.

[8] Stephen Bonner and Flavian Vasile. 2018. Causal embeddings for recommendation.
In Proceedings of the 12th ACM conference on recommender systems. 104–112.

[9] Marcel Caraciolo, Bruno Melo, and Ricardo Caspirro. 2011. Crab: A recommen-
dation engine framework for python. Jarrodmillman Com (2011).

[10] Pablo Castells, Neil Hurley, and Saul Vargas. 2021. Novelty and diversity in
recommender systems. In Recommender systems handbook. Springer, 603–646.

[11] Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri
Dao, Zhao Song, Anshumali Shrivastava, and Christopher Re. 2021. Mongoose:
A learnable lsh framework for efficient neural network training. In International
Conference on Learning Representations.

[12] Chong Chen, Min Zhang, Yongfeng Zhang, Yiqun Liu, and Shaoping Ma. 2020.
Efficient neural matrix factorization without sampling for recommendation. ACM
Transactions on Information Systems (TOIS) 38, 2 (2020), 1–28.

[13] Jin Chen, Defu Lian, Binbin Jin, Xu Huang, Kai Zheng, and Enhong Chen. 2022.
Fast variational autoencoder with inverted multi-index for collaborative filtering.
In Proceedings of the ACM Web Conference 2022. 1944–1954.

[14] Yongjun Chen, Zhiwei Liu, Jia Li, Julian McAuley, and Caiming Xiong. 2022.
Intent contrastive learning for sequential recommendation. In Proceedings of the
ACM Web Conference 2022. 2172–2182.

[15] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[16] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[17] Arthur da Costa, Eduardo Fressato, Fernando Neto, Marcelo Manzato, and Ri-
cardo Campello. 2018. Case recommender: a flexible and extensible python
framework for recommender systems. In Proceedings of the 12th ACM Conference
on Recommender Systems. 494–495.

[18] Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and efficient
hyperparameter optimization at scale. In International Conference on Machine
Learning. PMLR, 1437–1446.

[19] Chao Feng, Wuchao Li, Defu Lian, Zheng Liu, and Enhong Chen. 2022. Recom-
mender Forest for Efficient Retrieval. Advances in Neural Information Processing
Systems 35 (2022), 38912–38924.

[20] Chao Feng, Defu Lian, Zheng Liu, Xing Xie, Le Wu, and Enhong Chen. 2022.
Forest-based Deep Recommender. In Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval. 523–532.

[21] Luke Gallagher, Ruey-Cheng Chen, Roi Blanco, and J Shane Culpepper. 2019.
Joint optimization of cascade ranking models. In Proceedings of the twelfth ACM
international conference on web search and data mining. 15–23.

[22] Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme.
2011. MyMediaLite: A Free Recommender System Library. In Proceedings of the
5th ACM Conference on Recommender Systems (RecSys 2011).

[23] Guibing Guo, Jie Zhang, Zhu Sun, and Neil Yorke-Smith. 2015. Librec: A java
library for recommender systems.. In UMAP workshops, Vol. 4. Citeseer, 38–45.

[24] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction.
(2017), 1725–1731.

[25] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern,
and Sanjiv Kumar. 2020. Accelerating Large-Scale Inference with Anisotropic
Vector Quantization. In International Conference on Machine Learning.

[26] Gaurav Gupta, Tharun Medini, Anshumali Shrivastava, and Alexander J Smola.
2022. BLISS: A Billion scale Index using Iterative Re-partitioning. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.

486–495.
[27] Ruining He, Wang-Cheng Kang, and Julian McAuley. 2017. Translation-based

recommendation. In Proceedings of the eleventh ACM conference on recommender
systems. 161–169.

[28] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse
predictive analytics. In Proceedings of the 40th International ACM SIGIR conference
on Research and Development in Information Retrieval. 355–364.

[29] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[30] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[31] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and
Deborah Estrin. 2017. Collaborative metric learning. In Proceedings of the 26th
international conference on world wide web. 193–201.

