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Abstract—Feature selection is a critical step in machine learning that selects the most important features for a subsequent prediction

task. Effective feature selection can help to reduce dimensionality, improve prediction accuracy, and increase result comprehensibility. It

is traditionally challenging to find the optimal feature subset from the feature subset space as the space could be very large. While

much effort has been made on feature selection, reinforcement learning can provide a new perspective towards a more globally-

optimal searching strategy. In the preliminary work, we propose a multi-agent reinforcement learning framework for the feature

selection problem. Specifically, we first reformulate feature selection with a reinforcement learning framework by regarding each

feature as an agent. Besides, we obtain the state of the environment in three ways, i.e., statistic description, autoencoder, and graph

convolutional network (GCN), in order to derive a fixed-length state representation as the input of reinforcement learning. In addition,

we study how the coordination among feature agents can be improved by a more effective reward scheme. Also, we provide a GMM-

based generative rectified sampling strategy to accelerate the convergence of multi-agent reinforcement learning. Our method

searches the feature subset space more globally and can be easily adapted to real-time scenarios due to the nature of reinforcement

learning. In the extended version, we further accelerate the framework from two aspects. From the sampling aspect, we show the

indirect acceleration by proposing a rank-based softmax sampling strategy. From the exploration aspect, we show the direct

acceleration by proposing an interactive reinforcement learning (IRL)-based exploration strategy. Extensive experimental results show

the significant improvement of the proposed method over conventional approaches.

Index Terms—Feature selection, multi-agent reinforcement learning, interactive reinforcement learning

Ç

1 INTRODUCTION

FEATURE selection aims to select the optimal subset of rele-
vant features for a downstream predictive task [1], [2].

Effective feature selection can help to reduce dimensional-
ity, shorten training time, enhance generalization, avoid
overfitting, improve predictive accuracy, and provide better
interpretation and explanation. In this paper, we study the
problem of automated feature selection to improve the per-
formance of subsequent predictive tasks.

Prior studies in feature selection can be grouped into
three categories: (i) filter methods (e.g., univariate feature
selection [3], [4], correlation based feature selection [2], [5]),
in which features are ranked by a specific score; (ii) wrapper

methods (e.g., evolutionary algorithms [6], [7], branch and
bound algorithms [8], [9]), in which optimal feature subset
is identified by a search strategy that collaborates with pre-
dictive tasks; (iii) embedded methods (e.g., LASSO [10], deci-
sion tree [11]), in which feature selection is part of the
optimization objective of predictive tasks. However, these
studies have shown not just strengths but also some limita-
tions. For example, filter methods ignore the feature depen-
dencies and interactions between feature selection and
predictors. Wrapper methods have to search a very large fea-
ture space of 2N feature subspace candidates, where N is the
number of features. Embedded methods are subject to the
strong structured assumptions of predictive models, i.e., in
LASSO, the non-zero weighted features are considered to be
important. As can be seen, feature selection is a complicated
process that requires (i) strategic design of feature significance
measurement, (ii) accelerated search of optimal feature sub-
set, and (iii) meaningful integration of predictivemodels.

Reinforcement learning can interact with environments,
learn from action rewards, balance exploitation and explora-
tion, and search for long-term optimal decisions [12], [13].
These traits provide great potential to automate feature sub-
space exploration. Existing studies of automated feature selec-
tion in [14], [15] create a single agent tomake decisions. In these
models, the single agent has to determine the selection or dese-
lection of allN features. In other words, the action space of this
agent is 2N . Such formulation is similar to the evolutionary
algorithms [6], [7], [16], which tend to obtain local optima.

In this paper, we intend to propose a solution for auto-
mated feature selection using reinforcement learning.
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However, several challenges arise toward this goal. First,
how can we reformulate the problem so that the action
space in reinforcement learning could be limited? Second,
how can we accurately describe the state representation in
reinforcement learning? Third, how can we efficiently accel-
erating the exploration of optimal features?

To address the aforementioned challenges, we propose to
reformulate the feature selection problem with multi-agent
reinforcement learning framework. Specifically, we first
assign one agent to each feature, the actions of these feature
agents are to select or deselect their corresponding features,
and the state of environment is characteristics of the
selected feature subspace. We then propose to integrate fea-
ture-feature redundancy and feature-label relevance with
predictive accuracy as the reward scheme. In this way, we
guide the cooperation and competition between agents for
effective feature exploration. Moreover, we propose
improved methods to derive a fixed-length representation
vector from the dynamically changing selected feature sub-
set, e.g., in dynamic graph based graph convolutional net-
work (GCN), we construct a feature-feature similarity
graph to describe the state. Since nodes are features, the
number of nodes changes over time. We exploit GCN to
learn state representations from dynamic graphs. Finally,
we propose to accelerate the framework by improving the
sampling strategy in the experience replay.

