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Social Networking Services (SNSs) provide online platforms for users with two kinds of
behavior: user-user social behavior (e.g., following a user, making friends with others)
and user-item consumption behavior (e.g., rating, showing likeness, clicking, giving
thumbs up to items). With the increasing popularity of SNSs and demand for SNS features,
predicting potential social links and recommending preferable items to users have become
two hot research lines. However, previous works either modeled just one of these two
kinds of behaviors in isolation or only considered the observed user behavior data. In fact,
social scientists have long recognized that the user-user and user-item behaviors have a
mutual reinforcement effect. On the one hand, the two behaviors have correlations, and
they can influence each other. On the other hand, due to the sparsity of the observed user
behavior data, the user behavior prediction performance is far from satisfactory, although,
using two types of behavioral data at the same time can mitigate the sparsity problem.
These two problems remains open: how to better model the correlation of user-user social
and user-item consumption activities and how to mitigate the data sparsity issue. In this
paper, we propose a random walk based distributed representation learning model to
jointly predict these behaviors on SNSs. Specifically, we first construct a joint behavior
graph that combines the two behaviors, with the edges denoting the sparse observed user
behavior data. Then, we adopt a random walk to capture higher-order relationships
between users and items. After that, we utilize a distributed learning approach to embed
both users and items into a latent space. In this way, the behavior prediction tasks are
transformed into similarity calculations in the latent space. Finally, extensive experimental
results using two real-world datasets demonstrate the effectiveness of our proposed
approach on the two behavior prediction tasks.

� 2020 Published by Elsevier Inc.
1. Introduction

With the popularity of online social networks and online services, Social Networking Services (SNSs) have become
increasingly popular in modern daily life. SNSs provide online platforms that focus on facilitating the building of social rela-
tionships among people who share similar item preferences or online social connections. Specifically, users perform two
kinds of behavior on these platforms: user-item consumption behavior (reflected in user-item interaction behavior, e.g., rat-
ing, showing likeness, clicking, giving thumb up to items), and user-user social behavior (e.g., following users, making friends
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with others). For example, on the popular online social product review platform Epinions.com, users have followers, and the
users’ reviews are displayed on the followers’ front pages. One of the most popular social networking services in China, Dou-
ban, provides a platform for users to make online connections and share their preferences of movies, books, and other media.
On these platforms, users prefer to connect with others that have similar tastes. Likewise, users tend to consume items that
are shared by their social friends. With the mutual influence of users’ two kinds of behaviors, SNSs evolve with prosperity.

In the real world, as there are hundreds of millions of users and items on SNSs, information overload has become a serious
problem preventing users from identifying potential social relationships and possibly interesting items. Therefore, recom-
mending items that users may be interested in and predicting potential social relationships have become two hot research
topics. As one of the most successful approaches for item recommendation [1], collaborative filtering (CF) infers each user’s
future consumption preference by mining historical observed user-item interactions from like-minded users. Among all CF
models, latent factor based models are widely used because of their relatively high performance [2]. These models project
users and items embeddings into a lower latent space, and then the preference of a user for an item is measured by their
inner product. For social behavior, the observed relationships among users are also widely used for social recommendation
[3,4].

The above classical models considered the users’ two kinds of behavior in isolation. However, sociologists have long con-
verged on the opinion that the users’ social behavior and consumption behavior are highly correlated with each other.
Specifically, the social influence theory proposes that the users’ consumption behavior is affected by their social relation-
ships, leading to similar consumption interests among socially connected users [5,3,4]. Similarly, the homophily effect of
consumption behavior shows that users like to connect with others who share common tastes [6,7]. Based on these theories,
many researchers have proposed leveraging one type of behavior as side information to enhance the other. For example,
Tang et al. proposed a method that exploits users’ consumption behavior to assist social trust prediction [7]. Also, social rec-
ommendation is an active research topic in recommender systems, seeking to leverage social information to enhance con-
sumption behavior prediction [8,9]. Furthermore, since users perform these two behaviors on SNSs and due to the mutual
reinforcement between them, in recent years, researchers have proposed unified frameworks to jointly predict these kinds
of user behavior [10,11].

Although these models showed more promising performance than those modeling users’ behaviors in isolation, most of
the proposed classical methods rely heavily on the observed user-item and user-user links. As each user connects with only a
few social users and interacts with only several items among many, these methods still suffer from the data sparsity prob-
lem, which is a key challenge in the user behavior prediction task. In fact, beyond the observed links, there are many com-
plex, higher-order, user-user and user-item links. Consider these examples: (a) Two unlinked users have bought the same
item, so they may be highly correlated. The connection user1 - item1 - user2 implies that user1 and user2 may become friends
due to their similar preferences. However, this hidden relationship is not able to be observed in the original data. (b) People
prefer to buy things based on word of mouth. The connection user1 - user2 - item1 hints that user1 may prefer item1 to items
not recommended by user2. These complex relationships cannot be modeled only by the observed user behavior links.
Although researchers try to acknowledge these situations by carefully designing models, ignoring transitive unobserved
higher-order relationships sometimes results in suboptimal predictions of user behaviors.

To this end, in this paper, we propose a distributed learning approach based on random walks to better model user-user
and user-item kinds of behaviors. The key idea of the proposed approach is to adopt short randomwalks, which can correlate
users’ two kinds of behavior and generate semantic node sequences. Furthermore, these walks help to alleviate the sparsity
problem. Specifically, because the two behaviors have a mutual reinforcement relationship, we first construct a joint behav-
ior graph that combines them, with edges denoting the sparse observed user behavior data. Then, by adopting randomwalks
on the joint behavior graph, we extend relations for each node and generate higher-order links. After that, we employ the
language model Skipgram [12] and embed both users and items into the same latent representation space for behavior
prediction.

In summary, our contributions are as follows:

� We argue that as most user behavior prediction models only exploit the sparse and observed user-user and user-item
relations, the data sparsity issue is still a challenge for enhancing prediction performance.

� We propose a random walk based distributed learning approach to model and predict user-user and user-item behaviors
on SNSs. The proposed method mutually enhances the two prediction tasks with a joint graph. Besides, this method mit-
igates the data sparsity issue by extending the relations and capturing unobserved higher-order relationships with trun-
cated random walks.

� We obtain extensive experimental results based on two real-world datasets. The experimental results clearly show the
effectiveness of our proposed model, especially in cold-start scenarios.
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2. Preliminaries

For ease of presentation and understanding, we use uppercase calligraphic symbols (e.g., G) to denote graphs or networks,
boldface lowercase symbols (e.g., a) to denote nodes in a graph, italic boldface lowercase symbols (e.g., a) to denote vectors,
italic uppercase symbols (e.g., A) to denote sets, italic uppercase symbols T to denote a random walk sequence set (with the
subscript representing the starting node and superscript i denoting the i-th step), and boldface uppercase symbols (e.g., A) to
denote matrices.

Deepwalk. DeepWalk is a graph embedding method for learning the representations of nodes in a graph
G ¼< V ; E >;where V is the vertex set representing the nodes in the graph, and E is the observed edge set referring to the
relationships among nodes. To simplify the representation, we utilize f ð�Þ to denote the graph embedding operation. After
that, each node can be represented as a low-dimensional vector, which preserves the topological information in the graph.

