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The rapid development of the technologies for online learning provides students with extensive resources

for self-learning and brings new opportunities for data-driven research on educational management. An im-

portant issue of online learning is to diagnose the knowledge proficiency (i.e., the mastery level of a certain

knowledge concept) of each student. Considering that it is a common case that students inevitably learn and

forget knowledge from time to time, it is necessary to track the change of their knowledge proficiency during

the learning process. Existing approaches either relied on static scenarios or ignored the interpretability of

diagnosis results. To address these problems, in this article, we present a focused study on diagnosing the

knowledge proficiency of students, where the goal is to track and explain their evolutions simultaneously.

Specifically, we first devise an explanatory probabilistic matrix factorization model, Knowledge Proficiency

Tracing (KPT), by leveraging educational priors. KPT model first associates each exercise with a knowledge

vector in which each element represents a specific knowledge concept with the help ofQ-matrix. Correspond-

ingly, at each time, each student can be represented as a proficiency vector in the same knowledge space.

Then, our KPT model jointly applies two classical educational theories (i.e., learning curve and forgetting

curve) to capture the change of students’ proficiency level on concepts over time. Furthermore, for improving

the predictive performance, we develop an improved version of KPT, named Exercise-correlated Knowledge

Proficiency Tracing (EKPT), by considering the connectivity among exercises with the same knowledge con-

cepts. Finally, we apply our KPT and EKPT models to three important diagnostic tasks, including knowledge

estimation, score prediction, and diagnosis result visualization. Extensive experiments on four real-world
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datasets demonstrate that both of our models could track the knowledge proficiency of students effectively

and interpretatively.

CCS Concepts: • Computing methodologies → Factorization methods; • Applied computing → Ed-

ucation; • Information systems→ Collaborative filtering;
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1 INTRODUCTION

Online learning systems have a long history dating back to the 1980s [55, 74] and still have wit-
nessed the proliferation with the computer-aid technology and artificial intelligence in recent
years, such as massive open online course (MOOC) platforms and online judge (OJ) systems [14,
78]. Generally, these platforms provide students with abundant learning resources (e.g., course,
exercise, lecture) and enable them an open environment to learn and practice knowledge indi-
vidually. Although such advantages of autonomy and convenience do attract a large number of
students, researchers still have found that students are prone to lose their learning interests and
show high dropout issue in practice [1, 21]. To deal with this problem, an effective solution is to
provide the personalized services in online learning systems to improve students’ learning expe-
riences. Fortunately, with the accumulation of rich student-learning data nowadays, researchers
have tried many data-oriented solutions on this educational issue [1, 8].
Among them, one of the key tasks is knowledge proficiency diagnosis, with the goal of dis-

covering the latent mastery levels of students on each knowledge concept [38]. Figure 1 shows a
toy example of this task. We can see that two students (i.e., u1 and u2) learn two knowledge con-
cepts (i.e., k1 (Function) and k2 (Inequality)) by practicing on different mathematical exercises (i.e.,
{e1, e2, . . . , e12}) from March to May. Also, a Q-matrix, which is usually annotated by educational
experts, denotes the relationship between exercises and concepts [15]. Specifically, the number 1 in
Q-matrix means that the corresponding exercise contains the knowledge concept and 0 otherwise,
e.g., exercise e1 contains Function, and exercise e4 is related to both Function and Inequality. Thus,
the task of knowledge proficiency diagnosis is: Given the historical exercising record of students
and the corresponding Q-matrix, we aim to analyze how much they master each concept (i.e.,
Function and Inequality). In fact, as these diagnosis results are beneficial to numerous applica-
tions, such as targeted knowledge training [25] and personalized exercise recommendation [47,
62], many efforts in both educational psychology and data-mining fields have been devoted to
this issue: In educational psychology, cognitive diagnosis models usually characterize the knowl-
edge proficiency of each student by a latent trait value [20] or a binary skill mastery vector [15].
Comparatively, by treating the diagnosis task as a data-mining problem of score prediction, ma-
trix factorization techniques project students in a latent space to infer their implicit knowledge
states [33]. In summary, these two types of research straightforwardly exploit the student exercis-
ing records for diagnosis. However, most of them ignore some important factors in their learning
process.
In the literature, there are twomain factors that have significant impacts on the learning process.

On one hand, educational psychologists have long converged that the student-learning process is
not static but evolves over time [70]. Inevitably, students gain and forget the knowledge they learn.
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Fig. 1. A showcase of knowledge proficiency diagnosis task for two students (u1,u2) on mathematical exer-
cises (e1, e2, . . . , e12) related to two knowledge concepts (k1 (Function), k2 (Inequality)) from March to May.
The left area contains two parts: the top part shows their learning process with different exercises, and the
bottom part shows the corresponding diagnosis results of them on these two knowledge concepts over time.
The right area shows the Q-matrix that depicts the knowledge concepts of each exercise, where each row
denotes an exercise and each column stands for a knowledge concept.

Specifically, two important theories in education studies provide the fundamental ideas for mod-
eling the knowledge proficiency of students. While the learning curve theory argues that students
can gain the knowledge with constant trails or exercises [2], the forgetting curve theory suggests
that students have a decreasing memory on things they have learned so that their knowledge
proficiency follows a declining curve [3, 19]. Let us take Figure 1 as an example. As time goes
on, student u2 improved her proficiency levels on both two knowledge concepts with some ex-
ercises she took and learned. In contrast, student u1’s proficiency levels decreased as she did not
do any exercises in April and May. Based on the above two theories, several studies from both
the data-mining community [40, 63, 77] and the cognitive diagnosis area [9, 12, 48, 50, 75] have
attempted to track the knowledge proficiency of students dynamically. The experimental results
showed the superiority of adding the temporal information for this task. However, there are some
issues that are still under exploration. In particular, data-mining models, such as the tensor fac-
torization model [34, 63], only capture the latent factors of students over time, so these models
are hard to explain the causality between specific knowledge concepts and the proficiency levels
of students. In practice, the interpretability is an important factor leading to good diagnosis re-
sults [38]. Besides, in cognitive diagnosis, many knowledge tracing approaches [48, 75] consider
the learning and forgetting factors as additional parameters. Related results indicate that these
two factors are highly related to the exercises done by students at each time as suggested by edu-
cational experts. However, these cognitive models could not answer the question that how these
educational theories would help explain the evolution of students’ proficiency level on concepts
over time. Therefore, our work aims to apply both learning and forgetting theories to better track
and explain the knowledge proficiency of students during the learning process.
On the other hand, in the real world, students often get consistent scores on the exercises with

same knowledge concepts [53, 59]. This is also a crucial factor for the diagnosis task. For instance,
from Figure 1, student u1 performed well on both exercises e1 and e4 in March, while student u2
answered them incorrectly. It is easy to find that both exercises contain the same concept Function;
hence, we could naturally conclude that u1 mastered better on Function than u2. Intuitively, this
evidence is similar to the phenomenon in recommender systems [22, 27, 34, 57] and information
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retrieval [42, 46], where users usually show similar consumption preferences on similar items (e.g.,
itemswith similar attributes). Many studies in the literature show that the item-based collaborative
algorithms have successfully improved the performance in relevant fields [26, 57, 71]. To the best of
our knowledge, although some prior work have considered some skill (knowledge) relationships,
such as prerequisite skill hierarchies [30], few of them has noticed the effect of directly utilizing
the above connectivity among exercises covering the same concepts for diagnosing and explaining
the knowledge proficiency of students. In summary, in this work, we mainly focus on addressing
the following challenges for tracking student knowledge proficiency: How do we apply all of the
above educational factors (i.e., learning theory, forgetting theory, and connectivity property) to the
knowledge diagnosis? How dowe quantitatively distinguish and interpret these factors to improve
both accuracy and interpretability of the diagnosis results?
To tackle these challenges, in our preliminary work [11], we proposed an explanatory proba-

bilistic matrix factorization model called Knowledge Proficiency Tracing (KPT) to track the profi-
ciency levels of students by incorporating learning and forgetting theories. Specifically, we first
associated each exercise with a knowledge vector, in which each element represented a specific
concept. The Q-matrix, which was marked by experts to depict the relationship between exercises
and knowledge concepts, was exploited as priors to generate exercise representations. Each stu-
dent was also represented as a proficiency vector at each time in the same knowledge space. Then,
we jointly applied both learning curve and forgetting curve theories to capture the change of each
student’s knowledge states over time. Therefore, KPT could well track and explain the knowledge
proficiency of students during their learning process.
In this article, to improve the predictive performance of our proposed model, we further de-

velop an improved version of KPT and propose an Exercise-correlated Knowledge Proficiency Tracing
(EKPT) model, where we incorporate the connectivity property among exercises over knowledge
concepts into our probabilistic modeling. In EKPT, we assume that students perform consistently
on the exercises with same knowledge concepts. To be specific, at each time, we select a neighbor
set for each exercise over its concepts, and thus EKPT could learn each knowledge vector with the
influence of its neighbors. Correspondingly, the proficiency vector of each student is also updated
by her performances on these neighbor exercises. Furthermore, for comprehensively verifying the
effectiveness of KPT and EKPT, we introduce three practical diagnostic tasks, including knowl-
edge estimation, score prediction and diagnosis result visualization. Finally, we conduct extensive
experiments on four real-world datasets, where the experimental results demonstrate the effec-
tiveness of both our proposed models with good accuracy and interpretability.
The rest of this article is organized as follows. In Section 2, we introduce the related work. The

problem definition of tracking student knowledge proficiency is specified in Section 3. Sections 4
and 5 detail our KPT and EKPT models, respectively. In Section 6, we specify how to apply our
models to three diagnosis tasks. Section 7 presents the experimental results. After that, we give an
overall discussion based on this work in Section 8. Finally, conclusions are given in Section 9.