Traditionally, we use experience replay [17], [18] to train
our multi-agent framework. In the experience replay, an
agent takes samples from the agent’s memory that stores
different types of training samples to train the model. In
automatic control area, reinforcement learning usually con-
siders all of the samples in the memory, because all possible
states need to be evaluated. However, in feature selection,
noises, outliers, or low-reward data samples can lead to
inaccurate understanding of a feature and feature-feature
correlations, and, thus, jeopardize the accuracy of feature
selection. Can we create a new sampling strategy to select
sufficient high-quality samples and avoid low-quality sam-
ples? An intuitive method is to oversample high-quality
samples by increasing their sampling probabilities. But, this
method can not guarantee the independence of samples
between different training steps, because the same high-
quality samples repeatedly appear in different steps. To
address this issue, we develop a Gaussian mixture model
(GMM) based generative rectified sampling strategy. Specif-
ically, we first train a GMM with high-quality samples. The
trained GMM is then used to generate new independent
samples from different mixture distribution components for
reinforcement learning.

We find that there exist three limitations in the GMM-
based sampling strategy: i) The Gaussian mixture model
may not be the perfect model to fit sample’s distribution; ii)
The fitting of GMM is costly; iii) Noise may pollute samples.
To address these issues, in this extended version, we
develop a softmax based sampling strategy. Specifically, we
first rank the samples by their reward, and then derive their
priority by their inverse rank. The sampling probability is
derived by the softmax of priority thereafter. In the explora-
tion strategy aspect, reinforcement learning agent explores
the environment and learns from the reward. With more
and more experience accumulated, the agent can find a

more and more promising exploration direction. This explo-
ration strategy is simple and general, which can be easily
adapted to almost every reinforcement learning problems.
However, when the state space is extremely large, its explo-
ration efficiency would be rather low. To reduce the explo-
ration space, we introduce interactive reinforcement
learning (IRL) [19], [20]. In IRL, a pre-trained naive feature
selection plays the role of ‘advisor’ to guide the reinforce-
ment learning feature selection algorithm to quickly pass its
apprenticeship period. Specifically, we first derive a feature
subset SK via a naive feature Selection algorithm. In the
apprenticeship steps, we randomly choose half of the fea-
tures in SK to add them in the selected feature subset.
Through this addition, the state representation is changed
and thus guides the reinforcement learning to a better
exploration direction. After the apprenticeship period, the
multi-agent reinforcement learning leaves SK and does fea-
ture selection independently.

In summary, in this paper, we develop an enhanced
multi-agent reinforcement learning framework for feature
subspace exploration. Specifically, our contributions are as
follows: (1) We reformulate feature selection problem with
a multi-agent reinforcement learning framework and design
a new reward scheme to guide the cooperation and compe-
tition between agents. (2) We develop three different meth-
ods: meta descriptive statistics, autoencoder based deep
representation, and dynamic graph based graph convolu-
tional network (GCN), to derive accurate state representa-
tion. (3) We develop three different strategies: GMM-based
generative rectified sampling strategy, rank-based softmax
sampling strategy and IRL-based exploration strategy to
improve the training and exploration. (4) We conduct exten-
sive experiments to demonstrate the enhanced performan-
ces of our methods.

2 RELATED WORK

Feature Selection. Feature selection can be categorized into
three types, based on how the feature selection algorithm
combines with the machine learning tasks, i.e., filter meth-
ods, wrapper methods and embedded methods [1], [21]. Fil-
ter methods rank the features merely by relevance scores
and only top-ranking features are selected. The representa-
tive filter methods are univariate feature selection [3], [4]
and correlation based feature selection [2], [5]. With very
simply computation complexity, filter methods are very fast
and thus they’re efficient on high-dimensional datasets.
However, they ignore the feature dependencies, as well as
interactions between feature selection and the subsequent
predictors. Unlike filter methods, wrapper methods take
advantage of the predictors and consider the prediction per-
formance as the objective function [22]. The representative
wrapper methods are branch and bound algorithms [8], [9].
Wrapper methods are supposed to achieve better perfor-
mance than filter methods since they search on the whole
feature subset space. However, the feature subset space
exponentially increases with the number of features, mak-
ing traversing the feature subset space a NP-hard problem.
Evolutionary algorithms [6], [7], [16] low down the compu-
tational cost but could only promise locally optimal results.
Embedded methods combine feature selection with
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predictors more closely than wrapper methods, and actu-
ally they incorporate feature selection as part of predictors.
The most widely used embedded methods are LASSO [10],
decision tree [11] and SVM-RFE [23]. Embedded methods
could have supreme performance on the incorporated pre-
dictors, but normally not very compatible with other predic-
tors. Recently, an emerging technology called reinforced
feature selection has demonstrated significant improvement
by tackling the feature selection problem with reinforce-
ment learning technology.