Specifically, the key idea of Deepwalk contains two parts. First, for each node in the graph, Deepwalk utilizes a random
walk to generate many node sequences. For example, given the walk length k, a random walk sequence starting from node a

is represented as T1
a; T

2
a; T

3
a; . . . ; T

k
a.

Then, as words and sentences in texts are similar to nodes and generated sequences, Deepwalk adopts the language
model Skipgram [12], which maximizes the co-occurrence probability among the appearing words within a flexible window
length in a sentence, to model the relationships among nodes. For ease of understanding, Fig. 1 shows an example of Skip-
Gram on a node sequence. In the sequence from node 0 to node 9, the window length of the blue box is seven, and the center
red node has a background neighborhood with three length steps (considering both left and right). Thus the SkipGrammodel
will maximize the co-occurrence probability from node 2 to node 8, and the center node with each neighbor node will be
transformed into node pairs for training, e.g., (node 2, node 5), (node 3, node 5), etc. For more information, please refer to
Skipgram.
3. Related work

Collaborative Filtering. As one of the most successful approaches of recommender systems, Collaborative Filtering (CF)
models users’ preferences by collecting the past historical record from the like-minded users with similar tastes. Typically,
CF-based methods are divided into two categories: memory-based and model-based methods. Memory-based methods
[20,27,21] utilize observed interactions to find neighborhood users and make the recommendation by gathering their rat-
ings. Model-based methods [28,2,29,30,23] usually provide unified models with training samples to use to learn the model’s
parameters. Once the parameters are learned (i.e., once the model adapt correctly to the training samples), the model can
directly output the results of the test data. Therefore, model-based methods do not store the training data, and so they
are usually faster than Memory-based methods in the test phase. Nevertheless, nearly all CF methods rely on the observed
user-item consumption records to make predictions. Due to the sparsity of the observed behavior data, the performance of
these models is sometimes unsatisfactory.

Link Prediction. Given a snapshot of a social network, the task of link prediction refers to inferring potential new inter-
actions among social members in the near future. Traditionally, unsupervised models calculate the predefined proximity
between two nodes based on the topological information of a social network. For example, Node proximity based models
utilize structural information to predict potential social links [13]. Path-based methods consider the length of the shortest
path or the time cost to measure the proximity of indirectly connected users [13,14]. In contrast to the unsupervised meth-
ods, by treating observed links as positive samples while randomly selected unobserved links as candidate negative samples
[31,32], many supervised methods achieve better performance [18,19].

Modeling User-user and User-item Behavior Simultaneously. Sociologists have long agreed that users’ social behavior
and consumption behavior are not independent and unrelated. On the one hand, the users’ different behaviors can be utilized
as side information to boost the prediction performance. For example, Tang et al. employed the homophily effect from con-
sumption behavior for trust prediction [7]. Jamali et al. proposed SocialMF, which utilizes social neighborhood information
to enhance collaborative filtering [5]. Zhao et al. leveraged social connections to improve personalized ranking [33], which
extended Bayesian personalized Ranking [28] by considering the feedback from users’ friends to model their preference.
Moreover, with the popularity of deep learning, many works adopt deep neural networks and social information to enhance
the consumption behavior prediction [34–37], which have shown the state-of-the-art performance. On the other hand, these
two behaviors coexist and interact with each other on SNSs. Recently, many works have combined these behaviors to
enhance performance. Yang et al. proposed a unified framework called FIP (Friendship and Interest Propagation) to model
Fig. 1. A toy example of SkipGram. The center node 5 with its neighbor node in a sequence, SkipGram will maximize the co-occurrence probability from
node 2 to node 8.
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Table 1
Attributes of related works in specific application fields.

User Behavior Task Model Attribute Methods

Social behavior models Pre-defined similarity on graph structure [13,14]
Network embedding [15–17]
Utilizing side information [7]
Matrix factorization [18,19]

Consumption behavior models Memory-based model [20,21]
Model-based model [2,5,22,23]

Joint behavior models Shallow matrix factorization model Collaborative filtering
+ user profile
+ item attribute

[11]

Collaborative filtering
+ Temporal information

[24,10].

Deep neural
model

Collaborative filtering [25,26]
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users’ interests and friendships simultaneously [11]. It utilized the available profiles of users and items with the shared user
latent representations. Besides, by considering temporal information, Wu et al. explored the evolution of users’ preferences
and social relationships on SNSs [24,10]. Moreover, there are methods jointly model two behavior recently [25,26]. For
example, the recently proposed NJM (Neural Joint Modeling) jointly models dynamic user feedback and social links [25],
which improves [24,10] by adopting neural networks, powerfully contributing to fitting more complex user-item
interactions.

Graph Embedding. In recent years, many graph embedding methods have emerged. These methods have two clear goals.
The first one is to reconstruct the relations among nodes, and the other is to preserve the topological information. Therefore,
most of them not only model the first-order observed links but also consider the higher-order topological information. Typ-
ically, classic graph embedding methods aim at learning low-latent representations of nodes from the network structure, and
the learned low-latent representations are convenient for subsequent applications. Besides, these embedding methods have
been proved to be very effective on the link prediction task [15–17]. Specifically, since nodes in graphs are very similar to
words in texts, Deepwalk [15] mapped the problem of word embedding into the social network. Grover et al. proposed
an improved algorithm based on Deepwalk by modifying the random walk strategy [16]. Moreover, Tang et al. presented
a large-scale node embedding algorithm that is suitable for arbitrary types of information networks [17].

We summarize the related works in Table 1.
4. Problem definition

On SNSs, given a set of N users U ¼ fu1;u2; . . . ;uNg, we define the social trust matrix S 2 RN�N to record the social rela-
tionships among users. We have sab = 1 if user a trusts or follows user b, otherwise it equals 0. Symbol ‘‘?” represents
unknown social links. Similarly, given a set of M items V ¼ fv1; v2; . . . ;vMg, we define R 2 RN�M to represent the rating

matrix, and the ða; jÞth entry raj of R represents user ua’s rating of item v j. For better understanding, we give a toy example
of two behavioral graphs in Fig. 2.
Fig. 2. A toy example of the Social Behavior Graph and the Consumption Behavior Graph. In the Social Behavior Graph, users follow others or make friends
with other users. In the Consumption Behavior Graph, users have interactions with items.

331



J. Li, L. Wu, R. Hong et al. Information Sciences 549 (2021) 328–346
Social behavior forms the connections between users. For example, in the social e-commerce platform Epinions, users fol-
low other users, which constitutes a social behavior that is represented by a connection or link between the two. In the indi-
rect social platform Facebook, two users have a social behavior if both of them agreed to begin the friendship with each
other. Since these social behaviors link nodes, they naturally form a graph, leading to the following definition:

Definition 1 (Social Behavior Graph.). A Social Behavior Graph (SBG) is defined as a directed graph Gs ¼< U; S >, where U is
the node set representing all users and S is the social trust matrix representing the social network; if user b is connected to
user a because of a social behavior, then sba = 1, otherwise it equals zero.