2 RELATEDWORK

In the literature, our work is relevant to an important topic in educational psychology, called self-
regulated learning, which has been developed over the past two decades [79]. Broadly speaking,
it refers to the process by which learners personally activate and sustain cognitions, affects, and
behaviors that are systematically oriented toward the success of learning goals. In terms of learn-
ing performance perspective, prior work mainly focused on the school-based or classroom-based
learning environment where educators could teach students the skills necessary to lead them to be-
come self-regulated learners by using strategies such as reciprocal teaching, open-ended tasks, and
project-based learning [49]. Recently, the proliferation of online learning systems, such as MOOC,
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have attracted many students for self-regulated learning. However, research results showed that
many students greatly struggled with it due to the absence of support and guidance from instruc-
tors, resulting in the huge problem of dropout rate [1, 21, 32]. Therefore, many scholars nowadays
pay more attention on the issue of how to improve the self-regulated learning strategies in online
environment [32]. Among them, one of the most important strategies is self-assessment, which
suggests systems monitoring the learning process of students and telling them what skills they
has and what they need. Actually, our work of tracking student knowledge proficiency has very
strong connections with the self-regulated learning in terms of self-assessment strategy from tech-
nique perspective. Our main goal is to propose an interpretable model of reminding students of
what knowledge they have acquired andwhat they have not. Our solution can help students online
be motivated to conduct self-regulated learning in practice in some way.
In the following, we summarize the related model techniques into four categories, i.e., student

modeling, cognitive diagnosis, dynamic learning modeling, and exercise relationship modeling.

Student modeling. The first category is student modeling [73, 77] in data-mining area, with the
goal to learn the latent representations of students from their exercises. These learned represen-
tations could be applied to many tasks, such as performance prediction [71]. We can regard the
obtained representations of students as their implicit knowledge proficiency. Usually, there are
two types of representative techniques: factorization models [33, 40, 63] and neural networks [43,
52, 53, 59, 77]. For instance, Thai-Nghe et al. [62] leveraged matrix factorization models to map
each student into a latent vector that depicted her implicit knowledge states. To capture the dy-
namics of student-learning process, Thai-Nghe et al. [63] proposed a tensor factorization approach
by incorporating additional time dimensions over time. Recently, through establishing a bridge be-
tween knowledge concepts and neurons, researchers have developed many deep neural networks
for the diagnosis task. For example, Piech et al. [52] proposed a deep knowledge tracing (DKT)
model, which to the best of our knowledge, was the first attempt to utilize recurrent neural net-
works (e.g., RNN or LSTM) for tracing students’ knowledge states. Moreover, Liu et al. [53] and
Minn et al. [43], respectively, incorporated the effects of exercise content and student groups for
improving the performance. Nevertheless, a common limitation of these works is that these mod-
els operate like a black box, where a certain student’s knowledge states on different concepts are
usually integrated into one hidden unified vector. Thus, the output of her state representation are
hard to explain. That is to say, neither the latent vectors from factorization models nor the hidden
layers from neural networks can correspond to any explicit knowledge concept (e.g., Function). In
contrast, our models improve traditional probabilistic models by incorporating educational factors
(i.e., learning theory, forgetting theory and connectivity property), which tells us the strengths and
weaknesses of students, guaranteeing the explanatory power.

Cognitive diagnosis. Cognitive diagnosis is a crucial direction in educational psychology, which
aims at discovering the proficiency of students on the defined knowledge concepts [17, 65]. Widely
used approaches could be divided into two aspects: unidimensional models and multidimensional
models. Among them, item response theory (IRT), as a typical unidimensional model, considered
each student as a single proficiency variable (i.e., latent trait) [20]. Comparatively, multidimen-
sional models, such as Deterministic Inputs, Noisy-And gate (DINA) model, characterized each stu-
dent by a binary latent vector, which described whether or not she had mastered the knowledge
concepts with the help of Q-matrix [15]. Furthermore, Liu et al. [38] proposed FuzzyCDF to quan-
titatively diagnose the knowledge proficiency of students by taking advantage of fuzzy system.
However, to the best of our knowledge, all these methods rely on static assumptions and ignore
the temporal factor for more precise diagnosis. In this work, we focus on capturing the change of
students’ knowledge proficiency levels during their learning process.
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Dynamic learning process modeling. To explain the dynamics of students’ knowledge proficiency
during the learning process, educational psychologists have converged two classical theories:
Learning curve theory argues that students can enhance their knowledge acquisition with constant
trails or exercises [2] and Forgetting curve theory indicates that students have a decreasing mem-
ory on things they have learned as time goes on [3, 19]. Based on these two theories, researchers
have attempted to develop a series of models for diagnosing the knowledge states of students
from an evolving perspective. For example, some IRT-based models, such as learning factors anal-
ysis [9] and performance factors analysis [50], were proposed, which assumed that students shared
the same parameters of learning rates when exercising. Furthermore, Wang et al. [70] proposed
a time-series IRT model to estimate a dynamic latent trait of each student. In addition, another
representative work is knowledge tracing [12, 23, 30, 31, 48, 64, 75], which is a typical sequen-
tial framework to trace students’ knowledge states over time. Among them, Bayesian knowledge
tracing (BKT) [12] was one of the most popular models, which assumed each student’s knowledge
state as a set of binary variables, where each variable represented she had “mastered” or “non-
mastered” on a certain concept. It leveraged hidden Markov models (HMM) to update the concept
states separately. On this basis, some extensions further considered the effects of other factors,
such as individual differences [64] and prerequisite hierarchies [30]. Despite the importance of
these efforts, there are still some limitations in practice: First, IRT-based models only estimate a
specific variable (e.g., latent trait) for each student so that they cannot discover her proficiency
levels on multiple knowledge concepts simultaneously (e.g., Function and Inequality in Figure 1).
Second, knowledge tracing usually works with a learning scenario where students are allowed to
keep practicing the same items for learning target concepts, which is not effective enough for a
more general one (as shown in Figure 1) where students seldom repeat doing the same exercises
but seek more different exercises for required concept learning. Last but not least, existing models
neglect the direct evolutionary influence of both learning and forgetting factors when students are
exercising, thus are hard to quantify the dynamics of their knowledge proficiency over time.

Exercise relationship modeling. Modeling exercise relationship is one of the key issues in edu-
cational psychology. On one hand, researchers often utilize Q-matrix to associate exercises and
knowledge concepts [4, 16]. In practice, the Q-matrix is usually marked by experts (e.g., teacher),
defining which knowledge concepts are needed for each exercise. The original inspiration for the
Q-matrix method came from Tatsuoka et al. [61] who explored student misconceptions in basic
math concepts, such as adding fractions. Recently, Sun et al. [60] and Liu et al. [37] made attempts
to automatically generate the Q-matrix to reduce the cost of expertise. With the given Q-matrix,
many efforts have been made to generate educational analysis, such as knowledge diagnosis [10,
16, 75], slip and guess detection [38], and learning team formation [39]. On the other hand, re-
searchers focus on leveraging exercise relationships (e.g., prerequisite hierarchies) to predict stu-
dent scores, which could help analyze the knowledge states of students. The initiative idea behind
is that students usually get consistent scores on the exercises with same knowledge concepts [30,
62]. Intuitively, this kind of idea is similar to the methods used in recommender systems and infor-
mation retrieval [42, 46, 71], such as item-based methods [26, 57] and model-based methods [22,
35], where users usually show the similar consumption preferences on similar items (e.g., items
that they bought in the past or items with same attributes). Although some previous work explore
the effects of prerequisite relationship [30] of concepts, it requires a large of experts’ annotations,
which is labor intensive. To the best of our knowledge, it is still under-explored to combine the
connectivity of exercises for more precisely diagnosing students’ proficiency levels. In this article,
we focus on capturing the connectivity property among exercises over knowledge concepts into
our modeling, which improves both accuracy and interpretability of the diagnosis results.
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Table 1. Example: Left Table Shows a Typical Exercising Log

(a) Exercising log example (b) Q-matrix example

Student Exercise Time Score
u1 e1 t1 0
u1 e5 t2 0.25
u2 e2 t1 0
u2 e3 t3 1
u2 e1 t3 0.75
u3 e4 t4 1
. . . . . . . . . . . .

Exercise
Knowledge concepts

k1 k2 k3 k4 k5
e1 1 0 0 0 0
e2 0 0 1 0 0
e3 0 0 0 1 1
e4 0 1 0 0 0
e5 1 0 0 0 0
. . . . . . . . . . . . . . . . . .

Right table presents a Q-matrix.

3 PRELIMINARIES

In this section, we first formulate our problem of tracking the knowledge proficiency of students.
Then, we present an overview for our solution.

3.1 Problem Statement

In general, suppose there are N students, M exercises, and K knowledge concepts in a learning
system where students do exercises at different times, recorded as exercising logs (Table 1(a)).
Specifically, we can represent the exercising logs as a score tensor R ∈ RN×M×T . If student i does
exercise j at time t , then Rti j denotes student i’s performance score on exercise j. In addition,

we are also given a Q-matrix provided by educational experts, which can be represented as a
binary knowledge matrix Q ∈ RM×K (Table 1(b)). If exercise j relates to knowledge concept k ,
thenQ jk = 1; otherwise,Q jk = 0. In our scenario, please note that at different time, most students
practice the same exercises only once, because they usually choose different exercises to learn a
specific knowledge concept in general cases. For example, suppose a student tries to learn concept
Function, she will first practice one related exercise and check whether or not she is right. If she
finds the answer is wrong, then she will not practice the same exercise, since she has already
known the answer. Therefore, it can be nature that she will practice another one but with the
same concept for Function learning. For this reason, we can see that student u1 in Table 1 learns
concept k1 by practicing different exercises e1 and e5 at different time.1 Without loss of generality,
the research problem can be formulated as follows:
(PROBLEM FORMULATION) Given the score tensor R and the corresponding Q-matrix Q , our

goal is twofold: (1) tracking the change of knowledge proficiency of each student and diagnosing how

much she masters K knowledge concepts from time 1 to T ; (2) predicting her knowledge proficiency

on K concepts and performance scores on specific exercises at time T + 1.

3.2 Solution Overview

Our solution overview is shown in Figure 2. Specifically, based on students’ exercising logs and the
corresponding Q-matrix, we first propose a primary Knowledge Proficiency Tracing (KPT) model.
KPT first projects the proficiency vector of each student into a knowledge space with the help
of Q-matrix prior and then combines both Learning curve theory and Forgetting curve theory for
tracking her knowledge proficiency over time. Furthermore, we propose an improved Exercise-

correlated Knowledge Proficiency Tracing (EKPT) model by incorporating the exercise connectivity

1There are many different scenarios in different online learning systems. We give the detailed discussion in Section 8.
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Fig. 2. The overview of our solutions.