Multi-Agent Reinforcement Learning.Our work is related to
multi-agent reinforcement learning, where multiple agents
share a complex environment and interact with each
other [24]. In the single-agent formulation, the reinforcement
learning agent takes an action to change the environment,
and get a reward as feedback to evaluate its action, so as to
improve its next decision on action [25]. In the multi-agent
formulation, agents not only need to interact with the envi-
ronment, but also need to interact with each other. Stankovic
et al. proposed new algorithms for multi-agent distributed
iterative value function approximation where the agents are
allowed to have different behavior policies while evaluating
the response to a single target policy [26]. Liao et al. proposed
Multi-objective Optimization by Reinforcement Learning
(MORL) to solve the optimal power system dispatch and
voltage stability problem, which is undertaken on individ-
ual dimension in a high-dimensional space via a path
selected by an estimated path value which represents the
potential of finding a better solution [27]. Yang et al. devel-
oped deep reinforcement learning algorithms which could
handle large scale agents with effective communication pro-
tocol [28], [29]. Lin et al. proposed to tackle the large-scale
fleet management problem using reinforcement learning,
and proposed a contextual multi-agent reinforcement learn-
ing framework which successfully tackled the taxi fleet man-
agement problem [13]. However, these methods define their
states by handcraft rules instead of by representation learn-
ing, which may leave out important information provided
by the environment. And also, as we know the training
speed of multi-agent reinforcement learning is low due to
the large action space, but these methods rarely study how
to improve the training efficiency. Existing studies [14], [15]
create a single agent to make decisions. However, this agent

has to determine the selection or deselection of all N fea-
tures. In other words, the action space of this agent is 2N .
Such formulation is similar to the evolutionary algo-
rithms [6], [7], [16], which tend to obtain local optima.

3 PROBLEM FORMULATION

We study the problem of feature subspace exploration,
which is formulated as a multi-agent reinforcement learn-
ing task. Fig. 1 shows an overview of our proposed multi-
agent reinforcement learning based feature exploration
framework. Given a set of features to be explored, we first
create a feature agent for each feature. This feature agent
is to decide whether its associated feature is selected or
not. The selected feature subset is regarded as the environ-
ment, in which feature agents interact with each other. The
correlations between features are schemed by reward
assignment. Specifically, the components in our multi-
agent reinforcement learning framework includes agents,
state, environment, reward, reward assignment strategy,
and agent actions.

Agent. Assuming there are N features, we define N
agents for the N features. For one agent, it is designed to
make the selection decision for the corresponding feature.

Actions. For the ith feature agent, the feature action ai ¼ 1
indicates the ith feature is selected, and ai ¼ 0 indicates the
ith feature is deselected.

Environment. In our design, the environment is the feature
subspace, representing a selected feature subset.Whenever a
feature agent issue an action to select or deselect a feature,
the state of feature subspace (environment) changes.

State. The state s is to describe the selected feature subset.
To extract the representation of s, we explore three different
strategies, i.e., meta descriptive statistics, autoencoder based
deep representation and dynamic graph based graph con-
volutional network (GCN). We will elaborate these three
state representation techniques in Section 4.3.

Reward.We design a measurement to quantify the overall
reward R generated by the selected feature subset, which is
defined the weighted sum of (i) predictive accuracy of the
selected feature subset Acc, (ii) redundancy of the selected
feature subset Rv, and (iii) relevance of the selected feature
subset Rd.

Fig. 1. From traditional feature selection to multi-agent reinforcement learning based feature subspace exploration. In the reinforcement learning
based feature selection, the interpreter represents the selected feature subset into a state vector by representation learning methods and obtains
the overall reward by evaluate the feature subset via downstream machine learning tasks.
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Reward Assignment Strategy. We develop a strategy to
allocate the overall reward to each feature agent. The assign-
ment of the overall reward to each agent, indeed, shows the
coordination and competition relationship among agents. In
principle, we should recognize and reward all of the partici-
pated feature agents. Fig. 2 shows an example of reward
assignment. There are four features with four correspond-
ing feature agents. In the previous iteration, the feature 1, 2,
3 are selected, and the feature 4 is not selected. In the cur-
rent iteration, feature agent 1 and feature agent 2 issue
actions to select feature 1 and feature 2; feature agent 3
issues an action to deselect feature 3; feature agent 4 does
not participate and issue any action to change the status of
feature 4. In summary, there are only three feature agents
(FA1, FA2, FA3) that participate and issue actions. There-
fore, the current reward R is equally shared by these three
agents.

4 MULTI-AGENT REINFORCEMENT LEARNING
FEATURE SELECTION

In this section, we propose a multi-agent reinforcement
learning framework for automated feature subspace explo-
ration. Later, we discuss how to measure the reward, how
to improve the state representation and how to accelerate
the proposed framework.

4.1 Framework Overview

Fig. 3 shows our proposed framework consists of many fea-
ture subspace exploration steps. Each exploration step
includes two stages, i.e., control stage and training stage.

In the control stage, each feature agent takes actions
based on their policy networks, which take current state as
input and output recommended actions and next state. The
select/deselect actions of each feature agent will change the
size and contents of the selected feature subset, and thus,
lead to a new selected feature subspace. We regard the
selected feature subset as environment. The state represents
the statistical characteristics of the selected feature sub-
space. We derive a comprehensive representations of the
state through three different methods, i.e., descriptive statis-
tics, autoencoder and GCN (refer to Section 4.3). Mean-
while, the actions taken by feature agents generate an
overall reward. This reward will then be assigned to each of
the participating agents.

