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Abstract: In this study, the authors address a challenging problem of aesthetic image classification, which is to label an input
image as high- or low-aesthetic quality. We take both the local and global features of images into consideration. A novel deep
convolutional neural network named ILGNet is proposed, which combines both the inception modules and a connected layer of
both local and global features. The ILGnet is based on GooglLeNet. Thus, it is easy to use a pre-trained GooglLeNet for large-
scale image classification problem and fine tune their connected layers on a large-scale database of aesthetic-related images:
AVA, i.e. domain adaptation. The experiments reveal that their model achieves the state of the arts in AVA database. Both the
training and testing speeds of their model are higher than those of the original GoogLeNet.

Today, image aesthetic quality classification is still a challenging
problem. Typically, the following reasons make it challenging:

1 Introduction

Shooting good photographs needs years of practise for
photographers. However, it is often easy for people to classify an

image into high or low-aesthetic quality. As shown in Fig. 1, the
left image is often considered as with higher-aesthetic quality than
the right one.

Recently, smartphones, social networks and cloud computing
boost the number of images in the public or private cloud. People
need a better way to manage their photographs than ever before.
An important ability of today's photograph management software is
to automatically recommend good photographs from a large
number of daily photographs. Besides, aesthetic quality assessment
can be used in the following scenarios:

1. When vou search images on the Internet. the aesthetic
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* Two classes of high- and low-aesthetic qualities contain large
intra-class differences.

* Many high-level aesthetic rules versus low-level image features.

* The subjective nature of human rating on aesthetic qualities of
images.

Thus, people from computer vision, computational photography
and computational aesthetics make this topic hot. In their early
work, they design hand-crafted aesthetic image features, which are
fed into a classification model or a regression model. Generic
image features are also used in aesthetic quality classification.
Today, deep convolutional neural networks are designed especially
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architecture with inception module shows its benefits. The
performance was significantly raised in the classification and
detection challenges. However, in current literature, inception
modules have not been used in the aesthetic quality assessment to
the best of our knowledge.

We propose to use inception modules for image aesthetics
classification in this paper. A new deep convolutional neural
network using inception modules with connected low and global
features 1s proposed, which is called ILGNet. Connecting
intermediate layers directly to the output layers has shown its value
in recent work [5, 8]. In our ILGNet, the local feature layers are
connected to the global feature layers. The ILGNet contains 13
layers with parameters and without counting pooling layers (4
layers). We use a pre-trained model on the ImageNet [9] as our
mitial model, which is trained for object classification of 1000
categories. Then, the inception modules are fixed and the
connected local and global features layers are finely tuned on the
aesthetic visual analysis (AVA) database, which is currently largest
image aesthetics database [10]. We achieve the state of the art in
the experiments on the AVA database [10]. Besides, the trained
models and codes are available at github: https://github.com/
BestiVictory/ILGnet.

The rest of this paper is organised as follows. In Section 2, we
review the related work. In Section 3, we describe our proposed
ILGNet in details. Then, the experimental settings, results and
comparisons with state-of-the-art methods are presented in Section
4. Finally, we give a conclusion in Section 5.

2 Previous work

The related work of our task can be categorised into the traditional
image quality assessment, the subjective image aesthetic quality
assessment using hand-crafted features and deep learning.

2.1 Traditional image quality assessment

Traditional image quality assessment is to assess the objective
image quality, which may be distorted or influenced during the
imaging, compression and transmission. Distortions such as
ringing, blur, ghosting, smearing, blocking, mosaic and jerkiness
are measured [11]. The human perception of aesthetics cannot be
well modelled by these low-level features and metrics.

2.2 Hand-crafted features for subjective image aesthetic
quality assessment

Subjective image aesthetic quality assessment is to automatically
distinguish an image to low- or high-aesthetic quality. Some of
them can give a numerical assessment. They often contain the three
steps as follows:

» A database of images is collected. Then they often manually
lahel each with two labels: onnd for imaces with hish-aesthetic
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deep convolutional neural network have been used for image
aesthetics assessment. The performance has been significantly
improved compared with traditional methods [11, 35-44].

Most of the above work has the AlexNet architecture [45],
which contains eight layers with five convolutional layers and three
full-connected layers or visual geometry group (VGG) [46].
Inspired by the good performance of Googl.eNet in the ImageNet,
which argues that deeper architectures enable to capture large
receptive field. We can extract local image features and the global
features of the image layout. Connecting intermediate layers
directly to the output layers has shown its value in recent work |[5,
8]. Both the local features and the global features can be extracted
by inception modules. Thus, we change the GoogleNet by
connecting the intermediate local feature layers to the global
feature layer.

3 ILGNet for image aesthetic quality classification

The details of the proposed ILGNet are described in this section.
The ILGNet contains 13 layers with parameters and without
counting pooling layers (4 layers). The network contains one pre-
treatment layer and three inception modules. Two intermediate
layers of local features are connected to a layer of global features,
which makes a 1024 dimension concat layer. The output layer
indicates the probability of low- or high-aesthetic quality. The
basic ILGNet is built on the first 1/3 part of Googl.eNetV1 [5] and
batch normalisation, which 1is an important feature of
GoogleNetV2 [47].

3.1 Inception module

The InceptionV1 module is proposed by Googl.eNetV1 [5]. The
main ideas of the inception module are:

i.  Convolution kernels with different sizes represent receptive
fields with difference sizes. This design means fusing features
of different scales.

ii. The kernel sizes are set to 1x1, 3x3 and 5x5 so as to align the
features conveniently. The stride is 1. The pad is setto 0, 1, 2.

iii. The features extracted by the higher layer are increasingly
abstract. The receptive field involved by each feature is larger.
Thus, the ratio of 3x3 and 5x5 kernels should be increased.