Similarly, a consumption behavior refers to a connection between a user and an item. There are many types of
consumption behavior. For example, on the community website Douban, users can rate movies with scores, or they can click
and browse the movie.
Definition 2 (Consumption Behavior Graph.). A Consumption Behavior Graph (CBG) is defined as Gc ¼< U [ V ;R >, where U
and V are the sets of users and items, respectively. R is the rating matrix containing the interactions between users and
items. In the matrix, raj=1 denotes that user a is connected with item j because of a consumption behavior. Note that CBG
is a bipartite graph; there are no direct links between two users or two items.

Based on the abovementioned definitions, our target goal is as follows:
Problem Definition. Given the Social Behavior Graph Gs and Consumption Behavior Graph Gc , learn the distributed rep-

resentations of users and items to predict the users’ future user-user social behaviors and user-item consumption behaviors.

5. Random walk based distributed learning method

5.1. Joint behavior graph construction

According to social theories, the two kinds of user behavior we consider have a mutual reinforcement relationship. Users
prefer to connect with others who have similar tastes. Likewise, users tend to consume items that are used or recommended
by their social friends. Therefore, building a graph that contains both social behavior and consumption behavior should be
beneficial for extracting correlations between them.

For this purpose, we follow the idea of a Social-Attribute Network (SAN) [38], which was proposed for link and attribute
prediction [39,40]. In SAN, a social user not only has social links with other users but also is correlated with attribute nodes
by attribute links (e.g., a user with various employers like Google, Intel, and Yahoo and various schools like Berkeley, Stan-
ford, and Yale).

Therefore, we build a new augmented graph GJ called the Joint Behavior Graph (JBG). Specifically, we merge the Social
Behavior Graph (SBG) and Consumption Behavior Graph (CBG) by sharing the same users. Then, for each user in the JBG,
there are many social links with other social users, as well as connections to items, which are called attribute links.

Definition 3 (Joint Behavior Graph.). A Joint Behavior Graph (JBG) is defined as GJ ¼< U [ V ; S;R >, where U and V are the sets
of users and items, respectively.
Fig. 3. A toy example of a Joint Behavior Graph including both social behavior and consumption behavior. user4 and user5 may become friends, as they share
similar neighborhood friendships (user2 and user3). user1 has a high probability of consuming item5, as user1 and user2 have the same taste
(item1; item2; item3). user1 is a cold-start user in the social network; cold-start users do not have any social relations, so it is difficult to predict their social
links. However, the side information from consumption behavior indicates that user1 and user2 are similar.
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For clarity, we show a simple toy example of Joint Behavior Graph with undirected friendships in Fig. 3.
Obviously, the JNB combines the information of a social trust matrix S and rating matrix R into a unified network struc-

ture. We argue that the advantages of JBG are manifested in two ways:

(1) Social and consumption behaviors have a mutual reinforcement relationship and can be deemed as side information
for each other, so the fusion of the two behavior graphs is a way for them to complement each other and mitigate data
sparsity and cold-start problem. The term ‘‘cold-start” refers to the phenomenon that when many users have limited
behavior data, it is hard to recommend users and items for them. For example, in Fig. 3, as a cold-start user in the social
network, user1 does not have any social relationships. However, a relationship between user1 and user2 is likely as they
have the same taste (item1; item2; item3). In addition, cold-start user5 does not have any consumption records, but they
are likely to prefer to item3 because all of user5’s social neighbors (user2 and user3) have interactions with item3.

(2) Graph structure provides connectivity information and serendipitous unobserved relationships among nodes. For
instance, user1 and user3 have a high approximate similarity, because both have bought item3. Also, user4 and user5
share the same neighbors (user2 and user3). Thus, they are likely to become friends in the future. These complex rela-
tionships are not observable in the original SBG and CBG.

However, as we only have observed links, capturing these complex user-user and user-item higher-order relationships is
still a problem.

5.2. Generating semantic random walk sequences

In order to extract more complex user-user and user-item interactions from the original data, we resort to the random
walk strategy, which describes a path that consists of a succession of random steps. For example, as shown in Fig. 3, (1)
although user5 does not have any consumption records, with the random walk sequence user5 $ user2 $ item3, the hidden
link between user5 and item3 is captured. This hidden link cannot be observed in the original CBG. Similarly, user1 is a cold-
start user in the social network. By adopting random walks, we can recommend user2 (user1 $ item3 $ user2), user3
(user1 $ item3 $ user3), and even user4 (user1 $ item3 $ user3 $ user4) to user1. Obviously, we extend the relations and
capture many unobserved hidden relationships for user5 and user1 from random walks.

However, in some cases, several paths exist which are completely different from each other. For instance, for user5, there
is another path user5 $ user3 $ item3, which means the unobserved hidden relationships among nodes cannot be captured
by only one path. We assume that different paths may lead to different results, because these random walk paths/sequences
have rich semantics. Specifically, (1) user1 $ item3 $ user2 means user1 and user2 have the same taste for item3. (2) If user5
eventually bought item3, they may be influenced by user2 (user5 $ user2 $ item3) or by user3 (user5 $ user3 $ item3). Based
on this, we need to collect different paths to sufficiently explore the relationships for each node.

The above strategy is similar to a breadth-first traversal. Meanwhile, for each node, we adopt truncated random walks
with a fixed path length, which could be deemed as a depth-first traversal. Through such a random walk mechanism, we
combine the two behavioral graphs and generate many meaningful sequences.

5.3. Distributed representation learning

As nodes in a sequence resemble words in a sentence, we adopt SkipGram [12] on the generated sequences from random
walks to project each node n into a low-dimensional space f ðnÞ 2 Rd. Specifically, for each length k sequence T =

{T1
nb
; T2

nb
; . . . ; Tk

nb
} that starts from nb, the approximate conditional probability based on assuming independence is:
Y
�w6j6w;j–0

PrðTiþj
nb
jTi

nb
Þ; ð1Þ
where w is the window size, in which the center node with each neighbor node will be transformed into node pairs for
training:
PrðTiþj
nb
jTi

nb
Þ ¼ simðf ðTiþj

nb
Þ; f ðTi

nb
ÞÞ

P
j02V simðf ðTj0

nb
Þ; f ðTi

nb
ÞÞ
; ð2Þ
Here, sim is a method to calculate the similarity between two vectors.
Since there are N users and M items, the number of total nodes are jMþNj. For each node, we utilize random walks to

generate jLj sequences. Then, our goal is to optimize all the sequences as:
max
YjHj

T¼1

Y
�w6j6w;j–0

PrðTiþj
nb
jTi

nb
Þ; ð3Þ
where jHj ¼ jMþNj � jLj denotes the total number of generated sequences.
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Fig. 4. Flow chart of the process. We first combine the two kinds of behavior and obtain the Joint Behavior Graph. Then, we utilize the random walk
mechanism to collect meaningful and semantic sequences. Finally, we learn the representations for each node and measure the similarity among them.
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For optimization, we utilize Stochastic Gradient Descent (SGD) [41] with mini batch strategy to minimize the loss func-
tion. Then, the learned representations contain both of users and items. To determine similarity between two nodes, we uti-
lize the Euclidean distance:
simðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd
i¼1

ðxi � yiÞ2
vuut : ð4Þ
Finally, we summarize the flow chart of the proposed method in Fig. 4. In this way, we transform the behavior prediction
tasks into similarity calculations and ranking tasks.
5.4. Complexity analysis