In the training stage, agents train their policy via experi-
ence replay independently. For agent i, at time t, a newly-
created tuple {sti, a

t
i, r

t
i, s

tþ1
i }, including the state (sti), the

action (ati), the reward (rti) and the next state (stþ1i ), is stored
into each agent’s memory. The agent i uses its correspond-
ing mini-batch samples to train its Deep Q-Network (DQN),
in order to obtain the maximum long-term reward based on
the Bellman Equation [25]

Qðsti; atijutÞ ¼ rti þ g max Qðstþ1i ; atþ1i jutþ1Þ; (1)

where u is the parameter set of Q network, and g is the dis-
count factor.

The exploration of feature subspace continues until con-
vergence or meeting several predefined criteria.

4.2 Measuring Reward

We propose to combine the predictive accuracy Acc, the fea-
ture subspace relevance Rv, and the feature subspace
redundancy Rd as the reward R of actions.

Predictive Accuracy. Our goal is to explore and identify a
satisfactory feature subset, which will be used to train a pre-
dictive model in a downstream task, such as classification
and outlier detection. We propose to use the accuracy Acc

Fig. 2. The demonstration of reward assignment process. The feature
agent 1 and 2 issue an action to select the feature 1 and feature 2. The
feature agent 3 issues an action to deselect the feature 3.

Fig. 3. Framework. The framework consists of two stages. In the control stage, feature agents select or drop their corresponding features based on
policies. In the training stage, the policies are trained via samples from memories.
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of the predictive model to quantify the reward. Specifically,
if the predictive accuracy is high, the actions that produce
the selected feature subset should receive a high reward; if
the predictive accuracy is low, the actions that produce the
selected feature subset should receive low rewards.

Feature Subspace Characteristics. Aside from exploiting the
predictive accuracy as reward, we propose to take into
account the characteristics of the selected feature subset.
Specifically, a qualified feature subset is usually of low
information redundancy and of high information relevance
to the predictive labels (responses). Both the information
relevance and redundancy can be quantified by the mutual
information, denoted by I. Formally, I by:

IIðxx; yyÞ ¼
X
i;j

pðxi; yjÞlog
 

pðxi; yjÞ
pðxiÞpðyjÞ

!
; (2)

where xi, yi is the ith and jth feature, pðxx; yyÞ is the joint dis-
tribution of xx and yy, while pðxxÞ and pðyyÞ are marginal distri-
bution of xx and yy.

� The information redundancy of a feature subset,
denoted by Rd, can be quantified by the sum of pair-
wise mutual information among features. Formally,
Rd is given by:

Rd ¼ 1

jSSj2
X

xxii;xxjj2SS
IIðxxii;xxjjÞ; (3)

where SS is the feature subset, xxii is the ith feature,
� The information relevance of a feature subset, denoted

by Rv, can be quantified by the mutual information
between features and labels. Formally,Rv is given by:

Rv ¼ 1

jSSj
X
xxii2SS

Iðxxii; ccÞ; (4)

where cc is the label vector.

4.3 Improving State Representation

Assuming there is a M �N dataset DD, which includes M
data samples and N features. Let nj be the number of
selected features at the jth exploration step. Then, M � nj is
the dimension of the selected data matrix SS, which varies
over exploration steps. However, the policy network and
target network in DQN require the state representation vec-
tor ss to be a fixed-length vector all the time. We thus, need
to derive a fixed-length state vector ss from the selected data
matrix SS, whose dimensions change over time.

To derive accurate state representation with fixed length,
we develop three different methods, including (i) meta
descriptive statistics of feature subspace; (ii) static subspace
graphs based autoencoder; (iii) dynamic feature-feature
similarity graphs based graph convolutional network
(GCN). The commonness between these three methods is
that they all first learn representations for each feature, and
then aggregate them to get a state representation. The differ-
ences between them lie on the representation learning algo-
rithms and aggregation strategies.

Method 1: Meta Descriptive Statistics of Feature Subspace.
Fig. 4 shows how we extract the meta data of descriptive
statistics from the selected data matrix through a two-step
procedure.

Step 1. We extract descriptive statistics of the selected
data matrix SS, including the standard deviation, minimum,
maximum and Q1 (the first quartile), Q2 (the second quar-
tile), and Q3 (the third quartile). Specifically, we extract the
seven descriptive statistics of each feature (column) in SS,
and thus, obtain a descriptive statistics matrix DD with size of
7 � nj.

Step 2: We extract the seven descriptive statistics of each
row in the descriptive statistics matrix DD, and obtain a meta
descriptive statistics matrixD0D0 with a size of 77 � 7.

Finally, we link each column D0D0 together into the state
vector sswith a fixed length of 49.

Method 2: Autoencoder Based Deep Representation of Feature
Subspace. Autoencoder has been widely used for representa-
tion learning by minimizing the reconstruction loss between
an original input and a reconstructed output [30]. An
autoencoder contains an encoder that maps the input into a
latent representation, and an decoder that reconstructs the
original input based on the latent representation.

Fig. 5 shows how we extract the state vector from the
selected data matrix through a two-step algorithm.

Step 1: Assuming at the jth exploration step, SS is the
selected data matrix, and nj is the number of selected fea-
tures. For each feature (column) in SS, we apply an autoen-
coder to convert each feature column into a k-length latent
vector, and thus, obtain a latent matrix LL with a dimension
of k � nj. However, LL cannot represent the state, because the
size of LL is not static and still varies over number of selected
features nj at the jth exploration step.

