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Abstract—Cognitive diagnosis is an important task in intel-
ligent education, and it aims to diagnose the mastery level
of students for knowledge concepts by modeling the interac-
tion among student proficiency, exercise difficulty and exercise
discrimination. Existing methods assume the training and test
data follow identical distribution. However, there does exist the
distribution shift between training and test data. Moreover, the
manifestation of this distribution shift is multidimensional. To
this end, we propose the adaptive cognitive diagnosis framework
and design a double-level adversarial framework to address
the multidimensional distribution shifts in cognitive diagnosis.
Specifically, the multidimensional distribution shifts are divided
into two levels, the difference on the representation level and
the difference on the cognitive level. The adversarial at the
representation level is designed for the adaptive learning of
student proficiency, exercise difficulty and discrimination. And
the adversarial at the cognitive level is for adaptive training of
the diagnostic framework. Extensive experimental results on four
datasets demonstrate the effectiveness of our method.

Keywords—Intelligent education, Cognitive diagnosis, Domain
adaptation, Adversarial framework

I. INTRODUCTION

Massive data has emerged in educational teaching and
campus activities. And mining the education big data is of
great value in driving educational development. Cognitive di-
agnosis (CD) is an important task in data mining of education,
which models knowledge acquisition of students, i.e. their
cognitive state, based on their response logs of exercises and
the association of exercises with knowledge concepts.

However, the existing cognitive diagnosis methods (CDMs)
require the training and test sets are identically distributed,
which is usually difficult to hold in applications. Referring to
the notion of distribution shift in domain adaptation (DA) [15]
[16], we denote the difference in data and distribution between
the training and test in CD as distribution shift, which poses
a great challenge for CDMs.

Firstly, the distribution shift challenges the established
CDMs. In applications, the records of students doing exercises
are easy to obtain, but we cannot get the scores of students
doing exercises. It is obvious that the distributions in two
scenarios are different. Thus, the model trained from one
scenario performs unsatisfactory for another.
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Fig. 1. An example of adaptive cognitive diagnosis under distribution shift.
The red dashed lines indicate the different forms of distribution shift and the
red question marks indicate the unavailable data or model.

Secondly, the multidimensional distribution shifts in CD
task challenges both CD methods and DA methods. The
distribution shift in CD is different from that in other tasks,
such as text classification [15] and image classification [16].
The distribution shift in CD is caused by the co-existence
and interaction of multiple forms of differences. In Fig. 1,
there may be different students, different exercises, different
knowledge concepts and different learning strategies. The
multiple forms of shifts co-exist and interact. Although DA
has been researched widely for distribution shift in other
applications, it cannot be used for CD task directly and cannot
address the multidimensional shifts.

To this end, we propose an adaptive cognitive diagnosis
with double-level adversarial framework (ACDDA) to address
the co-existence and interaction of multiple distribution shifts
in form of students, exercises, knowledge concepts and the
cognitive states. One adversarial level is used to learn the
representations of student proficiency, exercise difficulty and
exercise discrimination adaptively and respectively, and the
other adversarial level is used for the adaptive training of
cognitive states. Our main contributions are as follows:
• We propose the adaptive cognitive diagnosis to address

the distribution shift in cognitive diagnosis.
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• We propose a double-level adversarial framework for
ACD, which can learn the representations and model the
diagnosis adaptively. Moreover, our framework has good
generality and can be implemented based on multiple
CDMs.

• Extensive experiments results on four real-world data sets
validate the effectiveness of our method.

II. RELATED WORK

A. Domain adaptation

Domain adaptation has been proposed to solve the prob-
lem of retraining due to label lacking or distribution shift.
Maximum mean discrepancy(MMD) [9], Correlation align-
ment(CORAL) [10] minimize the distance between source and
target. Deep domain confusion(DDC) [11] combines MMD-
based domain confusion loss to learn domain-invariant feature
representations. Joint maximum mean discrepancy(JMMD)
[19] computes the distance in view of joint distribution to
make the instances with the same label closer. Generative
adversarial networks(GAN) [12] learn domain-invariant rep-
resentations with generative adversarial networks. Domain-
adversarial neural network(DANN) [13] first introduces the
domain discriminator to identify features are from source or
target domain. Multi-adversarial domain adaptation(MADA)
[14] uses multiple domain discriminators to achieve fine-
grained alignment.