In this section, we analyze the computational complexity and space complexity of the proposed method. Our method
generates many sequences (a total of jHj sequences) from each node since each node with all its neighbors in the window
sizewwill be transformed into node pairs for training (OðjHj � 2wÞ). Besides this, we employ Eq. 2 to model the probability, so
we need to consider all the nodes in the Joint Behavior Graph. Summing these, the computational complexity is
OðjHj � 2w � jMþNjÞ. As for the space complexity, we only utilize one vector to represent each node. Thus, the space complex-
ity is OðjMþNjÞ.
6. Experiments

In this section, we conduct experiments designed to answer the following three key questions, which aim at certifying the
effectiveness of our proposed methods:

RQ1 How does our proposed method perform compared to other methods that focus on a single task?
RQ2 Is the proposed method useful to alleviate the cold start problem?
RQ3 How do the key parameters impact the performance of the method?
6.1. Experimental Settings

Dataset Description. We conduct experiments on two real-world datasets: Epinions and Douban. Epinions is a who-
trusts-whom online product sharing platform, and Douban is a community website. Both of them include trust data (social
behavior) and rating data (consumption behavior). Trust data utilizes a triple to describe each social trust relationship. For
example, if user a trusts user b, then the record triple is defined as {a b 1}. Rating data records the users’ consumption behav-
ior with a score (1–5). We consider explicit feedback or implicit feedback according to different baselines on consumption
behavior prediction. For explicit feedback, if a rating score is greater than or equal to 3, it remains unchanged; otherwise, the
score is 0. For implicit feedback, the records with rating scores greater than or equal to 3 are treated as positive samples (pos-
itive sample with label 1), and the others are 0.

For trust and rating data on the two datasets, we randomly select some records as the training set and validation set, and
the remaining data is the test set. Table 2 shows the characteristics of the two datasets after pruning. Because many methods
utilize negative samples to form counterparts in the training process, each observed interaction is paired with some negative
instances.

EvaluationMetrics.Whenwe evaluate the performance on the test set, we randomly select some negative samples in the
item set for each user. Then, we mix together negative samples and positive samples (in the test set) to select the top K
334



Table 2
The dataset after pruning.

Dataset Epinions Douban

Max User ID 9,713 6,395
Max Item ID 139,738 59,701
Number of Users 9,713 6,395
Number of Items 91,110 20,308

Total Consumptions 347,064 214,160
Total Links 328,935 142,941

Training Consumptions 277,505 147,678
Test Consumptions 62,603 59,833
Validation Consumptings 6,956 6,649
Training Links 266,671 121,823
Test Links 55,415 18,796
Validation Links 6,849 2,322

Consumption Sparsity 99.98% 99.89%
Link Sparsity 99.72% 99.34%
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potential candidates. In this way, we alleviate the time-consuming problem of ranking all users or items for each user during
evaluation. We repeated the experiment five times and report the average results.

For the evaluation metrics, we adopt four widely used metrics in link prediction and recommendation, precision@k,
recall@k, F1-score@k [42], and Normalized Discounted Cumulative Gain (NDCG@k) [43]. The precision@k represents the percent-
age of objects which are successfully predicted to be in the top-k list, and recall@k is the percentage of objects that are suc-
cessfully predicted relative to the total number of positive samples in the top-k list. F1-score@k is a trade-off result based on
precision@k and recall@k. NDCG@k is a precision-based measure that accounts for the relative accuracy of the predicted posi-
tions of the positive instances. Larger values indicate better performance for all of these metrics.

Baselines. To evaluate the effectiveness of our proposed method, we introduce baselines and compare the performance
on two prediction tasks. For social behavior prediction, we evaluate the performance of our method with the following
methods:

Adamic/Adar(AA) [13]. AA is an unsupervised measure for link prediction. For two users, we define the similarity by the
number of users that both of them follow.

FIP [11]. This method presents a framework considering both friendship prediction and interest targeting simultaneously.
NMF [44]. Nonnegative Matrix Factorization decomposes the social trust matrix S into two low-rank matrices. Then, it

predicts the possible trust relationships by using matrix multiplication.
LINE [17]. LINE is a graph embedding method. It preserves the first-order neighborhood information and second-order

topology information by an elaborately designed objective function. The learned node representations have a form that is
convenient for subsequent applications.

hTrust [7]. hTrust utilizes the homophily effect to improve the performance of trust prediction. The homogeneity infor-
mation comes from the rating data; thus, hTrust utilizes trust data and rating data.

As for consumption behavior prediction, we compare our method with the following methods:
PMF [2]. PMF is a method utilizing matrix factorization to project users and items into lower latent spaces. PMF utilizes

explicit feedback to predict user preferences.
BPR [28]. BPR optimizes matrix factorization (MF) with a pairwise ranking loss. Also, BPR is a highly competitive baseline

for item recommendation and is more precise for the ranking task.
SocialMF [5]. This method incorporates social information when modeling users’ preferences. This method is used only

for social recommendation. SocialMF utilizes explicit feedback to predict users’ preferences.
FIP [11]. This method presents a joint model to performed friendship prediction and interest targeting simultaneously.

FIP utilizes explicit feedback to predict users’ preferences.
LINE [17]. LINE preserves the first-order and second-order proximity by an elaborately designed objective function. The

learned node representations are in a convenient form for subsequent applications.
We have thoughtfully chosen the above baselines to cover a diverse range of social behavior prediction or consumption

behavior prediction methods. PMF is a traditional model-based method utilizing point-wise loss. BPR is a competitive user-
based collaborative filtering approach to evidence the state-of-the-art performance of recommendation from implicit feed-
back on the ranking task. Thus, we compare with BPR to prove the effectiveness. Then, as our method contains two predic-
tion tasks, we introduce FIP for comparison (FIP can also predict the two behaviors simultaneously). Also, since two
behavioral data complement each other, we adopt hTrust and SocialMF, which utilize side information to enhance their per-
formance. Specifically, hTrust utilizes the homophily effect for trust prediction, while SocialMF focuses on social recommen-
dation. To compare with another embedding method, we adopt LINE, which is a state-of-the-art graph embedding method
for preserving the structure information. We employ NMF to compare with the traditional matrix factorization model.
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Table 3
Social behavior prediction results for Epinions.

Metrics Precision Recall F1-score NDCG

Top-k

Methods Top-5 Top-10 Top-5 Top-10 Top-5 Top-10 Top-5 Top-10

AA 0.286 0.228 0.267 0.371 0.276 0.282 0.362 0.375
NMF 0.365 0.294 0.400 0.572 0.381 0.388 0.498 0.531
FIP 0.332 0.270 0.368 0.535 0.349 0.358 0.453 0.488

hTrust 0.383 0.305 0.425 0.597 0.402 0.404 0.525 0.558
LINE 0.331 0.257 0.316 0.449 0.323 0.327 0.446 0.458

RWSBG 0.361 0.279 0.431 0.582 0.393 0.377 0.532 0.557
RWJBG 0.408 0.306 0.498 0.644 0.449 0.415 0.604 0.624

Table 4
Social behavior prediction results for Douban.