Step 2: We apply another auto-encoder to map each row
of LL into a o-length latent vector, and obtain a static encoded
matrix L0L0 with a fixed dimension of k � o.

Finally, we link each column in L0L0 together into the state
vector sswith a fixed length of k � o.

Fig. 4. Meta descriptive statistics. We extract descriptive statistics twice
from the feature subspace to obtain a fixed-length state vector.

Fig. 5. Autoencoder based deep representations. We use two auto-
encoders to map the feature subspace into a fixed-length state vector.
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Method 3: Dynamic-Graph Based Graph Convolutional Net-
work (GCN). Method 1 and method 2 extract explicit and
latent representations of each feature. In this method, we
consider not just a feature’s individual representations, but
also the correlations among features. Fig. 6 shows how the
GCN works. To better capture the relationship among fea-
tures, we first convert the selected data matrix SS into a
dynamic complete graph G, where a node is a feature col-
umn in SS. With the feature correlation graph G, any graph
node embedding techniques could be used for node latent
representation by exploiting the correlation among features.
As the focus of this paper is not to design more sophisti-
cated node embedding models, we choose GCN as it is a
state-of-the-art graph embedding models and shows com-
peting effectiveness in many graph based tasks.

Let SS be the selected data matrix with a dimension ofM �
N , ZZ be the representation matrix of nodes (features) with a
dimension of k �N , k is the length of updated representa-
tion. The neural network layer in GCN is given by:

HHðlþ1Þ ¼ fðHHðlÞ; AAÞ; (5)

where HHð0Þ ¼ SS, HHðLÞ ¼ ZZ, L is the layer number, AA is the
adjacency matrix of graph G. The regular GCN can be
reduced into a simplified version by considering the node’s
own representation (rather than merely the neighbor struc-
tures) and performing symmetric normalization [31]

fðHHðlÞ; AAÞ ¼ sðD̂̂D�
1
2ÂD̂̂D

�12HHðlÞWW ðlÞÞ; (6)

where Â̂A ¼ AAþ II with I being an identity matrix, D̂̂D is the
diagonal node degree matrix of Â̂A.

By solving GCN, we obtain the latent representations ZZ
of each feature. We average the representation of each fea-
ture into the k-length state representation vector.

4.4 Improving Experience Replay via Generative
Rectified Sampling

Experience replay is widely used to improve training effi-
ciency of neural networks in reinforcement learning [17],
[18]. After taking each action, the latest sample, in the form
of a tuple that consists of the action (a), the reward (r), the
state (s) and the next state (s0), are stored into the memory
to replace the oldest sample. In training step, a mini-batch
of samples are picked to update the policy network. The
vanilla experience replay treats the samples equal, thus it
uniformly samples the data from its memory.

In the task of feature subspace exploration, we are particu-
larly interested in exploiting high-quality samples to

accelerate the exploration speed. Prior studies tackle this
problem by increasing the sampling probabilities of high-
quality samples [32], [33]. However, such strategy creates a
new problem: the sampler repeatedly selects a limited num-
ber of high-quality samples. Consequently, prior studies can
not guarantee the independence of selected samples between
different training steps, and can not cover a comprehensive
space in the unknown high-quality sample population.

To deal with this problem, we propose a Gaussian mix-
turemodel (GMM) based generative rectified sampling algo-
rithm. For each agent, as Algorithm 1 shows, we take a set of
memory samples TT ¼ f< a; r; s; s0 > g as inputs. We first
cluster the memory samples into two groups: TT 00 and TT 11.
Samples with the selected action (a ¼ 0) are assigned to
group TT 00, while samples with the deselected action (a ¼ 1)
are assigned to group TT 11. Later, we rank the memory sam-
ples in TT in terms of reward (r) and select the top p propor-
tion of high-reward samples in each group as high-quality
samples. The selected high-quality samples are then used to
train two GMM based generative models for their corre-
sponding groups via an Expectation Maximization (EM)
algorithm [34]. After that, for each group, we use its corre-
sponding well-trained GMM model to generate simulated
samples to replace the 1� p proportion of low-reward sam-
ples in the corresponding group. In this way, we create two
high-reward, large-size, yet independent memory sample
sets for the select-action and deselect-action groups.We com-
bine the two simulatedmemory sample sets into a new high-
quality dataset. The agent will take a mini-batch of samples
from the new high-quality dataset for accelerating training.

Algorithm 1. The GMM-Based Generative Rectified
Sampling Algorithm

Input:Memory dataset TT .
Output: Amini-batch of samples BB.
1: p high-quality sample proportion of TT .
2: Stratify TT into two groups. Samples with a ¼ 0 are assigned

to group TT 00 and samples with a ¼ 1 are assigned to group
TT 11.

3: for i ¼ 0 to 1 do
4: Ni sample number of TT ii.
5: Ki component number of GMMmodel Gi.
6: Rank samples in TTii by their reward r, then select top Ni �

p samples from TT ii to form the high-quality datasetHHii.
7: Use HHii to train the GMM Gi ¼PKi

1 fiNðmi;SiÞ via EM
algorithm.