B. Cognitive diagnosis

In the past few decades, many CDMs have been proposed in
the field of educational psychology. MIRT [2] and DINA [3]
are two of the most classic CDMs, they use hand-designed
linear function. Recently, NN-based CDMs have received
widespread attention due to their outstanding performance.
NCD [4] is the first model to use deep NN, and it provides a
new way of representing and modeling the interaction between
students and exercises. ECD [5] introduces the student’s con-
texts to enrich the proficiency representation. RCD [6] learns
the representations with a graph about students, exercises and
concepts with GAT model. KSCD [8] can infer students’
mastery of non-interactive knowledge concepts. SCD [21] con-
structs a self-supervised model to learn student and exercise
features representations to address the long-tailed problem.
Although there are a few attempts have been made to introduce
domain adaptation to other tasks, such as Knowledge Tracing
(KT) [7] and Question Difficulty Prediction (QDP) task [18],
there is no work about the adaptive cognitive diagnosis.

III. THE PROPOSED FRAMEWORK

In this section, our proposed ACDDA is described in detail.

A. Adaptive representation level

In this subsection, we first describe the representation learn-
ing for student proficiency, exercise difficulty and exercise
discrimination in the source scenario, and then show the
adaptive learning of the target scenario using the source
representations.

a) The representations in source scenario: We learn the
representations in source scenario as NCD did. Specifically,
the student one-hot vectors, denoted as xs

stu, are encoded as
the student’s proficiency hs

prof using a trainable matrix As.
And difficulty and discrimination, denoted as hs

diff and hs
disc,

are learned in a similar way. The processes are shown as:

hs
prof = sigmoid(xs

stu ×As), (1)

hs
diff = sigmoid(xs

exe ×Bs), (2)

hs
disc = sigmoid(xs

exe ×Ds), (3)

where hs
prof ∈ (0, 1)1×Ks

, hs
diff ∈ (0, 1)1×Ks

, hs
disc ∈

(0, 1), denote the representations of proficiency, difficulty
and discrimination, respectively. xs

stu ∈ {0, 1}1×Ns

, xs
exe ∈

{0, 1}1×Ms

denote the one-hot vectors of students and exer-
cises, respectively. As ∈ RNs×Ks

, Bs ∈ RMs×Ks

, Ds ∈
RMs×1 denote the three trainable matrices, respectively.

b) Adaptive representation in target scenario: Owing to
the distribution shift and the absence of response logs in
target scenario, it is impossible to learn the representations
in the end-to-end training way, as did in source scenario.
Therefore, we introduce three adversarial modules to learn the
proficiency, difficulty and discrimination adaptively for target
scenario respectively. We illustrate the adaptive representation
in the following, taking the proficiency as an example. In
the adversarial process, a generator and a discriminator play
against each other to learn a reasonable representation for the
target.

First, two generators are used to encode the proficiency for
both scenarios respectively, as the following equation:

Gs
prof = sigmoid(uT × hs

prof + d),

Gt
prof = sigmoid(uT × ht

prof + d),
(4)

where Gs
prof and Gt

prof are the generated proficiency in
source and target scenarios, respectively. u and d denote
the trainable parameters of the hidden layer and uT are
transpositions of u. hs

prof and ht
prof are the proficiency in

source and target scenarios.
Secondly, a discriminator is used to identify whether the

current representation is from the source or target, which can
be computed with the following equation:

LD
prof (G

s
prof ,G

t
prof ) = − 1

Ns

Ns∑
i=1

log(1−Gs
prof,i)

− 1

N t

Nt∑
j=1

logGt
prof,j ,

(5)

where LD
prof denotes the loss for the discriminator in view of

the proficiency vectors, Ns and N t represent the number of
students in the source and target scenario, respectively. LD

diff

and LD
disc are learned in a similar way. During the training

process, the Q-matrix vector is not updated, so no adaptive
module for the Q-matrix is designed.
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Fig. 2. The framework of our ACDDA.