[32] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In 2008 Eighth IEEE international conference on data
mining. Ieee, 263–272.

[33] Xu Huang, Defu Lian, Jin Chen, Zheng Liu, Xing Xie, and Enhong Chen. 2022.
Cooperative Retriever and Ranker in Deep Recommenders. arXiv preprint
arXiv:2206.14649 (2022).

[34] Nicolas Hug. 2020. Surprise: A Python library for recommender systems. Journal
of Open Source Software 5, 52 (2020), 2174. https://doi.org/10.21105/joss.02174

[35] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential model-
based optimization for general algorithm configuration. In Learning and Intelligent
Optimization: 5th International Conference, LION 5, Rome, Italy, January 17-21,
2011. Selected Papers 5. Springer, 507–523.

[36] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki,
Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Si-
monyan, et al. 2017. Population based training of neural networks. arXiv preprint
arXiv:1711.09846 (2017).

[37] Dietmar Jannach, Pearl Pu, Francesco Ricci, and Markus Zanker. 2022. Recom-
mender systems: Trends and frontiers. , 145–150 pages.

[38] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[39] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197–206.

[40] Maciej Kula. 2015. Metadata Embeddings for User and Item Cold-start Recom-
mendations. In Proceedings of the 2nd Workshop on New Trends on Content-Based
Recommender Systems co-located with 9th ACM Conference on Recommender Sys-
tems (RecSys 2015), Vienna, Austria, September 16-20, 2015., Toine Bogers and
Marijn Koolen (Eds.), Vol. 1448. 14–21.

[41] Maciej Kula. 2017. Spotlight. https://github.com/maciejkula/spotlight.
[42] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua

Bengio. 2007. An empirical evaluation of deep architectures on problems with
many factors of variation. In Proceedings of the 24th international conference on
Machine learning. 473–480.

[43] Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. 2002.
Efficient backprop. In Neural networks: Tricks of the trade. Springer, 9–50.

[44] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2017. Hyperband: A novel bandit-based approach to hyperparameter
optimization. The Journal of Machine Learning Research 18, 1 (2017), 6765–6816.

[45] Zhao Lucis Li, Chieh-Jan Mike Liang, Wenjia He, Lianjie Zhu, Wenjun Dai, Jin
Jiang, and Guangzhong Sun. 2018. Metis: Robustly tuning tail latencies of cloud
systems. In 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18).
981–992.

[46] Defu Lian, Qi Liu, and Enhong Chen. 2020. Personalized ranking with importance
sampling. In Proceedings of The Web Conference 2020. 1093–1103.

[47] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xdeepfm: Combining explicit and implicit feature in-
teractions for recommender systems. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining. 1754–1763.

[48] Dawen Liang, Laurent Charlin, and David M Blei. 2016. Causal inference for
recommendation. InCausation: Foundation to Application,Workshop at UAI. AUAI.

[49] Dawen Liang, Laurent Charlin, James McInerney, and David M Blei. 2016. Mod-
eling user exposure in recommendation. In Proceedings of the 25th international
conference on World Wide Web. 951–961.

[50] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.
Variational autoencoders for collaborative filtering. In Proceedings of the 2018
world wide web conference. 689–698.

[51] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez,
and Ion Stoica. 2018. Tune: A Research Platform for Distributed Model Selection
and Training. arXiv preprint arXiv:1807.05118 (2018).

[52] Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao. 2022. Improving
graph collaborative filtering with neighborhood-enriched contrastive learning.

2899

https://github.com/wubinzzu/NeuRec
https://doi.org/10.21105/joss.02174
https://github.com/maciejkula/spotlight

RecStudio: Towards a Highly-Modularized Recommender System SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

In Proceedings of the ACM Web Conference 2022. 2320–2329.
[53] Zhiwei Liu, Yongjun Chen, Jia Li, Philip S Yu, Julian McAuley, and Caiming

Xiong. 2021. Contrastive self-supervised sequential recommendation with robust
augmentation. arXiv preprint arXiv:2108.06479 (2021).