8: Generate Ni � ð1� pÞ samples from GGi to form the gener-
ated dataset GGii.

9: Join HHii and GGii to create high-quality dataset of action i,
T 0iT
0
i .

10: end
11: Join T 00T

0
0 and T 01T

0
1 to get high-quality dataset T 0T 0.

12: Sample a mini-batch of samples BB from T 0T 0.

5 EXTENSION: ACCELERATING FEATURE
SUBSPACE EXPLORATION

In the previous version,we initially explores how to accelerate
the feature subspace exploration process via improving sam-
pling strategy, which accelerates the exploration indirectly by

Fig. 6. Dynamic-graph based GCN. We denote the feature subspace by
a dynamic graph and use GCN to update representations of each node.
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improving the training of exploration strategy. (Section 4.4). In
the extended version,we further dive into improving the sam-
pling strategy, and also, we study how to accelerate the explo-
ration process via improving exploration strategy directly.

5.1 Accelerating Feature Subspace Exploration via
Rank-Based Softmax Sampling

The GMM-based generative rectified sampling strategy can
make full use of the samples in experience replay, thus
accelerate the training process of reinforcement learning
policy. However, it naturally has three potential drawbacks:
1) It is based on an assumption that the sample are gener-
ated by a Gaussian Mixture Model, while their actual distri-
bution could be different; 2) The fitting of GMM model is
computationally expensive. To make things worse, it needs
to fit the GMM model every time it samples; 3) There could
exist noise in the samples, which affects the fitting accuracy
of GMM model. Here we have one question: can we pro-
pose a more simple sampling strategy yet effective than the
sampling strategy in Section 4.4, which could have lower
computational burden and higher robustness?

To tackle these problems, we introduce a rank-based soft-
max sampling strategy. In this sampling strategy, we mea-
sure the importance of each samples by their ranks in the
experience replay memory. The sampling probability for
each sample is then designed based on their ranks

P ðiÞ ¼ expðpiÞPNE
n¼1 expðpnÞ

; (7)

where NE is the size of experience replay memory, pi is the
priority of ith sample, and we make pi ¼ 1

rankðiÞ , where
rankðiÞ is the rank of sample i based on its reward. The soft-
max operation promises the sum of all probabilities equals
1. Since rankðiÞ is a relative value, it has high tolerance of
noise and could be very robust. There is no assumption of
GMM distribution, thus there is no need of fitting, making
the computational burden very low. Specifically, as Algo-
rithm 2 shows, we first derive the rank for each sample, and
then obtain their sampling probabilities by Equation (7).
The agent will take a mini-batch of samples based on the
rank-based sampling probabilities. Compared with the
GMM-based generative rectified sampling strategy, it is effi-
cient due to the low computational burden, and effective
due to the robustness on noise.

5.2 Accelerating Feature Subspace Exploration via
Interactive Reinforcement Learning

In the classic reinforcement learning framework, the agent
repeatedly explores the state space and gets reward, after
which it gets more and more experience and behaves bet-
ter and better. This exploration strategy is general and
universal, meaning that it can be applied to any formu-
lated reinforcement learning problems. However, in our
case, the state space is extremely large, and if we simply
adapt the conventional exploration strategy, the explora-
tion efficiency would be rather low. Here we have one
question: Can we propose a more advanced exploration
strategy, which could explore along a more promising
direction, so that the feature space exploration process
would be accelerated?

Algorithm 2. The Softmax Sampling Algorithm

Input:Memory dataset TT .
Output: Amini-batch of samples BB.

1: NE  size of experience replay memory TT .
2: Rank samples in TT by their reward, and let pi ¼ 1

rankðiÞ be
their priority.

3: Derive the sampling probability for each data sample by
Equation (7).

4: Sample a mini-batch of samples BB from TT .

The proposed multi-agent reinforcement learning frame-
work improves itself step by step, and it has a apprentice-
ship period in the beginning when its performance is very
bad. To reduce its exploration space, we introduce interac-
tive reinforcement learning (IRL) [19], [20]. In IRL, a naive
feature selection method, i.e., K-Best Selection [3], works as
the ‘advisor’ to guide reinforcement learning to explore
along a relatively good direction. After pre-defined steps,
the reinforcement learning abandons the advisor and
explore the state space independently.

Specifically, as Algorithm 3 shows, we first derive a fea-
ture subset SK via K-Best Selection. In the apprenticeship
steps, we randomly choose half of the features in SK to add
them in the selected feature subset. Through this addition,
the state representation is changed and thus guides the rein-
forcement learning to a better exploration direction. The
reason we don’t use all of the features in SK every step is to
avoid over-fitting, and to keep the feature selection process
different from the K-Best Selection. After the apprenticeship
period, the multi-agent reinforcement learning would do
feature selection independently.

Algorithm 3. The Interactive Reinforcement Learning
Enhanced Exploration Strategy

Input: Feature number K, apprenticeship step NA, overall
step NO, feature set S.

Output: Optimal feature subset S0.
1: Derive a feature subset SK via K-Best Selection.
2: Randomly initialize selected feature subset S00.
3: for i ¼ 1 to NA do
4: Derive a selected feature subset S0i by multi-agent rein-

forcement learning feature selection proposed in Sec-
tion 4. (Note: This step relies on the selected feature subset
S0i�1 from the last step, as S0i�1 decides the state representation.)