Metrics Precision Recall F1-score NDCG

Top-k

Methods Top-5 Top-10 Top-5 Top-10 Top-5 Top-10 Top-5 Top-10

AA 0.138 0.100 0.194 0.263 0.161 0.145 0.208 0.225
NMF 0.204 0.149 0.300 0.416 0.243 0.219 0.317 0.348
FIP 0.225 0.162 0.355 0.476 0.275 0.242 0.367 0.400

hTrust 0.259 0.181 0.404 0.522 0.316 0.269 0.430 0.460
LINE 0.239 0.160 0.360 0.447 0.287 0.236 0.397 0.412

RWSBG 0.246 0.175 0.420 0.543 0.310 0.265 0.430 0.466
RWJBG 0.274 0.187 0.450 0.565 0.341 0.281 0.467 0.495

Table 5
Consumption behavior prediction results for Epinions.

Metrics Precision Recall F1-score NDCG

Top-k

Methods Top-5 Top-10 Top-5 Top-10 Top-5 Top-10 Top-5 Top-10

PMF 0.503 0.344 0.554 0.637 0.527 0.447 0.712 0.701
BPR 0.513 0.355 0.584 0.681 0.546 0.467 0.729 0.725
FIP 0.496 0.352 0.608 0.748 0.545 0.479 0.720 0.738

SocialMF 0.527 0.364 0.599 0.695 0.561 0.478 0.748 0.744
LINE 0.495 0.356 0.617 0.760 0.549 0.485 0.716 0.739

RWCBG 0.524 0.369 0.619 0.758 0.568 0.496 0.731 0.744
RWJBG 0.552 0.381 0.654 0.797 0.599 0.516 0.753 0.764

Table 6
Consumption behavior prediction results for Douban.

Metrics Precision Recall F1-score NDCG

Top-k

Methods Top-5 Top-10 Top-5 Top-10 Top-5 Top-10 Top-5 Top-10

PMF 0.655 0.497 0.562 0.708 0.605 0.584 0.808 0.802
BPR 0.669 0.517 0.587 0.751 0.625 0.612 0.828 0.833
FIP 0.686 0.528 0.608 0.783 0.645 0.631 0.852 0.860

SocialMF 0.691 0.533 0.606 0.777 0.646 0.632 0.856 0.862
LINE 0.640 0.514 0.588 0.779 0.613 0.619 0.792 0.821

RWCBG 0.696 0.530 0.614 0.783 0.652 0.632 0.860 0.870
RWJBG 0.705 0.541 0.624 0.795 0.662 0.644 0.872 0.877
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Table 7
Information about six groups according to trust data.

Number of occurrences Epinions Douban

0–5 3,261(34.2%) 1,790(28.5%)
5–10 1,756(18.4%) 1,479(23.6%)
10–20 1,614(16.9%) 1,447(23.1%)
20–40 1,286(13.5%) 927(14.8%)
40–80 850(9.0%) 430(7.0%)
>80 762(8.0%) 206(3.0%)

Fig. 5. Sparsity Analysis for Social Behavior Prediction for Epinions.

J. Li, L. Wu, R. Hong et al. Information Sciences 549 (2021) 328–346
Finally, we chose AA because it is an unsupervised method, which computes the similarity between two nodes by topological
properties.

6.2. Performance Evaluation and Comparison (RQ1)

6.2.1. Social behavior prediction
The average performance of the aforementioned social behavior prediction methods for Epinions is reported in Table 3,

while the Douban result is reported in Table 4. RWSBG and RWJBG are the abbreviations of Random Walk on Social Behavior
Graph and Random Walk on Joint Behavior Graph, respectively. We show the top-5 and top-10 results.

On both datasets, AA underperforms the other methods, as AA is only based on network structure with some predefined
logical assumptions. FIP is a joint model, which shares the same user latent representation for social and consumption
behavior. As we can see, FIP sometimes slightly underperforms other methods on these two datasets. A possible reason is
that our datasets lack the profile information of users and items, which is different from the original settings in FIP. hTrust
performs better than AA, FIP, NMF, and LINE on social behavior prediction, which shows the effectiveness of leveraging the
homophily effect. Besides this, hTrust is better than RWSBG on the two datasets in some cases, because hTrust utilizes users’
preference information while RWSBG only considers social behavior. LINE works well for link prediction; nevertheless, when
the network is sparse and the average number of neighbors of a node is insufficient, the second-order proximity cannot add
meaningful neighbors, making the results inaccurate. RWJBG considers both social behavior and consumption behavior
information to learn the representations. As expected, RWJBG performs well on both datasets.
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Fig. 6. Sparsity Analysis for Social Behavior Prediction for Douban.

Table 8
The information of 6 groups.

Consumption number Epinions Douban

0–5 918(9.5%) 784(12.3%)
5–10 2,106(21.7%) 1,437(22.5%)
10–20 2,708(27.9%) 1,701(26.5%)
20–40 2,265(23.3%) 1,533(24.0%)
40–80 1,105(11.4%) 754(11.7%)
>80 610(6.2%) 186(3.0%)
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6.2.2. Consumption behavior prediction
In this part, we show the performance of consumption behavior prediction. The results for Epinions are shown in Table 5,

and results for Douban are shown in Table 6. RWCBG is the abbreviation of Random Walk on Consumption Behavior Graph.
For consumption behavior prediction, RWCBG outperforms other methods in almost all of our tests, proving the effective-

ness of utilizing both two kinds of behavior information and capturing higher-order relationships to alleviate the sparsity
problem. For CF methods, SocialMF performs better than others, no doubt because SocialMF considers the social trust prop-
agation from neighbors. This result indicates that social information has a positive effect on users’ preference prediction. BPR
is a competitive algorithm considering the pairwise ranking loss, which is optimized by increasing the gap between positive
and negative samples. FIP models these two kinds of user behaviors simultaneously. However, due to our datasets’ lack of the
user profile information (e.g., users’ self-crafted registration files) and item attributes (e.g., a textual description of a service
item), FIP does not perform very well in our tests. Moreover, we argue that another shortcoming of FIP comes from the
shared user latent representations, which need to fit two kinds of behaviors at the same time, making the performance
far from satisfactory.
6.3. Sparsity analysis (RQ2)

Because each user only connects to limited social users and interacts with several items, the problem of sparsity is
unavoidable in behavior prediction tasks. To verify the ability to mitigate sparsity, a common experiment is to divide users
into different groups according to the sparsity and analyze the performance of the different groups [45,46].
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Fig. 7. Sparsity Analysis for Consumption Behavior Prediction for Epinions.

J. Li, L. Wu, R. Hong et al. Information Sciences 549 (2021) 328–346
6.3.1. Sparsity analysis for social behavior prediction
Generally speaking, the sparser the data, the more difficult it is to fit the data and the worse the overall results. Since the

number of times each user appears is different, we need to know how our method works for them. The fewer times users
appear, the fewer links they have and the more sparse they are.
Fig. 8. Sparsity Analysis for Consumption Behavior Prediction for Douban.
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Table 9
Three examples of recommendation results of our method.

Typical Examples for Epinions Dataset

Our method recommends user26 and item125 for user76 while other methods ignore them.
user26 appeared 12 times, and only 14 users bought item125.

Explanation 1: Trust relations can be transmitted.
(a) There are 12 users who trust user26 in Epinions, so we define the set as C26 and jC26j ¼ 12.
(b) The set of users that user76 has followed is c76.
(c) We find that c76 \ C26 ¼ 7.