Based on the three adaptive modules mentioned above, the
overall loss of the representation level is obtained as follows:

Lossembe = λprofL
D
prof + λdiffL

D
diff + λdiscL

D
disc, (6)

where λprof , λdiff , λdisc are the weight parameters.

B. Adaptive diagnosis level

Based on the representations of proficiency, difficulty and
discrimination, existing methods train diagnostic models by
interacting these representations. And one common interaction
is performed with a neural network with fully connected layer
according to the following equation:

xs = Qs
e × (hs

prof − hs
diff )× hs

disc. (7)

Firstly, the cognitive state is modeled with the neural
network with two fully connected layers [4].

fs
ℓ+1 = ϕ(W s

ℓ × fs
ℓ + bsℓ), (8)

f t
ℓ+1 = ϕ(W t

ℓ × f t
ℓ + btℓ), (9)

where ϕ is the Sigmoid function. fs
ℓ+1 and f t

ℓ+1 are the
output of the fully connected ℓ-layer in the source and target
scenarios, and the initial input fs

0 = xs and f t
0 = xt. W s

ℓ and
bsℓ are the neural network parameters for source scenario.

Next, the cognitive state is trained adaptively. Specifically,
using generators Gs and Gt to encode fs

ℓ and f t
ℓ , respec-

tively, and then a discriminator LD is used to discriminate
whether the output of the generator is from the source or target.

The loss of the diagnosis level is obtained as follows:

Lossdiag = LD(Gs(fs
ℓ , u, d),G

t(f t
ℓ , u, d)). (10)

And the final diagnostic output:

y = ϕ(W s
ℓ × fs

ℓ + bsℓ), (11)

y ∈ (0, 1) is the predicted probability of the student s
answering exercise e correctly, fs

ℓ is the output representation
of the penultimate fully connected layer in the source scenario.

In summary, the overall loss of the adaptive cognitive
diagnosis is expressed as:

Loss = −
∑
i

(ri log yi + (1− ri) log(1− yi))

+ λdiagLossdiag + λembeLossembe, (12)

where the first item is the cross-entropy of the predicted
results of student doing exercises yi and the real response ri,
λdiag and λembe are two trad-off parameters.

IV. EXPERIMENT

In this section, we conduct extensive experiments on four
data sets to demonstrate the effectiveness of our ACDDA
framework.

A. Experimental setup

a) Datasets: Four popular datasets from the real-world
are used in our experiments, namely Assistment09, Mooper,
Math1, and NIPS2020.

b) Data preparation for distribution shift : To conduct
ACD task, we divide the students, exercises and knowledge
concepts into two subsets, representing the source and target
scenarios respectively. In our datasets, there is no context for
the students. Thus, we divided the subsets randomly. Specially,
the student set is marked as S, and we select a subset Sin as the
shared set of students, and the other students are divided into
two subsets Sd1 and Sd2, where Sd1∩Sd2 = ∅. Then Sin∪Sd1

and Sin ∪ Sd2 form the student group in source and target
scenario respectively. This setup makes the students in two
scenarios with certain similarity as well as certain difference,
fulfilling the conditions for adaptation. In addition, the ratio
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TABLE I
THE OVERALL PERFORMANCE OF ALL CDMS FOR ACD WITH DIFFERENT FORMS OF DISTRIBUTION SHIFT.