5: Randomly choose K=2 features from SK , denoted as
SK=2
i .

6: Let S0i =S0i + SK=2
i .

7: end
8: for i ¼ NA þ 1 to NO do
9: Derive a selected feature subset S0i by multi-agent rein-

forcement learning feature selection proposed in Section 4.
10: end

6 EXPERIMENTAL RESULTS

We evaluate the proposed methods in feature selection with
real-world datasets. We also design more experiments to
study the newly proposed softmax sampling strategy and
IRL-based exploration strategy.
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6.1 Data Description

The experiments are conducted on two publicly available
datasets as follows:

Dataset 1. This dataset is a cartographic dataset from
Kaggle.1 There are 15120 samples with 54 features that
describe the characteristics of different wilderness areas.
The class labels are categorical values that range from 1 to 7,
and represent seven forest cover types (the predominant
kind of tree cover) in the areas. Among the 54 features, 10 of
them are continuous, and the remaining 44 are categorical.
The downstream task is to predict the cover type of wilder-
ness area.

Dataset 2. This dataset is a place localization dataset from
UCI2 [35]. There are 34465 samples with 119 features that
describe the characteristics of different places. The class
label are categorical values that range from 1 to 2, and repre-
sent two geographical spots. Among the 119 features, 89 of
them are continuous, and the remaining 30 are categorical.
The downstream task is to predict the geographical spot
with spot descriptions.

6.2 Evaluation Metrics

To show the effectiveness of the proposed method, we use
the following metrics for evaluation.

Overall Accuracy is the ratio of number of correct predic-
tions to number of all predictions. Formally, the overall
accuracy is given by TPþTN

TPþTNþFPþFN , where TP , TN , FP , FN
are true positive, true negative, false positive and false nega-
tive for all classes. We use this metric to measure the accu-
racy of a classifier on test dataset. The latter three metrics
measure classification performance of each label from dif-
ferent aspects.

Precision is given by TPk
TPkþFPk which represents the ratio of

true positive to true positive plus false positive with respect
to the kth (k 2 ½1; 7� for Dataset 1 and k 2 ½1; 2� for Dataset 2)
label.

Recall is given by TPk
TPkþFNk

which represents the ratio of
true positive to true positive plus false negative with respect
to the kth (k 2 ½1; 7� for Dataset 1 and k 2 ½1; 2� for Dataset 2)
label.

F-measure considers both precision and recall in a single
metric by taking their harmonic mean. Formally, F-measure
is given by 2 � P �R=ðP þRÞ, where P and R are precision
and recall respectively.

6.3 Baseline Algorithms

We compare performance of our proposed Multi-Agent
Reinforcement Learning Feature Selection (MARLFS)
against the following six baseline algorithms, where K-Best
Selection and mRMR belong to filter methods; LASSO and
Recursive Feature Elimination (RFE) belong to embedded
methods; Genetic Feature Selection (GFS) and Single-Agent
Reinforcement Learning Feature Selection (SARLFS) belong
to wrapper methods.

(1) K-Best Selection. The K-Best Selection [3] first ranks
features by their x2 scores with the target vector
(label vector), and then selects the K highest scoring

features. In the experiments, we makeK equal to the
number of selected features in MARLFS.

(2) mRMR. The mRMR [36] first ranks features by mini-
mizing feature’s redundancy, while maximizing
their relevance with the target vector (label vector),
and then selects the K highest ranking features. In
the experiments, we make K equal to the number of
selected features in MARLFS.

(3) LASSO. LASSO [10] conducts feature selection and
feature space shrinkage via l1 penalty, which drops
the feature variables whose coefficients are 0. The
hyper parameter in LASSO is its regularization
weight �, which is set to 1.0 in the experiments.

(4) Recursive Feature Elimination (RFE). RFE [37] selects
features by recursively selecting smaller and smaller
feature subsets. First, the predictor is trained by all
features and the importance of each feature are
scored by the predictor. After that, the least impor-
tant features are deselected. This procedure process
recursively until the desired number of features are
selected. In the experiments, we set the selected fea-
ture number half of the feature space.

(5) Genetic Feature Selection (GFS). Genetic Feature Selec-
tion [38] selects features by first calculating the fit-
ness level for each feature and then generates better
feature subsets via crossover and mutation. In the
experiments, we set crossover probability to 0.5,
mutation probability to 0.2, crossover independent
probability to 0.5 and mutation independent proba-
bility to 0.05.

(6) Single-Agent Reinforcement Learning Feature Selection
(SARLFS). In SARLFS [15], the agent learns a KWIK
(KnowsWhat It Knows) model, which is represented
by a dynamic Bayesian network, deduces a minimal
feature set from this network, and computes a policy
on this feature subset using dynamic programming
methods. In the experiments, the two accuracy
thresholds in the KWIK are set to � ¼ 0:15, d ¼ 0:10.