Conclusion 1:
We believe user76 will trust user26 because of connectivity hidden links. Then, as a follower, user76 has a high probability to trust someone their followee has trusted.

Explanation 2: Consumption behavior enhances the social behavior prediction.
user76 and followees (who also trust user26) have bought some of the same items.
user76 : item47; item61; item122; item165; item103 ; item200; item220.
user62 : item47; item61.
user234 : item103; item122.
user282 : item122; item165 ; item200; item220.

Conclusion 2:
user76 will trust user26 also because user76 and their followee have bought some of the same items. Starting from these items, we can also capture the relations between
user76 and user26.

Explanation 3: Social relationships can affect consumption behavior.
(a) There are five users who have bought item125. We define the set of these users as W125, and jW125j ¼ 5.
(b) The set of users that user76 has followed is c76.
(c) We find that jc76 \W125j ¼ 4.

Conclusion 3:
We believe user76 will buy item125 because of their social friends.
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Fig. 9. Impact of different values of kc and kt on the performance of social behavior prediction for Epinions.

J. Li, L. Wu, R. Hong et al. Information Sciences 549 (2021) 328–346
We divide the users into six groups on each dataset according to their social links; the details of each group are shown in
Table 7. We can see that the majority of users appear less than ten times (with 52.6% for Epinions, 52.1% for Douban), which
means these users have less than ten social links with other users. Then, for each group of users, we observe the performance
on the test set; the results are shown in Figs. 5 and 6. Here, we choose the trade-off metric F1-score (k ¼ 5) and NDCG (k ¼ 5).

We can see that if a user appears less than five times, AA is almost nonfunctional. This happens because when the social
trust matrix S is sparse, nearly all the adjacent vectors of each user in the S are zero. The same problem exists for all methods.
However, a random walk can extend the relations for each user and item, which gives our proposed method better perfor-
mance than the other methods. Our test results show the effectiveness of our method in mitigating the sparsity problem. If,
however, a user appears many times, then many users trust or are trusted by that user. Cumulatively, these users have
enough social links and are not limited by sparsity anymore. For these active users, accurate predictions can be captured
by many methods. Under such circumstances, our approach may underperform others.

6.3.2. Sparsity analysis for consumption behavior prediction
One aspect affecting consumption behavior prediction is that users consume different numbers of items. Naturally, users

who consumemore items are called active users. Thus, we analyze the differences between users who buy different numbers
of items. As before, we divided the users into six groups according to the number of items they have purchased in the two
datasets. The information about all the groups is presented in Table 8.

Fig. 7 and Fig. 8 show the results for users with varying consumption records in the two datasets. We can see that in these
tests, our method outperforms PMF and BPR, which only utilize user-item observed links, and even SocialMF. These results
show the effectiveness of utilizing random walks on the Joint Behavior Graph to extract higher-order links. However, com-
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Fig. 10. Impact of different values of kc and kt on the performance of social behavior prediction for Douban.
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pared to other methods that also utilize the social network for recommendation (i.e., FIP, LINE), it seems that our method
sometimes does not perform very well when users have bought only a few items. A possible reason is that random walks
rely on the observed user-item relationships for generating random walk sequences. As shown in Table 2, the consumption
behavior is much sparser than social behavior. Given such data characteristics, each user is more likely to be linked to a social
link than a consumption link. Therefore, there are less consumption-based link paths than social-based link paths, leading to
the proposed model focusing more on the social link performance. Therefore, the performance improvement in consumption
behavior prediction is not as significant as in social behavior prediction.

Moreover, two facts should be noted. (1) The number of items in the datasets is far more than the number of users, includ-
ing users who bought more than 40 items, so many models still suffer from the cold-start problem when determining pref-
erences. In terms of the overall effect, our method becomes better when users have bought more than 20 items. (2)
Moreover, we use two metrics (F1-score and NDCG) to evaluate the performance. Compared to the comprehensive F1-
score, our proposed method has better performance on the NDCG (the quality of candidates’ ranking), which shows that
meaningful high-order neighbors are uncovered by random walks.

The experimental results show that our proposed model can help to mitigate the data sparsity issue to some extent. Due
to the unsupervised nature of a random walk, it can not best serve consumption behavior prediction when users have very
few records. We would like to explore how to solve this phenomenon, and we propose it as future work.

6.3.3. Case study
In order to further verify the effectiveness of our method and its ability to mitigate the sparsity problem, we show a case

study result for Epinions with three discoveries. For these results, we randomly selected user76 to observe the prediction list.
In the list, we found two relatively sparse nodes user26 (14 records) and item125 (12 records). Other methods ignored these

two nodes, but by searching for the relations, we get the interesting results shown in Table 9.
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Fig. 11. Impact of different values of kc and kt on the performance of consumption behavior prediction for Epinions.
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6.4. Parameter analysis (RQ3)

Many parameters affect the prediction performance: (a) The number of latent dimensions kd. (b) The number of paths kc
for each node, which controls the breadth-first traversal. (c) The walk length kt , which controls the depth-first traversal. (d)
The window size kw, which defines the scope of the association with the current node.

To optimize our parameters, we started by setting the window size and the number of dimensions to kw ¼ 5 and kd ¼ 64.
We focus on adjusting kc and kt because they determine the characteristics of the random walks. We vary them in the order
of kc followed by kt , which means we will adjust kt assuming the best setting for kc.

The default values are kc ¼ 10 and kt ¼ 40. If we assign a small value to them, then the random walks connot identify the
higher-order relationships (unobserved links) well, but overly large values will not increase performance (perhaps even lead-
ing to overfitting). Considering these factors, we varied kc in {10,20,30,40,50,60} with kt chosen from {50,60,70,80}.

Figs. 9 and 10 show the results of RWJBG and RWSBG with the change of parameters for the two datasets. We start to
increase kc from 10. When RWSBG and RWJBG achieve the best performance, we fix kc and begin to increase kt . Since the
scale of rating data is more than that of trust data, the size of the user-item matrix is larger than the user-user matrix.
We can see that RWJBG outperforms RWSBG, which indicates that a large network (CBG) is able to provide more information
than a small one (SBG).

For a social behavior network, if the values of kc and kt are small, RWSBG is not able to adequately capture the information
of a network. With increases of kc, the performance of RWSBG increases significantly while the RWJBG method fluctuates or
even remains unchanged, which reveals that when adjusting parameters to get more information, the smaller graph allows
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Table 10
Performance with large parameters.

(a) Performance of social behavior prediction with large parameters.

Epinions
(kc ¼ 90; kt ¼ 100)

Douban
(kc ¼ 110; kt ¼ 100)

Metrics

Methods F1-score NDCG F1-score NDCG

RWSBG 0.428 0.581 0.330 0.458
RWJBG 0.451 0.605 0.342 0.471

(b) Performance of consumption behavior prediction with large parameters.
Epinions
(kc ¼ 90; kt ¼ 100)

Douban
(kc ¼ 110; kt ¼ 100)

Metrics
Methods F1-score NDCG F1-score NDCG
RWCBG 0.564 0.748 0.653 0.862
RWJBG 0.600 0.756 0.664 0.875

Fig. 12. Impact of different values of kc and kt on the performance of consumption behavior prediction for Douban.