Table 2. The Key Mathematical Notations

Notation Description
N the total number of students
M the total number of exercises
T the total number of time windows
K the total number of knowledge concepts

Rti j the response score of student i on exercise j at time t

U t
i the proficiency vector of student i on knowledge concepts at time t ,U t

i ∈ RK×1
Vj the knowledge vector of exercise j on knowledge concepts, Vj ∈ RK×1
bj the difficulty bias of exercise j
αi the balance parameter of student i
NVj the neighbor set of exercise j with same knowledge concepts

to improve the prediction performance. After that, we can obtain the student proficiency vectors
U at different time and the exercise knowledge vectors V . At last, we apply both KPT and EKPT
models to three educational tasks, i.e., estimating the knowledge proficiency (UT+1) of students in
the future, predicting their scores (RT+1) in the future, and visualizing the diagnosis results.

In the following, we will specify the probabilistic modeling and parameter learning of KPT and
EKPT, respectively. For better illustration, the key notations are summarized in Table 2.

4 KNOWLEDGE PROFICIENCY TRACING MODEL

In this section, we first introduce the Knowledge Proficiency Tracing (KPT) model, which contains
two major steps: modeling exercise knowledge vectors V with Q-matrix prior and modeling stu-
dent proficiency vectors U with both learning and forgetting theories.

4.1 Probabilistic Modeling with Priors

Generally, inspired by many existing works [26, 76], given the student exercising logs, for each
student i and each exercise j, we model the conditional distributions of observed response score
tensor R with student proficiency vectors and exercise knowledge vectors as

p (R |U ,V ,b) =
T∏

t=1

N∏

i=1

M∏

j=1

[
N
(
Rti j

���〈U t
i ,Vj
〉
− bj ,σ 2

R

)] I ti j , (1)
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where N (μ,σ 2) is a Gaussian distribution with mean μ and variance σ 2. I is an indicator tensor,
where the variable I ti j equals to 1 if student i practices exercise j at time t , and vice versa.U t

i ∈RK×1

is the proficiency vector of student i on K knowledge concepts at time t in student matrix U t .
Vj ∈RK×1 is the knowledge vector of exercise j in exercise matrixV , denoting the latent correlation
between exercise j and K concepts. bj is the difficulty bias of exercise j, which is widely adopted
in many cognitive modeling [20]. 〈·, ·〉 denotes the inner product of two vectors. To track the
knowledge proficiency of students, we assume that their proficiency levels on K concepts change
among time in Equation (1). Therefore, we specify the students’ proficiency levels as a tensor
presentation as: U = {U 1, . . . ,U t , . . . ,UT }. Given the likelihood function in Equation (1), in the
following, we first explain how to embed the Q-matrix prior to model exercise matrixV , endowing
each exercise knowledge vector with interpretability in which each element represents a specific
knowledge concept. Then, we track student proficiency tensorU by combining Learning curve and
Forgetting curve theories in the dynamic learning process.

4.1.1 Modeling V with the Q-matrix Prior. Traditional probabilistic models in Equation (1) al-
ways suffer from the low interpretation problem as the learned latent vectors are unexplainable [33,
62], i.e., each dimension in the student tensor U and the exercise vectors V cannot relate to any
specific knowledge concept (e.g., Function), and thus we cannot remind students of their weak-
nesses, which is not satisfied enough [77]. For this issue, many efforts in educational psychology
have been made to build an interpretable model by leveraging Q-matrix [15], i.e., letting the qth
dimension inVj embed with concept q if Q jq =1. However, such traditional Q-matrix has two dis-
advantages in practice: (1) inevitable error or subjective bias due to manual labeling [37]; (2) the
sparsity with the binary entries, which does not fit probabilistic modeling well. To mitigate these
existing issues, we refine Q-matrix by utilizing a partial-order-based method [54]. In this way,
we can reduce both disadvantages and associate each exercise with all K knowledge concepts.
More formally, for exercise j, we first define its partial order >+j of all concepts as

∀p,q ∈ K ,p � q, if Q jq = 1 and Q jp = 0⇒ q >+j p,

∀p,q ∈ K ,p � q, if Q jq = 1 and Q jp = 1⇒ q �>+j p, (2)

∀p,q ∈ K ,p � q, if Q jq = 0 and Q jp = 0⇒ q �>+j p.
Here, if a knowledge concept q is marked as 1 in Q-matrix, i.e., Q jq = 1, then we assume that this
concept q is more relevant to exercise j than all other concepts with mark 0. Please note that we
cannot infer the comparability of knowledge concepts with the samemark. Using this partial order
>+j , we can transform the original Q-matrix into a comparable triplet set DQ ⊆ (M × K × K ) as

DQ =
{
(j,q,p)���q >+j p}. (3)

Therefore, DQ is not as sparse as Q-matrix and can more accurately capture the pairwise rela-
tionships between two knowledge concepts (q,p) for exercise j. Then our goal is to learn the latent
exercise matrixV ∈ RM×K in Equation (1) by incorporating this order set DQ . Along this line, the
Bayesian process of finding the correct partial order on all pairs of knowledge concepts (q,p) for
all exercise vectors V turns to maximizing the following posterior probability over DQ as

p (V |DQ ) ∝ p (DQ |V ) × p (V ). (4)

Here, all exercises are presumed to be marked independently by experts in Q-matrix. We also
assume the ordering of each pair of knowledge concepts (q,p) for a specific exercise j is indepen-
dent of the ordering of every other pair [54]. Hence, the above exercise-specific likelihood function
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p (DQ |V ) in Equation (4) can be defined as follows:

p (DQ |V ) =
∏

(j,q,p )∈DQ

p
(
q >+j p

���Vj ) . (5)

To guarantee the order relation on exercise vector Vj , we define the individual probability that
knowledge concept q is more relevant to exercise j than concept p with logistic sigmoid as

p
(
q >+j p

���Vj ) = 1

1 + e−(Vjq−Vjp )
. (6)

Besides, following the traditional Bayesian treatment, we assume that the general prior density
p (V ) in Equation (4) follows a zero-mean Gaussian prior:

p
(
V ���σ 2

V

)
=

M∏

j=1

N
(
Vj
���0,σ 2

V I

)
. (7)

In summary, we can formulate the log posterior distribution Equation (4) of exercise matrix V
over order set DQ by combining Equations (5), (6), and (7) as

lnp (V |DQ ) = lnp (DQ |V ) + lnp (V ) = ln
∏

(j,q,p )∈DQ

p
(
>+j

���V ) + ln
M∏

j=1

N
(
Vj
���0,σ 2

V I

)

=

M∑

j=1

K∑

q=1

K∑

p=1

I
(
q >+j p

)
ln

1

1 + e−(Vjq−Vjp )
−

M∑

j=1

1

2σ 2
V

| |V | |2F ,
(8)

where I (q >+j p) is a indicator that equals to 1 if the triplet (j,q,p) exists in order set DQ .

4.1.2 ModelingU with Dynamic Educational Theories. Now, we specify how tomodel the evolu-
tion of student latent tensorU . As mentioned before, during the dynamic learning process of each
student, there are two widely accepted theories in educational psychology that could guide us in
the modeling process: (1) Learning curve [2] depicts the knowledge learned by the students can
be enhanced with several exercising trails; (2) Forgetting curve [3] hypothesizes that students will
remember less and less about what they have learned so that their proficiency levels on knowledge
concepts will gradually decline over time.
Combining these two theories as priors, we assume that a certain student’s current knowl-

edge proficiency is mainly influenced by two underlying reasons: (1) The more exercises she does,
the higher level of proficiency on the related knowledge she will get; (2) The longer the time
passes, the more knowledge she will forget. Formally, we model the two effects of each student’s
knowledge proficiency at time t = 2, 3, . . . ,T as

p
(
U t
i

)
= N
(
U t
i
���Ū t

i ,σ
2
U I

)
, where Ū t

i =
{
Ū t
i1, Ū

t
i2, . . . ,

¯U t
iK

}
,

¯U t
ik
= αiL

t
ik (∗) + (1 − αi )F tik (∗), s.t. 0 ≤ αi ≤ 1, (9)

whereU t
i ∈ RK×1, the proficiency vector of student i at time t , follows a Gaussian distribution with

mean Ū t
i and varianceσ

2
U I. It consists of student i’s proficiency on allK knowledge concepts, where

U t
ik

describes her proficiency level on concept k at time t . Lt
ik
(∗) is the learning factor, denoting

how much student i will learn knowledge k at time t after several exercising trails and F t
ik
(∗) is

the forgetting factor, indicating her remaining knowledge level on concept k at time t . αi is a non-
negative parameter that balances these two factors to capture student i’s learning characteristics.
Intuitively, if student i has a large αi , she may be diligent, and thus Lt

ik
(∗), instead of F t

ik
(∗), affects

her future knowledge proficiency more significantly. Otherwise, the forgetting factor F t
ik
(∗) plays

more important role.
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Now our goal turns to how to define the specific learning and forgetting factors, i.e., Lt
ik
(∗)

and F t
ik
(∗), respectively. Specifically, the learning factor Lt

ik
(∗) captures the proficiency growth

of student i on concept k with a number of exercising trails. Taking this intuition into consid-
eration, in the literature [2], there are various specific learning curve forms, such as log-linear
curve, exponential curve and hyperbolic curve. In this article, we select the 2-parameter hyper-
bolic learning curve for implementation as the hyperbolic one proves to be more robust for better
fitness results [45].2 Formally, we model the learning factors Lt

ik
(∗) as follows:

Ltik (∗) = U t−1
ik

Df t
ik

f t
ik
+ r
, (10)

where f t
ik

denotes the frequency (the number) of exercises related to knowledge concept k prac-
ticed by student i at time t . r and D are two hyper-parameters, which control the magnitude and
multiplier of the growth, respectively.
Comparatively, the forgetting factor F t

ik
(∗) depicts the decline of student i’s proficiency level

on knowledge concept k as time goes by [3]. There are also various optional curve forms, such as
power curve and exponential curve. Here, we select the typical exponential form for specifying
the forgetting factor F t

ik
(∗) as

F tik (∗) = U t−1
ik e−

Δt
S , (11)

where Δt is the time interval between time window t − 1 and time window t , and S is a hyper-
parameter that denotes the strength of memory.
Moreover, at the initial time t = 1, since we do not know the knowledge level of each student, we

assume a zero-mean Gaussian distribution of students’ knowledge proficiency at that time. Then,
we summarize the prior on user latent tensorU with both educational theories as

p
(
U ���σ 2

U ,σ
2
U 1

)
=

N∏

i=1

N
(
U 1
i
���0,σ 2

U 1I

) T∏

t=2

N
(
U t
i
���Ū t

i ,σ
2
U I

)
. (12)