(a) Source and target scenarios with shift of students

CDMs Mooper Assistment09 Math1 NIPS2020

S→T T→S S→T T→S S→T T→S S→T T→S
Statistical DINA [3] 0.7533 0.7485 0.6248 0.6302 0.7621 0.7635 0.5756 0.5812

MIRT [2] 0.7821 0.7765 0.6651 0.6681 0.7894 0.7951 0.5843 0.5926

NN-based

NCD [4] 0.8514 0.8527 0.7645 0.7721 0.8826 0.8829 0.7821 0.7852
NCD-ANCD-ANCD-A 0.87820.87820.8782 0.87650.87650.8765 0.77190.77190.7719 0.77900.77900.7790 0.88550.88550.8855 0.88480.88480.8848 0.79170.79170.7917 0.78820.78820.7882
RCD [6] 0.8133 0.8111 0.7523 0.7586 0.8576 0.8567 0.7348 0.7374
RCD-ARCD-ARCD-A 0.82820.82820.8282 0.82560.82560.8256 0.75530.75530.7553 0.76220.76220.7622 0.86060.86060.8606 0.85960.85960.8596 0.7224 0.7286

KSCD [8] 0.8701 0.8698 0.7442 0.7478 0.8319 0.8355 0.7298 0.7343
KSCD-AKSCD-AKSCD-A 0.87600.87600.8760 0.87460.87460.8746 0.76070.76070.7607 0.76880.76880.7688 0.85260.85260.8526 0.84710.84710.8471 0.73680.73680.7368 0.73760.73760.7376
SCD [21] 0.8201 0.8221 0.7581 0.7605 0.8588 0.8595 0.7388 0.7411
SCD-ASCD-ASCD-A 0.82810.82810.8281 0.82560.82560.8256 0.76110.76110.7611 0.76870.76870.7687 0.86060.86060.8606 0.85960.85960.8596 0.73900.73900.7390 0.74130.74130.7413

(b) Source and target scenarios with shift of exercises

CDMs Mooper Assistment09 Math1 NIPS2020

S→T T→S S→T T→S S→T T→S S→T T→S
Statistical DINA [3] 0.7215 0.7236 0.6958 0.6933 0.6011 0.5932 0.6584 0.6525

MIRT [2] 0.7625 0.7566 0.7269 0.7311 0.6280 0.6019 0.6765 0.6723

NN-based

NCD [4] 0.8214 0.8001 0.7670 0.7674 0.6309 0.6535 0.7125 0.7147
NCD-ANCD-ANCD-A 0.89120.89120.8912 0.88670.88670.8867 0.78870.78870.7887 0.78930.78930.7893 0.75130.75130.7513 0.71710.71710.7171 0.75940.75940.7594 0.75810.75810.7581
RCD [6] 0.9049 0.8991 0.7712 0.7740 0.7135 0.6551 0.7455 0.7449
RCD-ARCD-ARCD-A 0.91280.91280.9128 0.90680.90680.9068 0.77840.77840.7784 0.77890.77890.7789 0.77220.77220.7722 0.67420.67420.6742 0.7224 0.7221

KSCD [8] 0.7853 0.7710 0.7531 0.7517 0.6359 0.6588 0.6894 0.6935
KSCD-AKSCD-AKSCD-A 0.88340.88340.8834 0.84850.84850.8485 0.78120.78120.7812 0.76630.76630.7663 0.72660.72660.7266 0.78780.78780.7878 0.71970.71970.7197 0.71810.71810.7181
SCD [21] 0.9088 0.9022 0.7786 0.7773 0.7155 0.6568 0.7489 0.7476
SCD-ASCD-ASCD-A 0.91130.91130.9113 0.90680.90680.9068 0.78100.78100.7810 0.77980.77980.7798 0.76220.76220.7622 0.66420.66420.6642 0.7342 0.7336

(c) Source and target scenarios with shift of knowledge concepts

CDMs Mooper Assistment09 Math1 NIPS2020

S→T T→S S→T T→S S→T T→S S→T T→S
Statistical DINA [3] 0.7033 0.7017 0.6830 0.6810 0.8264 0.8272 0.6638 0.6621