J. Li, L. Wu, R. Hong et al. Information Sciences 549 (2021) 328–346
RWSBG to gain more useful information to enhance the performance. However, RWJBG always outperforms RWSBG, which
indicates that the CBG enhances the performance of social behavior prediction on JBG.
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Figs. 11 and 12 show the performance of consumption behavior prediction with the change of parameters. At first,
RWCBG is not able to capture enough information from the CBG when kc ¼ 10 and kt ¼ 40. Then, it quickly achieves the best
performance and starts to fluctuate. RWJBG underperforms the RWCBG in the beginning stage, as we set a small value and
try to capture the relationships in a larger graph containing the SBG and CBG. When we increase kt and kc, the performance of
RWJBG slightly outperforms RWCBG at the end because of the contained social information.

To fully verify the impact of these two parameters, we also set up larger parameters on two datasets to observe the
results. The results summarized in Table 10(a) and (b) give us two conclusions: (1) Although RWSBG performs a little bit
better than before, it still underperforms RWJBG. (2) Due to the acquisition of information being close to saturation, RWJBG
and RWCBG have no significant performance improvements.

7. Conclusion

In this work, we first combine graphs of two kinds of user behavior to get the Joint Behavior Graph. The combination of
different behavior graphs achieves the first step of information integration, allowing both users and items to be deemed
nodes. Then, we utilize the random walk mechanism to extend the relations for each node by generating many meaningful
and semantic sequences. Next, we follow the idea of distributed representation learning technology to obtain continuous
latent representations of all nodes. Specifically, we adopt the SkipGram to learn the semantic sequences and capture the
first-order and higher-order connectivity information among nodes. Finally, the learned representations can be utilized to
predict the users’ future behaviors.

Several problems remain and suggest future research. First, we roughly simplified the rating information; in other words,
our experimental setup does not take the weight of links among nodes into consideration. In addition, the generated random
walk sequences are very important, and the method of generating them will affect the final results. However, our proposed
method is completely unsupervised. In future research, we will study how to generate balanced random walks to further
improve the method. In the future, we hope to improve the prediction performance of SNSs by solving these problems.

CRediT authorship contribution statement

Junwei Li: Investigation, Software, Validation, Formal analysis, Writing - original draft, Writing - review & editing. Le Wu:
Conceptualization, Investigation, Validation, Formal analysis, Writing - review & editing. Richang Hong: Funding acquisition,
Validation, Writing - review & editing. Jinkui Hou: Validation, Writing - review & editing, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This work was supported in part by grants from the National Natural Science Foundation of China(Grant No. 61972125,
U1936219, 61722204, 61932009, 91846201), and the Fundamental Research Funds for the Central Universities (Grant No.
JZ2020HGPA0114).

References

[1] X. Su, T.M. Khoshgoftaar, A survey of collaborative filtering techniques, Advances in Artificial Intelligence 2009 (2009) 4.
[2] A. Mnih, R.R. Salakhutdinov, Probabilistic matrix factorization, Advances in Neural Information Processing Systems (2008) 1257–1264.
[3] M. Jiang, P. Cui, F. Wang, W. Zhu, S. Yang, Scalable recommendation with social contextual information, IEEE Transactions on Knowledge and Data

Engineering 26 (11) (2014) 2789–2802.
[4] H. Ma, D. Zhou, C. Liu, M.R. Lyu, I. King, Recommender systems with social regularization, in: Proceedings of the 4th ACM International Conference on

Web Search and Data Mining, ACM, 2011, pp. 287–296.
[5] M. Jamali, M. Ester, A matrix factorization technique with trust propagation for recommendation in social networks, in: Proceedings of the 4th ACM

Conference on Recommender Systems, ACM, 2010, pp. 135–142.
[6] A. Anagnostopoulos, R. Kumar, M. Mahdian, Influence and correlation in social networks, in: Proceedings of the 14th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, ACM, 2008, pp. 7–15.
[7] J. Tang, H. Gao, X. Hu, H. Liu, Exploiting homophily effect for trust prediction, in: Proceedings of the 6th ACM International Conference on Web Search

and Data Mining, ACM, 2013, pp. 53–62.
[8] X. Qian, H. Feng, G. Zhao, T. Mei, Personalized recommendation combining user interest and social circle, IEEE Transactions on Knowledge and Data

Engineering 26 (7) (2014) 1763–1777.
[9] Z. Zhao, H. Lu, D. Cai, X. He, Y. Zhuang, User preference learning for online social recommendation, IEEE Transactions on Knowledge and Data

Engineering 28 (9) (2016) 2522–2534.
[10] L. Wu, Y. Ge, Q. Liu, E. Chen, R. Hong, J. Du, M. Wang, Modeling the evolution of users’ preferences and social links in social networking services, IEEE

Transactions on Knowledge and Data Engineering 29 (6) (2017) 1240–1253.
[11] S.-H. Yang, B. Long, A. Smola, N. Sadagopan, Z. Zheng, H. Zha, Like like alike: joint friendship and interest propagation in social networks, in:

Proceedings of the 20th International Conference on World Wide Web, ACM, 2011, pp. 537–546.
[12] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, arXiv preprint arXiv:1301.3781..
345

http://refhub.elsevier.com/S0020-0255(20)31036-7/h0005
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0010
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0015
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0015
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0020
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0020
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0020
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0025
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0025
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0025
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0030
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0030
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0030
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0035
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0035
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0035
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0040
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0040
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0045
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0045
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0050
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0050
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0055
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0055
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0055


J. Li, L. Wu, R. Hong et al. Information Sciences 549 (2021) 328–346
[13] D. Liben-Nowell, J. Kleinberg, The link-prediction problem for social networks, Journal of the Association for Information Science and Technology 58 (7)
(2007) 1019–1031.

[14] G. Jeh, J. Widom, Simrank: a measure of structural-context similarity, in: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, 2002, pp. 538–543.

[15] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk Online learning of social representations, in: Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2014, pp. 701–710.

[16] A. Grover, J. Leskovec, node2vec Scalable feature learning for networks, in: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM, 2016, pp. 855–864.

[17] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei, Line: Large-scale information network embedding, Proceedings of the 24th International Conference
on World Wide Web, International World Wide Web Conferences Steering Committee, 2015, pp. 1067–1077.

[18] A.K. Menon, C. Elkan, Link prediction via matrix factorization, in: Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, Springer, 2011, pp. 437–452.

[19] K. Miller, M.I. Jordan, T.L. Griffiths, Nonparametric latent feature models for link prediction, in: Advances in Neural Information Processing Systems,
2009, pp. 1276–1284.

[20] P. Massa, P. Avesani, Trust-aware recommender systems, in: Proceedings of the 2007 ACM Conference on Recommender Systems, ACM, 2007, pp. 17–
24.