After InceptionV1, Google proposed InceptionV2 and
InceptionV3, which adopt factorisation of convolutions and
improved normalisation. Then, InceptionV4 considered the residue
network, which surpassed its ancestor Googl.eNet on the ImageNet
benchmark.

3.2 Image aesthetic quality classification

The convolution layers inside ILGNet has rectified linear
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Table 1 Main training parameters of the Caffe package

Parameters AVA1 (6 =0) AVA1 (6=1) AVA2
base_Ir 0.0001 0.00001 0.00001
Ir_ policy ‘step’ ‘step’ ‘step’
stepsize 100,000 19,000 13,325
gamma 0.96 0.96 0.96
max_iter 475,000 760,000 533,000
momentum 0.9 0.9 0.9
weight_decay 0.0002 0.0002 0.0002
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Fig. 2 We use the trained ILGNet to label images with good or bad, which indicates high- or low-aesthetic quality, respectively

them use deep convolutional neural networks. The main training
parameters of the Cafte package [48] are listed in Table 1.

4.1 Database and comparison protocols

The aesthetic visual analysis database [10] is a list of image ids
from DPChallenge.com, which is an online photography social
network. There are total 255,529 photographs, each of which is
rated by 78-549 persons, with an average of 210. The range of the
scores rated by a human is 1-10. We use the same protocols to
those of the previous work. They often use two sub-database of
AVA:

e AVAI: The score of five are chosen as the threshold to
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The original ILGNet is built on the first 1/3 of Googl.eNet V1,
as shown in Fig. 3. We add batch normalisation (Googl.eNet V2
[5] features), which form our ILGNet-Inc.V1-BN. After that, we
further built our ILGNet on the first 1/3 of recent Googl.eNet V3
[51] and V4 [52], which form our ILGNet-Inc.V3 and ILGNet-
Inc. V4. The test results in the AVA1 database are shown in Table 2.
Our ILGNet-Inc.V4 outperforms the other deep convolutional
neural networks (DCNN)-based methods and achieve the state-of-
the-art accuracy: 82.66%.

The above is the case of § = 1. Similar results are shown when
8= 1. In the original test protocol [10], they set §=1 in the
training set, there are 7500 low-quality images and 45,000 high-
quality images. For the testing images, they fix § to 0, regardless of
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Fig. 3 ILGNet architecture: Inception with connected local and global lavers. We build this network on the first 1/3 part of GoogLeNetV1 [5] and batch
normalisation, which is an important feature of GoogLeNetV2 [47]. One pre-treatment layer and three inception modiiles are used. We use the first two
inception modules to compute the local features and the last one to compute global features. Connecting intermediate layers directly to the output layers has
shown its value in recent work [5, 8]. Thus, we built a concat full-connected layer of 1024 dimension which connects two layers of local features and a layer of
global features. The output layer indicates the probability of low- or high-aesthetic quality. The ILGNet contains 13 layers with parameters and without

counting pooling layers (four layers). In Section 4, we use the labels (1)—(7) to demonstrate the visualisation results

Table 2 Classification accuracy in AVA1 database

Methods 6=0,% =1,%
Traditional method [10] 66.70 67.00
RAPID [36] 69.91 71.26
RAPID-E [38] 74.46 73.70
Multi-patch [37] 75.41 —
AROD [53] 75.83 —
Multi-scene [40] 76.94 —
Comp.-prev. [11] 77.10 76.10
AADB [41] 77.33 —
BDN [43] 78.08 77.27
Semantic-based [42] 79.08 76.04
A-Lamp [44] 82.5 —
ILGNet-without-Inc. 75.29 73.25
1/3 GoogLeNetV1-BN 80.74 79.09
ILGNet-Inc.V1-BN 81.68 80.71
ILGNet-Inc.V3 81.71 80.65
ILGNet-Inc.V4 82.66 80.83
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Table 3 Classification accuracy in AVA2 database

Methods

Accuracy, %

Subject-based [14]
EfficientAssess [49]
Generic-based [33]
Compt.-based [12]
High-level [13]
Multi-level [39]
Query-dependent [54]
DCNN-Aesth-SP [50]
Multi-scene [40]
ILGNet-without-Inc.
1/3 GoogLeNetV1-BN
ILGNet-Inc.V1-BN
ILGNet-Inc.V3
ILGNet-Inc.V4

61.49
68.13
68.55
68.67
71.06
78.92
80.38
83.52
84.88
79.64
82.26
85.50
85.51
85.53

Table 4 Efficiency comparison in AVA1 database

Methods Accuracy 6 =0, % Training time, days Test time, s
Full GoogLeNetV1-BN 82.36 16 0.84
2/3 GooglLeNetV1-BN 81.72 11 0.57
1/3 GooglLeNetV1-BN 80.74 4 0.33
ILGNet-Inc.V1-BN 81.68 4 0.31
1.2 4 —— Full GoogleNetV1-BN
—— ILGNet-Inc.V1-BN
—— 1/3 GoogleNetV1-BN
—— 2/3 GoogleNetV1-BN
1.01
0.8 1
0.6
0.4 1
0.2 1
0.0 1

0 2000 4000

8000

Fig. 4 Loss versus epoch of our ILGNet-Inc.VI1-BN, 1/3, 2/3 and full GoogLeNetV1-BN. in AVAI database
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