[54] Kelong Mao, Jieming Zhu, Jinpeng Wang, Quanyu Dai, Zhenhua Dong, Xi Xiao,
and Xiuqiang He. 2021. SimpleX: A simple and strong baseline for collaborative
filtering. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management. 1243–1252.

[55] Zaiqiao Meng, Richard McCreadie, Craig Macdonald, Iadh Ounis, Siwei Liu,
Yaxiong Wu, Xi Wang, Shangsong Liang, Yucheng Liang, Guangtao Zeng, et al.
2020. BETA-Rec: Build, Evaluate and Tune Automated Recommender Systems.
In Fourteenth ACM Conference on Recommender Systems. 588–590.

[56] Microsoft. 2021. Neural Network Intelligence. https://github.com/microsoft/nni
[57] Jiarui Qin, Jiachen Zhu, Bo Chen, Zhirong Liu, Weiwen Liu, Ruiming Tang, Rui

Zhang, Yong Yu, andWeinan Zhang. 2022. RankFlow: Joint Optimization of Multi-
Stage Cascade Ranking Systems as Flows. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
814–824.

[58] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Jie Tan, Quoc V Le, and Alexey Kurakin. 2017. Large-scale evolution
of image classifiers. In International Conference on Machine Learning. PMLR,
2902–2911.

[59] Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International conference
on data mining. IEEE, 995–1000.

[60] Steffen Rendle. 2012. Factorization Machines with libFM. ACM Trans. Intell. Syst.
Technol. 3, 3, Article 57 (May 2012), 22 pages.

[61] Steffen Rendle and Christoph Freudenthaler. 2014. Improving pairwise learning
for item recommendation from implicit feedback. In Proceedings of the 7th ACM
international conference on Web search and data mining. 273–282.

[62] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. (2009), 452–
461.

[63] Yuta Saito. 2020. Unbiased pairwise learning from biased implicit feedback.
In Proceedings of the 2020 ACM SIGIR on International Conference on Theory of
Information Retrieval. 5–12.

[64] Yuta Saito, Suguru Yaginuma, Yuta Nishino, Hayato Sakata, and Kazuhide Nakata.
2020. Unbiased recommender learning from missing-not-at-random implicit
feedback. In Proceedings of the 13th International Conference on Web Search and
Data Mining. 501–509.

[65] Aghiles Salah, Quoc-Tuan Truong, and Hady W Lauw. 2020. Cornac: A Com-
parative Framework for Multimodal Recommender Systems. Journal of Machine
Learning Research 21, 95 (2020), 1–5.

[66] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and
Thorsten Joachims. 2016. Recommendations as treatments: Debiasing learning
and evaluation. In international conference on machine learning. PMLR, 1670–
1679.

[67] Weichen Shen. 2017. DeepCTR: Easy-to-use,Modular and Extendible package of
deep-learning based CTR models. https://github.com/shenweichen/deepctr.

[68] Ryan Spring and Anshumali Shrivastava. 2017. A new unbiased and efficient
class of lsh-based samplers and estimators for partition function computation in
log-linear models. arXiv preprint arXiv:1703.05160 (2017).

[69] Zhu Sun, Hui Fang, Jie Yang, Xinghua Qu, Hongyang Liu, Di Yu, Yew-Soon Ong,
and Jie Zhang. 2022. DaisyRec 2.0: Benchmarking Recommendation for Rigorous
Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022).

[70] Scikit-Optimize Team. 2016. Scikit-Optimize. https://scikit-optimize.github.io/
stable/

[71] Chenyang Wang, Min Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma. 2020.
Make it a chorus: knowledge-and time-aware item modeling for sequential rec-
ommendation. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval. 109–118.

[72] Lidan Wang, Jimmy Lin, and Donald Metzler. 2011. A cascade ranking model
for efficient ranked retrieval. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval. 105–114.

[73] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In Proceedings of the ADKDD’17. 1–7.