4.2 Model Learning

We summarize the graphical representation of the proposed latent model in Figure 3, where the
shaded and unshaded variables indicate the observed and latent variables, respectively. With
this graphical model defined above, our goal is to learn the parameters Φ = [U ,V ,α ,b], where
α = [αi ]

N
i=1 and b = [bj ]

M
j=1. Specifically, we can formulate the maximum posterior distribution of

Equation (1) over parameters Φ by combining Equations (1), (4), and (9) as follows:

p (U ,V ,α ,b |R,DQ ) ∝ p (R |U ,V ,b) × p (U |α ) × p (V |DQ ). (13)

Maximizing the log posterior of the Equation (13) is equivalent to minimizing the following
objective by incorporating the inferences with Equations (8) and (12):

min
Φ
E (Φ) = 1

2

T∑

t=1

N∑

i=1

M∑

j=1

I ti j
(
R̂ti j − Rti j

)2

− λP
M∑

j=1

K∑

q=1

K∑

p=1

I
(
q >+j p

)
ln

1

1 + e−(Vjq−Vjp )
+
λV
2

M∑

j=1

| |Vj | |2F

+
λU
2

T∑

t=2

N∑

i=1

| |U t
i −U t

i | |2F +
λU 1

2

N∑

i=1

| |U 1
i | |2F , (14)

2Please note that comparing the performance of different learning curves and forgetting curves is not the main focus in

this work, readers can refer to References [2, 3] for more details.
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Fig. 3. Graphical representation of KPT, where the shaded and unshaded symbols indicate the observed and
latent variables, respectively.

where λP = σ 2
R , λU =

σ 2
R

σ 2
U

, λU 1 =
σ 2
R

σ 2
U 1

, and λV =
σ 2
R

σ 2
V

. Among them, λP is a tradeoff coefficient be-

tween the score prediction loss and the partial order loss, and λU is a coefficient that measures how
student’s knowledge proficiency changes over time. λU 1 and λV are regularization parameters for
student proficiency matrix at time 1 and the knowledge matrix of exercises, respectively.
Although the coupling of parameters Φ makes the above loss function of Equation (14) not-

convex, we can achieve a local minimum of it by performing gradient descent on each parameter
iteratively [71]. Specifically, the derivatives of each parameter are

∇U t
ik
=

M∑

j=1

I ti j
(
R̂ti j − Rti j

)
Vjk + I[t = 1]λU 1U

1
ik + I[t ≥ 2]λU

(
U t
ik
−U t

ik

)

+ λU
(
U (t+1)
ik

−U (t+1)
ik

) �
�(1 − αi )e

− Δt
S + αi

Df t
ik

f t
ik
+ r

	

 , (15)

∇Vjk =
∑T

t=1

∑N

i=1
I ti j
(
R̂ti j − Rti j

)
U t
ik + λVVjk − λP

∑K

p=1
I
(
k >+j p

) e−(Vjk−Vjp )

1 + e−(Vjk−Vjp )

− λP
∑K

q=1
I
(
q >+j k

) −e−(Vjq−Vjk )
1 + e−(Vjq−Vjk )

, (16)

∇αi = λU

T∑

t=2

K∑

k=1

(
U t
ik
−U t

ik

) �
�U

t
ik
�
�
Df t

ik

f t
ik
+ r
− e− Δt

S 	

	

 , (17)

∇bj =
M∑

i=1

I ti j
(
R̂ti j − Rti j

)
, (18)

where I[x] is an indicator function that equals to 1 if x is true and 0 otherwise.
For the updating step, as there are no constraints on U , V , and b, we can update them directly

by using Stochastic Gradient Descent (SGD) method [7]. With the bound constraints of αi , a local
minimum can be found by the ProjectedGradient (PG)method [36]. Specifically, for eachαi ∈ [0, 1]
the PG method updates the current solution αki in kth iteration to αk+1i by the following rule:

αk+1i = P
[
αki − η∇αi

]
, P (αi ) =

⎧⎪⎪⎨⎪⎪⎩
αi if 0 ≤ αi ≤ 1,
0 if αi < 0,
1 if αi > 1,

(19)
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where η is so-called learning rate in the updating process. In summary, we give the training algo-
rithm of KPT model in Algorithm 1.

ALGORITHM 1: Parameter Learning of the KPT Model

InitializeU , V , α and b;

while not converged do

for i = 1, 2, . . .N do

for t = 1, 2, . . . ,T do

for k = 1, 2, . . . ,K do

Fix V ,α ,b, updateU t
ik

by Equation (15) using SGD;

FixU ,V ,b, update αi by Equation (17) and Equation (19) using PG;

for j = 1, 2, . . . ,M do

for k = 1, 2, . . . ,K do

FixU ,α ,b, update Vjk by Equation (16) using SGD;

FixU ,V ,α , update b by Equation (18) using SGD;

ReturnU , V , α and b;

Time Complexity. KPT costs most time in computing the knowledge proficiency of each stu-
dent and balancing parameters. Suppose there are r non-empty entries in response score tensor R,
then the average number of score records of each student in each time window are tr =

r
N×T . In

each iteration, the time complexity is O (N ×T × K × tr = O (K × r )) for student proficiency vec-
torsU ,O (K × r ) for exercise knowledge vectorsV , andO (r ) for the balance parameters. Thus, the
total complexity of parameter learning in each iteration is O (K × r ).
5 EXERCISE-CORRELATED KNOWLEDGE PROFICIENCY TRACING MODEL

In the KPT model, we have already incorporated the educational learning theories (i.e., learn-
ing curve and forgetting curve) for tracking the knowledge proficiency of each student. Students
are presented as explicit proficiency vectors in which each element reflects how much they have
learned about the relevant knowledge concept (e.g., Function), guaranteeing the interprebility of
the diagnosis results. However, in the real world, students may practice very few exercises com-
pared with the huge exercise space [21, 59]. So, KPT could hardly track the knowledge proficiency
and predict the performance score of a certain student if she just practices few exercises at each
time. Therefore, to alleviate this problem and improve the predictive performance of our KPT
model, we further consider the connectivity relationship among exercises. Please recall Figure 1,
where each exercise is related to some underlying knowledge concepts, which means the exercises
with the same knowledge concepts are similar in the knowledge space. Therefore, studentsmay get
consistent scores on these knowledge-based exercises [59], where this evidence is beneficial for the
diagnosis. For instance, from Figure 1, we could conclude thatu1 masters better thanu2 in May, be-
causeu1 answers both exercises e1 and e4 right butu2 fails. Motivated by the above analysis, in this
section, we extend the current KPT model and propose a novel Exercise-correlated Knowledge Pro-
ficiency (EKPT) model by incorporating this connectivity property into our probabilistic modeling.

5.1 Modeling V with Exercise Connectivity

To be specific, in the KPT model, we view the exercise prior p (V ) in Equation (4) as a tradi-
tional zero-mean Gaussian distribution, i.e., Equation (7). This treatment is classfical and widely
used in many probablistic Bayesian modeling process, which takes the advantage of avoiding
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overfitting [44]. Nevertheless, it only models the feature representation of each exercise individu-
ally, but ignores the relationship among exercises. Thus, in this EKPT model, we carefully handle
the connectivity relationship into the modeling with the help of Q-matrix.
Mathematically, for each exercise j, we first define a neighbor set NVj , which contains its similar

exercises with the same knowledge concepts: NVj = {l |k ∈ j ∩ l , l ∈ V ,k ∈ K }. Then, we assume
that the knowledge vector of exercise j is directly influenced by this neighbor set NVj as follows:

Vj =
∑

l ∈NVj

w (j, l ) ×Vl + θV ,θV ∼ N
(
0,σ 2

V

)
. (20)

In Equation (20), each exercise j’s knowledge vector is composed of two terms. The first term
characterizes the group feature of the neighbor exercises, where w (j, l ) describes the weight in-
fluence of each neighbor l on j. The second term emphasizes the uniqueness of each exercise
knowledge vector, which could diverge from NVj to an extent. The divergence is controlled by

the variance parameter σ 2
V . In this article, we straightforwardly specify the weight w (j, l ) as the

equal influence, which is the average value of neighbor set NVj . Therefore, Equation (20) can be
transformed as

Vj =
1

|NVj |
∑

l ∈NVj

Vl + θV ,θV ∼ N
(
0,σ 2

V

)
. (21)

Using this simple mathematical transformations with Equation (21), the exercise prior p (V ) in
Equation (7) of KPT turns to the following equation:

p (V ) =
M∏

j=1

N ���
�

1

|NVj |
∑

l ∈NVj

Vl ,σ
2
V

	��


. (22)

Combining Equations (4), (5), (6), and (22), we could incorporate connectivity relationship to
model exercise vectors V by transforming the log posterior distribution in Equation (8) as

lnp (V |DQ ) = ln
∏

(j,q,p )∈DQ

p
(
>+j

���V )p (V )

=

M∑

j=1

K∑

q=1

K∑

p=1

I
(
q >+j p

)
ln

1

1 + e−(Vjq−Vjp )
−

M∑

j=1

1

2σ 2
V

| |V − 1

|NVj |
∑

l ∈NVj

Vl | |2F .
(23)

As a result, we could project each exercise into the knowledge space by incorporating the con-
nectivity relationship. In the EKPT model, we also embed two educational learning theories (i.e.,
learning curve and forgetting curve) for tracking student proficiency in the same knowledge space,
which is the same as KPT model, i.e., Equation (9). Through this modeling, we could find that at
each time, each student’s proficiency vector is not only influenced by her performance scores on
the exercises she has done but also reflected by the information from the similar exercises in the
knowledge space. It takes two types of advantages. First, EKPT model follows the natural evidence
that students perform consistently on the exercises with same knowledge concepts, which helps
predict students’ performance more accurately. Second, by incorporating the exercise connectivity
into the modeling, EKPT model could address the sparsity problem when students just leave very
few learning trajectories, and therefore, improving the diagnosis results.