[21] Z.-D. Zhao, M.-S. Shang, User-based collaborative-filtering recommendation algorithms on hadoop, IEEE, 2010, pp. 478–481.
[22] H. Ma, I. King, M.R. Lyu, Learning to recommend with social trust ensemble, in: Proceedings of the 32nd International ACM SIGIR Conference on

Research and Development in Information Retrieval, ACM, 2009, pp. 203–210.
[23] L. Wu, Y. Yang, K. Zhang, R. Hong, Y. Fu, M. Wang, Joint item recommendation and attribute inference: An adaptive graph convolutional network

approach, in: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 679–688.
[24] L. Wu, Y. Ge, Q. Liu, E. Chen, B. Long, Z. Huang, Modeling users’ preferences and social links in social networking services: a joint-evolving perspective,

in: Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016, pp. 279–286.
[25] P. Wu, Y. Tu, X. Yuan, A. Jatowt, Z. Yang, Neural framework for joint evolution modeling of user feedback and social links in dynamic social networks,

in: Proceedings of the 27th International Joint Conference of Artificial Intelligence, 2018, pp. 1632–1638.
[26] J. Li, L. Wu, R. Hong, K. Zhang, Y. Ge, Y. Li, A joint neural model for user behavior prediction on social networking platforms, ACM Transactions on

Intelligent Systems and Technology (TIST) 11 (6) (2020) 1–25.
[27] B.M. Sarwar, G. Karypis, J.A. Konstan, J. Riedl, et al, Item-based collaborative filtering recommendation algorithms, in: Proceedings of the 10th

International Conference on World Wide Web, ACM, 2001, pp. 285–295.
[28] S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme, Bpr: Bayesian personalized ranking from implicit feedback, in: Proceedings of the 25th

Conference on Uncertainty in Artificial Intelligence, AUAI Press, 2009, pp. 452–461.
[29] Q. Liu, E. Chen, H. Xiong, C.H. Ding, J. Chen, Enhancing collaborative filtering by user interest expansion via personalized ranking, IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics) 42 (1) (2011) 218–233.
[30] L. Wu, Q. Liu, E. Chen, N.J. Yuan, G. Guo, X. Xie, Relevance meets coverage: A unified framework to generate diversified recommendations, ACM

Transactions on Intelligent Systems and Technology (TIST) 7 (3) (2016) 1–30.
[31] J. Leskovec, D. Huttenlocher, J. Kleinberg, Predicting positive and negative links in online social networks, in: Proceedings of the 19th International

Conference on World Wide Web, ACM, 2010, pp. 641–650.
[32] M. Al Hasan, M.J. Zaki, A survey of link prediction in social networks, in: Social Network Data Analytics, Springer, 2011, pp. 243–275.
[33] T. Zhao, J. McAuley, I. King, Leveraging social connections to improve personalized ranking for collaborative filtering, in: Proceedings of the 23rd ACM

International Conference on Information and Knowledge Management, ACM, 2014, pp. 261–270.
[34] P. Sun, L. Wu, M. Wang, Attentive recurrent social recommendation, in: The 41st International ACM SIGIR Conference on Research and Development in

Information Retrieval, 2018, pp. 185–194.
[35] L. Wu, P. Sun, R. Hong, Y. Ge, M. Wang, Collaborative neural social recommendation, IEEE Transactions on Systems, Man, and Cybernetics: Systems

(2018) 1–13.
[36] L. Wu, L. Chen, R. Hong, Y. Fu, X. Xie, M. Wang, A hierarchical attention model for social contextual image recommendation, IEEE Transactions on

Knowledge and Data Engineering (2019) 1854–1867.
[37] L. Wu, P. Sun, Y. Fu, R. Hong, X. Wang, M. Wang, A neural influence diffusion model for social recommendation, in: 42nd International ACM SIGIR

Conference on Research and Development in Information Retrieval, 2019, pp. 235–244.
[38] N.Z. Gong, A. Talwalkar, L. Mackey, L. Huang, E.C.R. Shin, E. Stefanov, E. Shi, D. Song, Joint link prediction and attribute inference using a social-attribute

network, ACM Transactions on Intelligent Systems and Technology (TIST) 5 (2) (2014) 1–20.
[39] Z. Yin, M. Gupta, T. Weninger, J. Han, Linkrec: a unified framework for link recommendation with user attributes and graph structure, in: Proceedings

of the 19th International Conference on World Wide Web, ACM, 2010, pp. 1211–1212.
[40] Z. Yin, M. Gupta, T. Weninger, J. Han, A unified framework for link recommendation using random walks, in: Advances in Social Networks Analysis and

Mining, IEEE, 2010, pp. 152–159.
[41] L. Bottou, Proceedings of the 19th International Conference on Computational Statistics (COMPSTAT’2010), Large-scale machine learning with

stochastic gradient descent, Springer, 2010, pp. 177–186.
[42] C. Goutte, E. Gaussier, A probabilistic interpretation of precision, recall and f-score, with implication for evaluation, in: European Conference on

Information Retrieval, Springer, 2005, pp. 345–359.
[43] X. He, T. Chen, M.-Y. Kan, X. Chen, Trirank Review-aware explainable recommendation by modeling aspects, in: Proceedings of the 24th ACM

International on Conference on Information and Knowledge Management, ACM, 2015, pp. 1661–1670.
[44] D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in: Advances in Neural Information Processing Systems, 2001, pp. 556–562.
[45] S. Sedhain, S. Sanner, D. Braziunas, L. Xie, J. Christensen, Social collaborative filtering for cold-start recommendations, in: Proceedings of the 8th ACM

Conference on Recommender Systems, ACM, 2014, pp. 345–348.
[46] G. Guo, J. Zhang, N. Yorke-Smith, Trustsvd: collaborative filtering with both the explicit and implicit influence of user trust and of item ratings, in:

Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015, pp. 123–129.
346

http://refhub.elsevier.com/S0020-0255(20)31036-7/h0065
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0065
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0070
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0070
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0070
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0075
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0075
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0075
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0080
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0080
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0080
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0090
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0090
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0090
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0095
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0095
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0095
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0100
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0100
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0100
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0105
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0105
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0110
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0110
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0110
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0115
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0115
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0115
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0120
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0120
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0120
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0125
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0125
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0125
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0130
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0130
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0135
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0135
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0135
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0140
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0140
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0140
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0145
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0145
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0150
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0150
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0155
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0155
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0155
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0160
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0160
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0165
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0165
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0165
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0170
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0170
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0170
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0175
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0175
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0180
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0180
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0185
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0185
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0185
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0190
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0190
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0195
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0195
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0195
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0200
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0200
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0200
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0205
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0205
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0205
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0210
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0210
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0210
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0215
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0215
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0215
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0220
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0220
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0225
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0225
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0225
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0230
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0230
http://refhub.elsevier.com/S0020-0255(20)31036-7/h0230

	Random walk based distributed representation learning and prediction on Social Networking Services
	1 Introduction
	2 Preliminaries
	3 Related work
	4 Problem definition
	5 Random walk based distributed learning method
	5.1 Joint behavior graph construction
	5.2 Generating semantic random walk sequences
	5.3 Distributed representation learning
	5.4 Complexity analysis

	6 Experiments
	6.1 Experimental Settings
	6.2 Performance Evaluation and Comparison (RQ1)
	6.2.1 Social behavior prediction
	6.2.2 Consumption behavior prediction

	6.3 Sparsity analysis (RQ2)
	6.3.1 Sparsity analysis for social behavior prediction
	6.3.2 Sparsity analysis for consumption behavior prediction
	6.3.3 Case study

	6.4 Parameter analysis (RQ3)

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References