MIRT [2] 0.7486 0.7312 0.7155 0.7231 0.8724 0.8716 0.7044 0.6903

NN-based

NCD [4] 0.7883 0.7673 0.7405 0.7665 0.9445 0.9363 0.7379 0.7105
NCD-ANCD-ANCD-A 0.83920.83920.8392 0.83540.83540.8354 0.75620.75620.7562 0.78120.78120.7812 0.96420.96420.9642 0.97430.97430.9743 0.76310.76310.7631 0.72810.72810.7281
RCD [6] 0.9115 0.8994 0.7561 0.7705 0.9268 0.9307 0.7740 0.7746
RCD-ARCD-ARCD-A 0.92270.92270.9227 0.90810.90810.9081 0.75910.75910.7591 0.77710.77710.7771 0.93440.93440.9344 0.93500.93500.9350 0.77480.77480.7748 0.77790.77790.7779

KSCD [8] 0.7122 0.7309 0.7519 0.7656 0.8988 0.8980 0.7166 0.6780
KSCD-AKSCD-AKSCD-A 0.80260.80260.8026 0.83550.83550.8355 0.77230.77230.7723 0.77420.77420.7742 0.90690.90690.9069 0.90500.90500.9050 0.75960.75960.7596 0.73540.73540.7354
SCD [21] 0.9165 0.9123 0.7571 0.7765 0.9288 0.9306 0.7749 0.7756
SCD-ASCD-ASCD-A 0.92460.92460.9246 0.91810.91810.9181 0.75980.75980.7598 0.77880.77880.7788 0.93360.93360.9336 0.93490.93490.9349 0.77550.77550.7755 0.77860.77860.7786

of Sin to S can be used to control the difference degree of
distribution shift in two scenarios. In this way, the exercises
and knowledge concepts can also be treated to prepare the data
for ACD.

c) Baselines: The baselines include the statistical-based
methods, (such as DINA [3] and MIRT [2]), and the NN-
based methods (such as NCD [4], RCD [6], KSCD [8] and
SCD [21]). The training method for the baseline is to directly
apply the network parameters trained in the source scenario
to the target scenario. It is noted that the established methods
for domain adaptation cannot be used for CD task. Thus, the
DA methods are not listed as baselines.

d) Experiment settings: There are several neural net-
works with parameters in our method. In the training of NN,
we use Xavier initialization to initialize the parameters, and
each parameter is sampled from N(0, std2), where std =√

2
nin+nout

. nin , nout denote the number of input and output
neurons, respectively. The network in the diagnosis level is
a 3-layer fully-connected NN, and Sigmoid is used as the

activation function for all layers. The best values of relevant
parameters are set with the experimental results. AUC is used
to evaluate the performance of all CDMs, as other works did
[2]–[4]. All models are implemented by PyTorch using Python
and all experiments are conducted with Intel(R) Core(TM) i9-
10900F CPU @ 2.80GHz and NVIDIA GeForce RTX 3060
GPU.

B. RQ1. How does our proposed ACDDA framework perform
compared with existing CD models? And how ACDDA per-
forms compared with other baselines?

Table I shows the cognitive diagnosis results for ACDDA
and all baselines. In Table I, difference ratio is 40% (as
mentioned in Data preparation for distribution shift) , S→T
denotes training CDM for T scenario without any log with
the assist of S with logs. -A represents our proposed method.

(1) Introducing our ACDDA framework can improve the
performance of CDMs on the target scenario. NCD-A out-
performs NCD by 0.71%, 4.92%, and 3.12% on average, and
KSCD-A outperforms KSCD by 1.14%, 6.08%, and 4.24%
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(a) Different students (b) Different exercises (c) Different concepts

Fig. 3. Ablation of NCD-A for three adaptive modules in the representation level on Assistment09 dataset

(a) Different students (b) Different exercises (c) Different concepts

Fig. 4. Ablation of NCD-A for three adaptive modules in the representation level on Mooper dataset

on average. The improvement of RCD-A and SCD-A is
insignificant, because the representations of proficiency and
difficulty contain partial concepts in the target domain. The
original baselines perform unsatisfactory because they use
CDMs trained from the source scenario directly to predict the
mastery of students in the target, not considering the distribu-
tion shift between two scenarios. In contrast, our framework
achieves better results by representing and training the model
adaptively to address the distribution shift.