5.2 Model Learning

We also summarize the graphical representation of the EKPT model in Figure 4, where the shaded
and unshaded symbols indicate the observed and latent variables, respectively. Comparing it with
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Fig. 4. Graphical representation of EKPT, where the shaded and unshaded symbols indicate the observed
and latent variables, respectively.

Figure 3, we can easily find that the only difference between EKPT and KPT is that Vj in EKPT
is restricted by both the partial order parameters (λp , >

+
j ) and the parameters of its knowledge-

based exercise set (λS , Nvj = {V1,V2, . . . ,Vl }). Therefore, to learn the parameters Φ = [U ,V ,α ,b]
in Equation (13), the objective function of EKPT could be updated as follows:

min
Φ
E (Φ) = 1

2

T∑

t=1

N∑

i=1

M∑

j=1

I ti j
(
R̂ti j − Rti j

)2

− λP
M∑

j=1

K∑

q=1

K∑

p=1

I
(
q >+j p

)
ln

1

1 + e−(Vjq−Vjp )
+
λS
2

M∑

j=1

| |Vj − 1

|NVj |
∑

l ∈NVj

Vl | |2F

+
λU
2

T∑

t=2

N∑

i=1

| |U t
i −U t

i | |2F +
λU 1

2

N∑

i=1

| |U 1
i | |2F , (24)

where λP = σ 2
R , λU =

σ 2
R

σ 2
U

, λU 1 =
σ 2
R

σ 2
U 1

, and λS =
σ 2
R

σ 2
V

. Please note that the above objective function

of EKPT adds an additional restricted regular term on exercise vectors V , which is weighted by
parameter λS . Correspondingly, the derivatives of parameters {U ,α ,b} remain unchanged with
Equations (15), (17), and (18), respectively. However, the updated gradient of exercise vector pa-
rameter V in Equation (16) turns to the formulation as follows:

∇Vjk =
∑T

t=1

∑N

i=1
I ti j
(
R̂ti j − Rti j

)
U t
ik + λS

���
�
Vjk − 1

|NVj |
∑

l ∈NVj

Vlk
	��



− λP
∑K

p=1
I
(
k >+j p

) e−(Vjk−Vjp )

1 + e−(Vjk−Vjp )
− λP

∑K

q=1
I
(
q >+j k

) −e−(Vjq−Vjk )
1 + e−(Vjq−Vjk )

, (25)

where I[x] is also an indicator function that equals to 1 if x is true. In summary, we summarize
the training algorithm of EKPT in Algorithm 2.
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ALGORITHM 2: Parameter Learning of the EKPT Model

InitializeU , V , α and b;

while not converged do

for i = 1, 2, . . .N do

for t = 1, 2, . . . ,T do

for k = 1, 2, . . . ,K do

Fix V ,α ,b, update U t
ik

by Equation (15) using SGD;

FixU ,V ,b, update αi by Equation (17) and Equation (19) using PG ;

for j = 1, 2, . . . ,M do

for k = 1, 2, . . . ,K do

Fix U ,α ,b, update Vjk by Equation (25) using SGD;

FixU ,V ,α , update b by Equation (18) using SGD;

ReturnU , V , α and b;

Time Complexity. Compared with the EKT model, EKPT costs most of time in computing
the knowledge proficiency of each student and the exercise correlations. Suppose there are r
non-empty entries in the response score tensor R and s knowledge-based exercise pairs (r �
N ×M, s � M ×M), then the average number of score records of each student in each time win-
dow are tr =

r
N×T , and the average number of similar connections of each exercise are ts =

s
M
. In

each iteration, the time complexity is O (N ×T × K × tr ) = O (K × r ) for student proficiency vec-
tors U , O (K × r +M × ts ) = O (K × r + s ) for exercise knowledge vectors V , and O (r ) for the bal-
ance parameters. Thus, the total complexity of parameter learning in each iteration isO (K × r + s ).

6 APPLICATIONS

Diagnosing the knowledge proficiency of each student is important for many educational applica-
tions. In this section, we will introduce how to apply our models (KPT and EKPT) to three practical
diagnostic tasks, i.e., knowledge estimation, score prediction, and diagnosis result visualization.

6.1 Tasks Description

Traditional education reports usually tell students about their scores or rankings in the correspond-
ing scenarios, e.g., classroom or online systems. However, these results are not satisfied enough,
because we cannot notice what the students have learned well and what they have not. As many
literatures [38, 55, 56] suggested, a deep and interpretable diagnosis result would have many bene-
fits in online learning systems. Therefore, with our proposed KPT and EKPT models, we introduce
three diagnostic tasks for practical applications:

1. Knowledge Proficiency Estimation is the task of estimating the probability that a stu-
dentmasters a certain knowledge concept at next time [38, 77]. It could benefit both student
users and system creators. On one hand, students are not satisfied if we just recommend the
exercises to them, since they usually wonder why they should do the exercises. Therefore,
it is significant to imply the future knowledge proficiency of students as this could directly
remind them of strengths and weaknesses. After that, they may be motivated to devote
more energy to the unfamiliar knowledge, which can improve their learning efficiency.
On the other hand, system creators can design more proactive services for students based
on the estimation results. For example, it is a good choice to recommend some relevant
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exercises based on their weaknesses instead of letting them self-search resources [56],
where these results could help convince students.

2. Student Score Prediction addresses the probability that a certain student will correctly
answer an exercise in the future [52, 63]. Usually, each student will apply the relevant
knowledge to answer the exercises, and the score she get depends on her knowledge states.
In practice, low prediction error implies that the model has accurately discovered the exer-
cises that are easier/harder for students. With the prediction results, we could provide per-
sonalized exercise recommendation for students, avoiding them practicing too hard/easy
exercises, which can save their time.

3. Diagnosis Results Visualizationmeans specifying the strengths and weaknesses of each
student on each knowledge concept in an interpretative and attractive way [6, 47]. Many
platforms (e.g., Knewton.com) hold that it is necessary to quantitatively track the knowl-
edge levels of students during their learning process in time, where the visualization of
diagnosis results could help them trust the systems of understanding the change of their
knowledge states and improvemany problems such as self-regulation and self-reflection [5,
68]. Moreover, this application also benefits many students with different background, such
as students in primary and secondary school [18], junior high school [69], web-based plat-
form [24], leading many services like personalized learning, remedy planning and course
design, and so on.

6.2 Knowledge Proficiency Estimation

Asmentioned before, students are usually curious about howmuch they could master each knowl-
edge concept in the future. Thus, in this subsection, we specify how to estimate the knowledge
proficiency of each student at next time.
Specifically, after training our KPT or EKPT model, we could obtain proficiency vectors of a

certain student i at each historical time, i.e., Ui = {U 1
i ,U

2
i , . . . ,U

T
i }, and her individual learning

parameter, i.e., αi . With her current states on each knowledge concept UT
i , we combine both her

learning factor (Lt
ik
(∗)) and forgetting factor (F t

ik
(∗)) to estimate her knowledge proficiency at time

T + 1 based on Equations (10) and (11) as follows:

Û (T+1)
i =

{
Û (T+1)
i1 , Û (T+1)

i2 , . . . , Û (T+1)
iK

}
,

Û (T+1)
ik

≈ αiU
T
ik

Df T+1
ik

f T+1
ik
+ r
+ (1 − αi )UT

ike
− Δ(T+1)

S , (26)

where Û (T+1)
i denotes the estimated proficiency level of student i at timeT + 1 on all K knowledge

concepts, where Û (T+1)
ik

denotes her probability of mastering concept k at time T + 1. Δ(T + 1)
describes the time interval between T + 1 and her last exercising time about knowledge concept

k . f (T+1)
ik

is the frequency number of exercises related to concept k practiced by her at time T + 1.

6.3 Student Score Prediction

It is valuable to predict how well each student will perform on exercises in the future. Usually, the
effectiveness of tracking students’ knowledge proficiency in the past can be validated by predicting
student scores at time T + 1. Here, we give our solution for prediction as follows.

With the trained KPT or EKPT model, we can first obtain the knowledge vector Vj of each
exercise j in the knowledge space and the corresponding difficulty parameterbj . Then, we estimate

the proficiency vector UT+1
i of each student i at time T + 1, following Equation (26). At last, we

predict student scores on exercises at time T + 1, i.e., the predicted probability R̂ (T+1)
i j of student
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i correctly answering exercise j at time T + 1, following the inner product 〈·, ·〉 of each student’s
proficiency vector and each exercise’s knowledge vector as

R̂ (T+1)
i j ≈

〈
U (T+1)
i ,Vj

〉
− bj . (27)

Note that the output of Equation (27) is not between 0 and 1, and we can simply revise them as

R̂ (T+1)
i j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

R̂ (T+1)
i j if 0 ≤ R̂ (T+1)

i j ≤ 1,

0 if R̂ (T+1)
i j < 0,

1 if R̂ (T+1)
i j > 1.

(28)

6.4 Diagnosis Results Visualization

As we state earlier, a good model for tracking students’ knowledge proficiency should guarantee
two aspects of effectiveness, which is necessary for convincing students. First, it should ensure
high accuracy, which means that it can well capture the change of a certain student’s knowledge
states so that it can precisely predict her performance and estimate her knowledge proficiency in
the future. Second, it is of great significance to provide interpretable diagnosis results, which could
attract students, since they can get timely feedbacks during the learning process.
Unlike traditional data-mining models (e.g., matrix factorization) with latent representations

of students and exercises, which usually cannot describe definite meanings, our KPT and EKPT
models are guided by many learning factors (i.e., learning curve, forgetting curve, connectivity re-
lationship), obtaining themeaningful results at different times. In the experimental section, wewill
visualize the change of students’ knowledge proficiency by our models with user study. Moreover,
we will discuss the connectivity relationship of exercises in the knowledge space by EKPT.

7 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the performance of our proposed
KPT and EKPT models. Specifically, we first describe the datasets and introduce the experimental
setup (Sections 7.1 and 7.2). Then, we demonstrate the effectiveness of our models on three edu-
cational tasks (Section 7.3). At last, we provide detailed analyses about our models (Section 7.4).

7.1 Experimental Datasets

In the experiments, we used four real-world datasets, namely, Math1, Math2, Assist, and Adap-
tive, respectively. Among them, Math1, Math2 were collected from daily assessment records of
high school students on mathematics problems. Adaptive was collected from an online learning
system called Zhixue, which provides students self-exercising on many subjects. Here, we chose
the mathematical log for the experiments, because its volume was the largest in the system.3 In
addition, Assist (short for Assistments) was a public dataset 2009–2010 “Non-skill builder,”4 which
also record the mathematics logs of students in an online tutor [48].