[74] Tianxin Wei, Fuli Feng, Jiawei Chen, Ziwei Wu, Jinfeng Yi, and Xiangnan He.
2021. Model-agnostic counterfactual reasoning for eliminating popularity bias
in recommender system. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. 1791–1800.

[75] Jason Weston, Samy Bengio, and Nicolas Usunier. 2011. Wsabie: Scaling up to
large vocabulary image annotation. (2011), 2764–2770.

[76] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and
Xing Xie. 2021. Self-supervised graph learning for recommendation. In Proceed-
ings of the 44th international ACM SIGIR conference on research and development
in information retrieval. 726–735.

[77] Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Jiandong Zhang, Bolin
Ding, and Bin Cui. 2022. Contrastive learning for sequential recommendation. In
2022 IEEE 38th international conference on data engineering (ICDE). IEEE, 1259–
1273.

[78] Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt, Aditee
Kumthekar, Zhe Zhao, Li Wei, and Ed Chi. 2019. Sampling-bias-corrected neural
modeling for large corpus item recommendations. In Proceedings of the 13th ACM
Conference on Recommender Systems. 269–277.

[79] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung
Nguyen. 2022. Are graph augmentations necessary? simple graph contrastive
learning for recommendation. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 1294–1303.

[80] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.
2016. Collaborative knowledge base embedding for recommender systems. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. 353–362.

[81] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.
2016. Collaborative knowledge base embedding for recommender systems. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. 353–362.

[82] Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu. 2013. Optimizing top-n
collaborative filtering via dynamic negative item sampling. In Proceedings of
the 36th international ACM SIGIR conference on Research and development in
information retrieval. 785–788.

[83] Yang Zhang, Fuli Feng, Xiangnan He, Tianxin Wei, Chonggang Song, Guohui
Ling, and Yongdong Zhang. 2021. Causal intervention for leveraging popularity
bias in recommendation. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 11–20.

[84] Wayne Xin Zhao, Yupeng Hou, Xingyu Pan, Chen Yang, Zeyu Zhang, Zihan
Lin, Jingsen Zhang, Shuqing Bian, Jiakai Tang, Wenqi Sun, et al. 2022. RecBole
2.0: Towards a More Up-to-Date Recommendation Library. In Proceedings of the
31st ACM International Conference on Information & Knowledge Management.
4722–4726.

[85] Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Yushuo Chen, Xingyu
Pan, Kaiyuan Li, Yujie Lu, Hui Wang, Changxin Tian, et al. 2021. Recbole:
Towards a unified, comprehensive and efficient framework for recommendation
algorithms. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management. 4653–4664.

[86] Yu Zheng, Chen Gao, Xiang Li, Xiangnan He, Yong Li, and Depeng Jin. 2021.
Disentangling user interest and conformity for recommendation with causal
embedding. In Proceedings of the Web Conference 2021. 2980–2991.

[87] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through
rate prediction. In Proceedings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining. 1059–1068.

[88] Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai.
2018. Learning tree-based deep model for recommender systems. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 1079–1088.

[89] Jieming Zhu, Jinyang Liu, Shuai Yang, Qi Zhang, and Xiuqiang He. 2021. Open
benchmarking for click-through rate prediction. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management. 2759–2769.

[90] Barret Zoph and Quoc Le. 2017. Neural Architecture Search with Reinforcement
Learning. (2017).

2900

https://github.com/microsoft/nni
https://github.com/shenweichen/deepctr
https://scikit-optimize.github.io/stable/
https://scikit-optimize.github.io/stable/

	Abstract
	1 Introduction
	2 RecStudio Design
	2.1 Input Design
	2.2 Model Design
	2.3 Model Training
	2.4 Hyperparameter Setting
	2.5 Evaluation Design

	3 RecStudio Usage
	3.1 Running an Existing Model
	3.2 Implementing a New Model
	3.3 A WebService for Pipeline and Benchmark

	4 Insights and Discussions
	4.1 Comparison with Existing Libraries
	4.2 Insights

	Acknowledgments
	References