(2) Our ACDDA has good compatibility with other base-
lines and the adaptive modules can be implemented based on
multiple baselines. Four popular baselines, NCD, RCD, KSCD
and SCD all can be integrated with our ACDDA, and the
performances of NCD-A, RCD-A, KSCD-A and SCD-A all
achieve obvious improvement.

C. RQ2: Are all three adaptive models in the representation
level and diagnosis level necessary?

To further explore the necessity of the three adaptive
modules under different applications, we conduct the ablation
about the adaptive modules with NCD-A on Assistment09 and
Mooper, as shown in Fig. 3-4. The adaptive modules include
the adaptive proficiency (denoted as -P), adaptive difficulty

(denoted as -F) and adaptive discrimination (denoted as -S).
Moreover, The adaptive cognitive state is denoted as -C.

From Fig. 3 and Fig. 4, we can obtain the three adaptive
modules in the representation level are selective according to
the scenarios. When the students in two scenarios are different
and the exercises are the same, the adaptive module for profi-
ciency can significantly improve the diagnostic performance,
while the adaptive modules for discrimination and difficulty
are not necessary. In Fig. 3-(a) and Fig. 4-(a), only using the
proficiency adaptive module (-P) performs better than using
the difficulty and discrimination modules (-FS) and using three
modules. It can also be concluded from Fig. 3-(b) and Fig. 4-
(b) that the adaptive modules for difficulty and discrimination
are necessary when the exercises are different in two scenarios.
When there are differences in both students and exercises
distributions, all three adaptive modules of the representation
level are needed simultaneously. The above conclusion is valid
under a certain ratio of difference degree.

D. RQ3: Is our method sensitive to hyperparameters?

In Eq.12, λdiag and λembe are two trad-off parameters. We
show the performance of our model varying with different
values in Fig 5-(a)). It can be seen that the best values of
λdiag/λembe is 1 . In addition, we also perform parameter
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(a) Loss weight (b) The full connection layer size (c) Dropout rate (d) Learning rate

Fig. 5. Impact of hyperparameters on the performance of NCD-A, KSCD-A and RCD-A in terms of AUC on Assistment09.

sensitivity analysis for the size of fully connected layer,
dropout rates, and learning rate, as shown in Fig. 5-(b), -(c)
and -(d) respectively. The best results are obtained when the
size of fully connected layer is set to 256, the dropout rate is
0.5. And the learning rate of NCD-A and KSCD-A are 0.0002,
the learning rate of RCD-A is 0.002 respectively. In addition,
the size in RCD is fixed to the number of knowledge concepts,
thus we do not list the performance of RCD-A in Fig. 5 -(b).

V. CONCLUSION AND FUTURE WORK

In this paper, we propose an adaptive cognitive diagnosis
problem to address the distribution shift in CD task. And con-
sidering that the co-existence of multiple forms of distribution
shift in CD task, we design a double-level adversarial adaptive
framework for cognitive diagnosis. Extensive experimental
results demonstrate the superiority of our proposed framework.
On the other hand, our method is still a rather primitive
one, and there are still many problems in adaptive cognitive
diagnosis for further research. Firstly, cognitive modeling is
a complex process, and the distribution shifts are not only
reflected in the representation and diagnostic steps, but also
in other more hidden and higher-order factors. Therefore,
to find other causes of distribution shifts and to learn the
transferable information need future research. Secondly, the
negative transfer is an unavoidable problem in ACD. Not only
the transferable information be addressed, but also the negative
transfer should be avoided.
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