In Math1, Math2 and Adaptive, each dataset contains the exercising logs of students (Table 1(a))
with the timestamps and a given Q-matrix (an example is shown in Table 1(b)) labeled by high
school teachers. For data preprocessing, we first treated each month as a time window, and thus
there were 4, 10, 7 time points in datasets Math1, Math2, Adaptive, respectively. Then, for data
splitting, we used the data till timeT for model training, i.e.,T = 3,T = 9,T = 6 in Math1, Math2,
Adaptive, respectively, and the records at the last time point were remained for testing.

3Datasets Math1, Math2 and Adaptive are provided by iFLYTEK Co., Ltd. Zhixue’s website: http://www.zhixue.com.
4https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data.
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Table 3. The Statistics of the Four Datasets

Dataset Math1 Math2 Assist Adaptive
Training logs 521,248 347,424 263,327 229,848
Testing logs 74,464 18,312 43,888 38,308
# of students 9,308 1,306 7197 3,217
# of exercises 64 280 3211 411
# of time windows 4 10 7 7
# of knowledge concepts 12 13 20 12
Avg. knowledge concepts per exercise 1.15 1.3215 1.5073 1.06

Fig. 5. Q-matrix of four datasets.

As for Assist, we preprocessed the original dataset as follows: (1) We selected the 20 most fre-
quent knowledge concepts from Assist for the experiments, because in our scenario of knowledge
proficiency tracking, the knowledge concepts that learned by students require a high coverage at
different time. In other words, if a student just learned one concept once in the past, we could
hardly capture the change of her learning on it. (2) The tutor system of Assist allowed students
to repeat doing the same exercises. In the experiment, we just took their first-attempt responses
on each exercise as records, because students might get some “hints” if they made many trials,5

which may be unfair for our task. (3) Assist only recorded the order (no exact time) of student’s
exercising history. For example, for a certain student u1, we just knew she first practiced exercise
e1 and then answered e2, but did not know which month she answered e1 and e2. For this scenario,
we sorted her exercising trajectories with the given order and divided the order sequence into
seven parts. Then, we marked each part of with a time window, i.e., her first log part is marked as
time 1, the second one is time 2, and so on. Therefore, we got seven time windows in Assist. Then,
we adopted the first six order logs for model training, and the last one was used for testing.
In summary, Table 3 lists the basic statistics of four datasets. To better understand each dataset,

Figure 5 further gives the preview of four Q-matrices (we only show the subset of several exer-
cises for better illustration), where each row of each subfigure denotes an exercise and each column
stands for a certain knowledge concept (the white entry means the exercise is related to the con-
cept). An interpretation example about the Q-matrix in Math1 dataset is shown in Table 4, which
contains 5 exercises and their related knowledge concepts. From both Figure 5 and Table 4, we can
see that most exercises relates to less than two knowledge concepts, indicating that Q-matrices are
very sparse.

5Some issues are related to this scenario like “gaming factor” detecting, details will be discussed in Section 8.
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Table 4. A Practical Example of Q-matrix in Math1

Exercise knowledge concepts
e1 Function
e2 Function, Set
e3 Function, Derivative, Inequality
e4 Solid geometry, Trigonometric function
e5 Propositional logic

7.2 Experimental Setup

7.2.1 Settings of KPT and EKPT. There are some hyper-parameters in our KPT and EKPT mod-
els, and they should be initialized in the experiments. First, we introduce the parameter settings
of Lt

ik
(∗) (Equation (10)) and F t

ik
(∗) (Equation (11)), i.e., the learning curve and forgetting curve, re-

spectively. Specifically, for learning factor Lt
ik
(∗), we set D = 2 to control the multiplier of growth

and the average frequency among all knowledge concepts r as 4, 9, 6, 12 in Math1, Math2, Assist,
Adaptive, respectively. For forgetting factor F t

ik
(∗), we set memory strength S as 5 in all datasets

to fit the forgetting curve. Second, we specify several regularization parameters. Please note that
a difference between KPT (Equation (14)) and EKPT (Equation (24)) is the regularization for exer-
cise prior, i.e., λV in KPT and λS in EKPT. Therefore, in both models, we set λU 1= 0.01, λU is set
to be 3, 1, 2, 1.5 in Math1, Math2, Assist, Adaptive, respectively, and λP is set to be 1.5, 1, 2, 2 in
Math1, Math2, Assist, Adaptive, respectively. Furthermore, for KPT model, we set λV = 0.01 in all
datasets, and for EKPTmodel, λS is set to be 0.02, 0.01, 0.005, 0.1 in Math1, Math2, Assist, Adaptive,
respectively. Specifically, we will discuss the sensitivity of parameters in Section 7.4.2.

7.2.2 Baseline Approaches. To compare the performance of our proposed KPT and EKPT mod-
els, we borrow some baselines from various perspectives. The details of them are as follows:

• IRT: IRT is a cognitive diagnosis method of modeling students’ latent trait and exercises’
parameters by a logistic-like function [17].

• DINA: DINA is a cognitive diagnosis method of modeling each student’s knowledge profi-
ciency by a binary vector with Q-matrix [15].

• PMF: PMF is a probabilistic matrix factorization method that projects students and exercises
into low-rank latent factors [63].

• BKT: BKT is a kind of Hidden Markov Model (HMM), which models students’ latent knowl-
edge state as a set of binary variables and determines when a knowledge concept has been
learned [31].

• LFA: LFA is an improved IRT model that assumes students share the same parameters of
learning rate during their learning process [9].

• DKT: DKT is a recent state-of-the-art deep-learning-based model that incorporates recur-
rent neural network tomodel each student’s knowledge states with an unified hidden vector
during the learning process [52]. Here, we implemented DKT with both RNN and GRU ar-
chitectures, which denoted as DKT-RNN, and DKT-GRU, respectively. The input at one step
of a certain student is one-hot encodings of all exercises she practices to adapt our scenario.

• QMIRT: QMIRT is a variant of basic IRT model, where we extend the latent trait value of
each student in IRT to a multidimensional knowledge proficiency vector with our proposed
partial order prior of Q-matrix (Equation (8)).

• QPMF: QPMF is a variant of basic PMF model. We incorporate our proposed partial or-
der prior of Q-matrix (Equation (8)) into PMF to endow the latent dimensions of projected
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Table 5. Characteristics of the Baselines and Our Models

Model

Data Source Application
Dynamic

Explanation?Q-matrix Multi-Skill Repeating Time
Knowledge Score

Visualization
Estimation Prediction

IRT [17] × × × × × √ × ×
DINA [15]

√ √ × × √ √ √ ×
PMF [63] × × × × × √ × ×
BKT [31]

√ × √ √ √ √ √ √
LFA [9]

√ √ √ √ × √ × √
DKT [52] × √ √ √ × √ × √

QMIRT
√ √ × × √ √ √ ×

QPMF
√ √ × × √ √ √ ×

KPT
√ √ × √ √ √ √ √

EKPT
√ √ × √ √ √ √ √

vectors with explicit knowledge concepts. Particularly, QPMF is also a simplified model of
KPT that does not consider the factors of learning and forgetting.

Specifically, the chosen baselines are all widely used in the educational psychology area (IRT,
DINA, BKT, LFA) and data-mining community (PMF, DKT). The two variants (QMIRT, QPMF) are
adopted to highlight the effectiveness of our proposed improved Q-matrix based on partial order
method. One step further, all these baselines can be categorized into static diagnostic models (IRT,
DINA, PMF, QMIRT, QPMF) and the dynamic ones (LFA, BKT, DKT). For better illustration, we
summarize the characteristics of these models in Table 5.
In the following experiments, we utilized the open source to implement the BKT model6 and

all other models were implemented by ourselves using Python. We conducted all experiments on
a Linux server with four 2.0 GHz Intel Xeon E5-2620 CPUs and 100 G memory. For fairness, all
parameters in these baselines are tuned to have the best performances.

7.3 Experimental Results on Three Tasks

In this subsection, we compare the performance on three educational tasks introduced in Section 6
to demonstrate the effectiveness and interpretation of our proposed KPT and EKPT models.

7.3.1 Knowledge Proficiency Estimation. The first important ability of our models is to estimate
the knowledge proficiency of each student in the future. To evaluate the effectiveness of our mod-
els, i.e., whether or not the estimation of knowledge proficiency at next time T + 1 are good, we
conduct several experiments in the following.
In fact, it is not easy to directly evaluate the knowledge state, since there is no general way

to get the actual value of student’s proficiency levels on knowledge concepts. As an alternative,
following Reference [28], we adopt a ranking-based evaluation experiment. Intuitively, if student
a masters better than student b on a specific knowledge concept k at time T + 1 (calculated by
Equation (26)), then she will have a higher probability to get correct answers to the exercises
related to concept k than student b at that time. We adopt Degree of Agreement (DOA) [28] metric
to evaluate this ranking performance. Particularly, for a specific knowledge k , the DOA result on

6https://github.com/IEDMS/standard-bkt.
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k is defined as

DOA(k ) =
M∑

j=1

Ijk

N∑

a=1

N∑

b=1

δ
(
UT+1
ak
,UT+1

bk

)
∩ δ
(
RT+1aj ,R

T+1
bj

)

δ
(
UT+1
ak
,UT+1

bk

) , (29)

whereUT+1
ak

is proficiency level of student a on knowledge concept k at timeT + 1. RT+1aj is student

a’s response score on exercise j at time T + 1. δ (x ,y) is an indicator function, where δ (x ,y) = 1
if x > y. Ijk is another indicator function, where Ijk = 1 if exercise j contains knowledge concept
k . Generally, DOA value ranges from 0 to 1. The larger the DOA is, the better performance the
results have. Furthermore, we also average DOA(k) of all knowledge concepts for measuring the
overall effectiveness on this task, which is denoted as DOA-Avg:

DOA −Avд = 1

K

K∑

k=1

DOA(k ). (30)

For model comparisons, we choose DINA, QMIRT, QPMF, and BKT as baselines, because all
other models (i.e., IRT, LFA, PMF, DKT) mentioned before are unexplainable for the diagnosis. To
be specific, we cannot relate each dimension of student latent vectors in PMF, the single value of
student latent trait in IRT and LFA, and the unified student knowledge state vector in DKT with
any explicit knowledge concept (e.g., Function).
Table 6 illustrates the experimental results of all models on four datasets for estimating knowl-

edge proficiency of students (“Avg” is the DOA-Avg results of all knowledge concepts and others
show the DOA results of each knowledge concept). Please note that we do not give the results of
DINA models on Assist and Adaptive datasets, because DINA has a high restriction that it can-
not handle the sparse data in practice [15]. From the results, both EKPT and KPT clearly perform
better on all datasets, followed by QPMF and QMIRT, which indicates that our models could well
estimate knowledge proficiency by incorporating the factors of learning process of students (i.e.,
learning curve, forgetting curve, and connectivity relationship). Among them, EKPT performs the
best generally. It still outperforms others inmost cases even if the Assist dataset is extremely sparse
(nearly 99%). Besides, we also observe that traditional cognitive diagnosis model DINA does not
perform well, indicating that the static model is unsuitable for tracking students’ knowledge states
over time. Last but not least, we can see that BKT, as a dynamic model, does not perform as well as
EKPT and KPT. This observation demonstrates the effectiveness of incorporating both educational
theories including learning curve and forgetting curve.

7.3.2 Student Score Prediction. The second educational task is to predict student scores in the
future, where we evaluate the predictive performance of our models. With trained KPT or EKPT
models, we use Equations (27) and (28) to predict whether or not a student get the correct answer
to a specific exercise at time T + 1. In this experiment, we select all the baselines mentioned in
Section 7.2.2 for comparison. Besides, we use the widely used mean absolute error (MAE) and root

mean square error (RMSE) as the evaluation metrics [44].
Figure 6 shows the overall results of all models for predicting student scores. For the same rea-

son, we do not give the results of DINA model on Assist and Adaptive datasets. Specifically, there
are several observations from the figure: First, EKPT performs the best on all four datasets, fol-
lowed by KPT, which indicates it is effective to take the connectivity relationship of exercises into
modeling for the prediction. The results of both EKPT and KPT also show the rationality of con-
sidering both learning and forgetting factors. Second, the variants QMIRT and QPMF outperform
traditional IRT and PMF, which demonstrates the effectiveness of incorporating the partial order
method based on Q-matrix. Third, EKPT, KPT, and LFA, as dynamic models, perform better than
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Table 6. Knowledge Proficiency Estimation Performance on Each Knowledge Concept

(a) Math1 (b) Math2

K
Models

EKPT KPT QPMF QMIRT DINA BKT

K1 0.807 0.798 0.565 0.595 0.524 0.558
K2 0.751 0.733 0.576 0.621 0.473 0.623
K3 0.830 0.827 0.614 0.629 0.497 0.523
K4 0.769 0.752 0.581 0.675 0.486 0.565
K5 0.799 0.791 0.559 0.723 0.476 0.578
K6 0.844 0.838 0.730 0.766 0.485 0.628
K7 0.851 0.842 0.697 0.634 0.520 0.697
K8 0.799 0.784 0.699 0.657 0.498 0.617
K9 0.796 0.771 0.609 0.712 0.501 0.645
K10 0.813 0.834 0.597 0.515 0.489 0.503
K11 0.796 0.786 0.608 0.631 0.478 0.617
K12 0.811 0.842 0.532 0.641 0.523 0.645
Avg 0.806 0.799 0.614 0.650 0.496 0.601

K
Models

EKPT KPT QPMF QMIRT DINA BKT

K1 0.806 0.804 0.743 0.754 0.517 0.568
K2 0.761 0.757 0.632 0.659 0.534 0.753
K3 0.816 0.818 0.761 0.723 0.510 0.669
K4 0.701 0.688 0.733 0.734 0.534 0.711
K5 0.901 0.891 0.703 0.668 0.474 0.553
K6 0.704 0.699 0.547 0.653 0.489 0.644
K7 0.791 0.791 0.677 0.722 0.483 0.730
K8 0.761 0.726 0.722 0.659 0.523 0.668
K9 0.754 0.736 0.558 0.541 0.507 0.567
K10 0.674 0.652 0.639 0.650 0.511 0.614
K11 0.869 0.888 0.836 0.692 0.522 0.630
K12 0.807 0.798 0.737 0.794 0.498 0.528
K13 0.825 0.813 0.797 0.804 0.453 0.633
Avg 0.782 0.774 0.699 0.696 0.504 0.636

(c) Assist (d) Adaptive

K
Models

EKPT KPT QPMF QMIRT BKT

K1 0.781 0.766 0.683 0.685 0.557
K2 0.718 0.7161 0.640 0.626 0.503
K3 0.749 0.705 0.662 0.657 0.546
K4 0.671 0.667 0.648 0.548 0.525
K5 0.699 0.689 0.639 0.621 0.584
K6 0.696 0.695 0.594 0.529 0.511
K7 0.703 0.684 0.583 0.655 0.601
K8 0.675 0.670 0.597 0.589 0.592
K9 0.651 0.659 0.600 0.593 0.557
K10 0.667 0.664 0.650 0.581 0.577
K11 0.620 0.656 0.626 0.594 0.548
K12 0.648 0.643 0.619 0.568 0.546
K13 0.653 0.656 0.628 0.647 0.628
K14 0.653 0.635 0.685 0.648 0.681
K15 0.638 0.627 0.627 0.634 0.638
K16 0.651 0.640 0.555 0.625 0.573
K17 0.632 0.627 0.601 0.625 0.583
K18 0.667 0.652 0.526 0.627 0.561
K19 0.623 0.625 0.616 0.611 0.554
K20 0.596 0.602 0.609 0.613 0.642
Avg 0.670 0.664 0.619 0.614 0.575

K
Models

EKPT KPT QPMF QMIRT BKT

K1 0.742 0.732 0.656 0.645 0.578
K2 0.799 0.780 0.756 0.740 0.609
K3 0.796 0.793 0.752 0.736 0.592
K4 0.804 0.802 0.737 0.638 0.679
K5 0.812 0.808 0.597 0.632 0.552
K6 0.818 0.812 0.659 0.648 0.547
K7 0.821 0.815 0.587 0.668 0.687
K8 0.824 0.818 0.624 0.591 0.532
K9 0.824 0.809 0.704 0.692 0.645
K10 0.823 0.819 0.730 0.776 0.732
K11 0.830 0.820 0.658 0.685 0.702
K12 0.809 0.792 0.709 0.693 0.690
Avg 0.809 0.801 0.681 0.679 0.629

those with static assumption (IRT, DINA, PMF), which demonstrates that it is more effective to
track students’ knowledge proficiency from an evolving perspective. Forth, BKT does not perform
well on this task. This is probably because BKT focuses on the scenario that students keep doing
the same exercises. However, most students in our data just practice a specific exercise only once,
and thus the length of students’ exercise sequences are not long enough for training BKT. An
interesting finding is that dynamic DKT-RNN(GRU), although utilizing the state-of-the-art deep
neural networks for modeling, still performs unsatisfied enough. We guess two possible reasons
for this observation. First, our data volume may not support DKTs, because deep models usually
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Fig. 6. Student score prediction performance.

Fig. 7. User study: diagnosis results of a case student from March to May, 2016, in Math2. Left box shows
her knowledge proficiency levels on six knowledge concepts (the name of concepts are listed above) in the
3 months. Right box analyzes the diagnosis result on her two concepts: The line chart illustrates the change
of her proficiency levels on knowledge K3 and K4. The bar charts counts the number of exercises related to
both concepts she does in each month; i.e., she practices four exercises related to K3 in April.

have too many parameters to be optimized. Second, the exercising sequences of students (consis-
tent with the number time windows in Table 3) in our data are not longer enough for training
DKTs, where the RNN-based models cannot capture the learning dynamics. In summary, all these
evidences demonstrate the effectiveness and rationality of the proposed factors in our modeling
(i.e., learning curve, forgetting curve, and connectivity relationship).

7.3.3 Diagnosis Result Visualization. As mentioned in Section 6, our proposed KPT and EKPT
models have a good ability to track the knowledge proficiency of a certain student in an inter-
pretable way, based on her proficiency vectorsU at different times.
Figure 7 provides a user study of visualizing the diagnosis results of a case student on six knowl-

edge concepts in three months in Math2 (we only show six knowledge concepts for better illus-
tration). From the figure, she continuously makes progress on Function (K3) from March (0.08) to
May (0.36), 2016 with possible learning factor, because she practices the increasing number (i.e.,
2, 4, 7) of exercises related to Function in three months. In contrast, her proficiency levels on An-

alytic geometry (K4) declines (from 0.65 to 0.36) over time. We notice that she only tries very few
relevant exercises (i.e., 1, 0, 1) at each time, and thus she may forget the Analytic geometry knowl-
edge. These observations imply that she needs a timely review on Analytic geometry. Based on the
visualization, the system could provide more personalized training services for her in practice.
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Table 7. The Parameter Updating Time of All Models (Min)

Dataset Time

Stastic Models Dynamic Models Variants Our Models

IRT DINA PMF BKT LFA
DKT DKT

QMIRT QPMF KPT EKPT
(RNN) (GRU)

Math1
Each 0.022 0.316 0.023 / 0.024 0.403 0.479 0.036 0.025 0.083 0.101

Total 1.960 18.05 1.833 1.516 2.483 22.867 195.375 3.647 2.535 8.334 11.66

Math2
Each 0.011 0.616 0.021 / 0.012 0.122 0.157 0.016 0.012 0.067 0.073

Total 1.051 57.28 1.283 0.581 1.152 7.720 10.435 1.603 1.589 7.334 7.738

Assist
Each 0.015 / 0.033 / 0.026 1.594 3.207 0.283 0.265 0.467 0.735

Total 2.320 / 4.951 1.275 2.991 73.324 147.522 26.38 29.94 47.13 77.15

Adaptive
Each 0.013 / 0.029 / 0.015 0.273 0.338 0.105 0.110 0.233 0.453

Total 2.154 / 3.466 1.017 1.942 11.734 12.522 8.412 10.45 24.73 48.92

7.4 Model Analysis

In this subsection, we further deeply analyze the important properties of our proposed models.
Specifically, we discuss them from the following three aspects, i.e., the computational performance,
the sensitivity of crucial parameters and the exercise connectivity analysis.

7.4.1 Computational Performance. We conduct the following experiments to understand the
efficiency of our proposed models compared with all baselines. For fair comparison, we run all of
them on the same platform. Since most models need to iteratively calculate the parameters, we list
the parameter updating time of each iteration and total iterations in Table 7.7 As we can see from
this table, IRT model costs the least time as it only needs to optimize unidimensional parameters
of each student and exercise [17]. PMF ranks the second, because it is the basic model from data
mining for prediction. Compared to IRT and PMF, the variants QMIRT and QPMF spend more time
by adding the partial order of Q-matrix. As for the dynamic models, BKT runs faster than LFA,
since it only tracks each knowledge concept separately [31]. On average, both our KPT and EKPT
need more time for training, because they all incorporate both learning and forgetting factors in
the modeling. Furthermore, since EKPT associates the exercise relationship, it has to select the
neighbor set (NVj Equation (21)) of each exercise in each iteration for training, costing the time.
Next, we find that DINA, though a static diagnosis model, costs much time, because its complexity
is exponential with the number of knowledge concepts [15]. At last, DKT-RNN(GRU) are the most
time-consuming in most cases as the deep neural networks usually need more time to optimize
parameters. In summary, although our proposed models cost some more time for training, yet as
mentioned in Section 5, the complexities of them in each iteration are still linear with the number
of student exercising records. Thus, in practical applications, we could train KPT and EKPT offline
and store the parameters in the server. Then, we could get real-time results in the online stage. In
summary, we argue that both KPT and EKPT have the most satisfied results for educational tasks.

7.4.2 Sensitivity of Parameters. We now discuss the parameter sensitivities in our proposed
models. For better illustration, in the following, we only show the results of the EKPT model. (The
detailed discussion about the KPT model could be found in our preliminary work [11]).
Specifically, in the EKPTmodel, there are four parameters playing crucial roles: λU 1, λU , λP , and

λS . Among them, λU 1 is the regularization parameter of students’ vectors of knowledge proficiency
at time T = 1. Since λU 1 has a similar form to that in PMF model, we tune it on PMF and set the

7Please note, we cannot record the updating time of each iteration in BKT with the public implementation.
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Fig. 8. The impact of λU on four datasets.

Fig. 9. The impact of λP on four datasets.

Fig. 10. The impact of λS on four datasets.

value under the best performance of PMF. In the following, we report the setting of parameters
λU , λP and λS with the evaluation metrics of RMSE and DOA-Avg on both knowledge estimation
task and score prediction task.
λU regularizes that students learn and forget knowledges from time to time. Figure 8 visualizes

the performance with the increasing values of λU from 1, 0.1, 1, 0.5 to 10, 5, 5, 3 in datasets Math1,
Math2, Assist, Adaptive, respectively. As we can see from these figures, as λU increases, the perfor-
mances of EKPT firstly increase but decrease when λU surpasses 3, 1, 2, 1.5 in the corresponding
datasets. Therefore, we set λU = 3, 1, 2, 1.5 in Math1, Math2, Assist, Adaptive for obtaining the
best results.
λP controls how much the EKPT model is restricted by the partial order based on Q-matrix.

Figure 9 shows the performance with the varying of parameter λP . We observe that the values
of λP impacts both two educational tasks. Specifically, as λP increases, the performance of EKPT
increases at first and reaches the perk when λP = 1.5, 1, 2, 2 in Math1, Math2, Assist, Adaptive,
respectively. Given these observations, we set λP = 1.5, 1, 2, 2 in the corresponding datasets.
Another important parameter of EKPT model is λS , which restricts the impacts of exercise con-

nectivity. As shown in Figure 10, it has the similar property to λU and λP . As a result, we set
λS = 0.02, 0.05, 0.01, 0.1 in Math1, Math2, Assist, Adaptive, respectively, because the performance
of EKPT achieves the best when it reaches the corresponding value.
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Fig. 11. Results comparison of exercise relationship with EKPT and KPT in all datasets.

7.4.3 Exercise Relationship Analysis. As mentioned before, by incorporating exercise relation-
ship into the modeling, EKPT could further discover the underlying connectivity between exer-
cises, which leads to the best performance of our proposed models. Here, we compare EKPT and
KPT models with the output of their exercise knowledge vectors, i.e., the parameters V , to show
this property of exercise relationship on all four datasets. In each model, we first select the group
exercises with same knowledge concept, e.g., Function. Then, for these group exercises, we com-
bine them in pairs and calculate their Euclidean distance using their knowledge vectors V , which
denoted as “Similarity.” Comparatively, we also select the exercises with different knowledge con-
cepts and calculate their pairwise Euclidean distance as “Dissimilarity.” The overall results of this
analysis are shown in Figure 11. We can see that exercises with the same knowledge concepts
in EKPT have smaller distances than those exercises in KPT in the knowledge space. Compara-
tively, exercises with different knowledge concepts in EKPT are farther apart than those in KPT.
Based on this evidence, we can conclude that EKPT has a good ability to combine the connectivity
relationship among exercises over the knowledge concepts.
Moreover, we visualize the learned knowledge vectors of exercises, i.e.,V , using a more straight-

forward observation to demonstrate their relationship in EKPT model. Specifically, we highlight
the most frequent 5 knowledge concepts and their corresponding exercises in all datasets (we only
highlight parts of knowledge concepts and group others into “OTHERS” category for better illus-
tration). Then, to help our visualization, we adopt t − SNE [41]8 program, which is commonly used
for the visualization of high-dimensional data, to reduce the dimensionality of each exercise vector
(each row in V ) to a 2D data. Finally, we label each exercise with its knowledge concepts using
different colors. The clustering results on all datasets are shown in Figure 12. In all datasets, we
find that exercises with the same knowledge concepts are easier to be grouped, since they are more
close in the knowledge space. Therefore, our EKPT model could naturally follow the connectivity
relationship of exercises during the modeling process.

8https://lvdmaaten.github.io/tsne/.
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Fig. 12. Clustering results of exercises in all datasets. Exercises with the top five frequent knowledge concepts
are distinguished by different colors. Other exercises are marked in one “OTHERS” category.

8 DISCUSSION

In this section, we comprehensively discuss the advantages and some possible research directions
in the future. In this article, we describe the problem of tracking students’ knowledge proficiency
in an educational domain-specific way. Here, we take advantage of both learning curve and for-
getting curve theories from educational psychology for modeling student-learning process and
explore connectivity relationship for associating different exercises. Moreover, the detailed diag-
nosis result visualization of user study demonstrates that our models can provide an interpretable
way to explain the change of students’ knowledge proficiency levels by considering their exercis-
ing frequencies as time goes by. Although all the data we used are related to mathematics, it is
worth mentioning that our models can be easily generalized to other subjects, especially science-
related subjects like physics, as long as we can collect the exercising data of students with the
knowledge settings. For example, we can track students’ knowledge levels of physics if we can
collect the log data of them and the related knowledge concepts of physics.
Meanwhile, there are still some important issues that can be explored in the future. First, as we

mention earlier, although nowadays online learning systems provide students with an open envi-
ronment for sharing the resources to help personalized learning without geographical restrictions,
they still suffer from the important problems like huge dropout rate and low engagement [1, 21, 32,
79]. In practice, how to explore more self-regulated learning strategies, such as goal setting, strate-
gic planning [32], to alleviate this issue is still a very open direction. For example, we can design
more reward mechanisms while monitoring the behaviors of students to automatically change the
service strategies for supporting their learning [29]. Moreover, we can also design more visualiza-
tions for supporting students with different background like primary schools, high schools, and
so on [5, 18].
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Second, there are various learning scenarios for students online. For example, some (second)
language-learning systems, such as Duolingo,9 can push students practice one item again and
again (e.g., training pronunciation) [58]. Online judge systems like Codeforces10 allow students
to resubmit answers (i.e., multiple-attempt response) until they pass the assessment [78]. In these
scenarios, our proposed methods may be not effective, since both methods just focus on the final
response results without considering specific behaviors of students. Actually, it is very interesting
to exploit more students’ behaviors (e.g., number of attempts or submission patterns) for modeling
their knowledge acquisition with considering some psychological traits like “gaming factor” [73].
Third, even if in our simplified scenario, we still argue that there are some possible feasible

future directions. On one hand, it is valuable to explore different forms of both learning curve and
forgetting curve for tracking student progress and analyze their impacts in practice [2, 3]. On the
other hand, all the data we use currently may have some biases inevitably, since we just exploit
the performance data of students. However, they may have some offline learning behaviors, e.g.,
seeking help from instructors or friends, which cannot be recorded. Thus, it is better if we can
collect such data to complement the modeling and alleviate this contradiction issue.
Henceforth, we are willing to incorporate other factors, e.g., students’ social relationship, for

detailed analyzing the learning process. Along this line, some representative and promising meth-
ods, such as diffusion analysis [51, 72] and network embedding [13, 66, 67], could be potentially
helpful.
Last, in real-world systems, it is also an important issue of how to design the attractive UI

visualizations for model results, which can improve the engagement of students [6]. We believe
that all above research directions could help the online learning systems.

9 CONCLUSIONS

In this article, we provided a focused study on dynamically diagnosing the knowledge proficiency
of students.We designed two explanatory probabilistic matrix factorizationmodels, theKnowledge
Proficiency Tracing (KPT) model and the Exercise-correlated Knowledge Proficiency Tracing (EKPT)
model, by incorporating important factors in the learning process of students. To be specific, the
KPT associated each exercise with a knowledge vector given the help of Q-matrix and represented
each student with a proficiency vector at each time in the same knowledge space. Then, we jointly
applied the classical educational learning theories (i.e., learning curve and forgetting curve) to cap-
ture the change of students’ knowledge proficiency over time. Furthermore, the improved EKPT
model could capture the connectivity relationships among exercises with the same knowledge
concepts, benefiting the predictive performance. Finally, we accomplished three practical educa-
tional tasks, i.e., knowledge estimation, score prediction, and diagnosis result visualization, based
on KPT and EKPT. Extensive experiments on four real-world datasets for these diagnostic tasks
confirmed the effectiveness and interpretability of our models. The new models we proposed and
related results should significantly benefit the development of online learning systems and related
research on educational management. We hope this work will lead to more studies in the future.
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