6.4 Overall Performance

We compare our method MARLFS with baseline methods
in terms of overall accuracy as well as precision, recall and
F-measure of the seven classes on the real-world data. In the
experiments, for all deep networks, we set mini-batch size
to 32 and use AdamOptimizer with a learning rate of 0.01.
For all experience replays, we set memory size to 200. We
set the Q network in our methods as a two-layer ReLU with
64 and 8 nodes in the first and second layer. The high-qual-
ity proportion in GMM sampling is 0.20 for Dataset 1 and
0.30 for Dataset 2. Unless specified, we use GCN method as
the representation learning algorithm in the experiments,
whose network is a two-layer ReLU with 128 and 32 nodes
in the first and second layer. The predictor we use is a ran-
dom forest with 100 decision trees. Figs. 7 and 8 show that
our method exceeds all of the baseline methods in the task
of exploring a qualified feature subset.

6.5 Robustness Check

The predictive accuracy relies on not just feature selection,
but also predictors. We apply our method to different

1. https://www.kaggle.com/c/forest-cover-type-prediction/data
2. https://archive.ics.uci.edu/ml/datasets/Nomao
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predictors in order to investigate whether our explored fea-
ture subset are consistently stable and can consistently out-
perform other baseline methods on various predictors. In
this way, we can examine the robustness of our methods.
Aside from the random forest (RF) predictor, we use (i)
LASSO; (ii) Decision Tree (DT); (iii) SVM with a rbf kernel,
and (iv) XGBoost as predictors for this experiment. Tables 1
and 2 show that our MARLFS outperforms the baselines
methods over almost all of the predictors. However, when
we use LASSO to perform both feature selection and target
prediction, the accuracy of our method is slightly lower
than LASSO. This might be explained by the reason that
both feature section and prediction optimization are inte-
grated and unified in a single model framework. However,
when we use LASSO to perform feature selection, and use
other classification models for prediction, our method out-
perform such type of baselines.

6.6 Study of Reward Function

We study the design of the reward function in our frame-
work. Specifically, we consider four cases: (i) Acc that only
considers accuracy in the reward function; (ii) Rv that only
considers relevance in the reward function; (iii) Rd that only

considers redundancy in the reward function; (iv) Acc+Rv
+Rd that considers accuracy, relevance and redundancy in
the reward function.

Figs. 9 and 10 show that Acc is the second best reward
function, since it leads the exploration to the direction of
improving accuracy. Rv and Rd are less satisfactory. This is
because both are unsupervised indicators of rewards and
are not directly relevant to prediction accuracy. Acc+Rv+Rd
achieve the best performances since it considers both super-
vised indicator and unsupervised indicator into account.
Specifically, Fig. 9a shows the comparisons of overall accu-
racy over exploration steps. Figs. 9b, 9c and 9d show the
comparisons of precision, recall and F-measure over differ-
ent classes with 3000 exploration steps.

6.7 Study of State Representation Learning

We compare the performances different representation
learning methods. We consider five cases, i.e., (i) MDS:
meta descriptive statistics, which uses the meta data of
descriptive statistics of feature subspace to represent the
state; (ii) AE: auto-encoder based deep representation,
which uses deep auto-encoder to encode feature subspace
twice to obtain state representation; (iii) GCN: uses

Fig. 7. Performance comparison of different feature selection algorithms on Dataset 1.

Fig. 8. Performance comparison of different feature selection algorithms on Dataset 2.

TABLE 1
Overall Accuracy of Feature Selection Algorithms on Dataset 1

Dataset 1 Predictors

RF LASSO DT SVM XGBoost

Algorithms K-Best 0.7943 0.8246 0.8125 0.8324 0.8076
mRMR 0.8042 0.8124 0.8096 0.8175 0.8239
LASSO 0.8426 0.8513 0.8241 0.8131 0.8434
RFE 0.8213 0.8236 0.8453 0.8257 0.8348
GFS 0.8423 0.8318 0.8350 0.8346 0.8302
SARLFS 0.8321 0.8295 0.8401 0.8427 0.8450
MARLFS 0.8690 0.8424 0.8583 0.8542 0.8731

TABLE 2
Overall Accuracy of Feature Selection Algorithms on Dataset 2

Dataset 2 Predictors

RF LASSO DT SVM XGBoost

Algorithms K-Best 0.9032 0.9213 0.9093 0.9180 0.9248
mRMR 0.9238 0.9102 0.9199 0.9127 0.9041
LASSO 0.9304 0.9554 0.9246 0.9301 0.9191
RFE 0.9329 0.9024 0.9138 0.9241 0.9333
GFS 0.9452 0.9239 0.9346 0.9404 0.9349
SARLFS 0.9352 0.9292 0.9201 0.9302 0.9402
MARLFS 0.9560 0.9532 0.9592 0.9559 0.9603
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Dynamic-Graph Based GCN; (iv) MDS+AE: combines the
variables of (i) and (ii) to represent the state; (v) MDS+AE
+GCN: combines the variables of (i), (ii), and (iii) to repre-
sent the state.

Figs. 11 and 12 show GCN outperforms MDS and AE.
This is because GCN could better capture the relationship
between features in the feature subspace. After taking the
two combined methods into account, MDS+AE achieves the
best performance, since it considers both explicit and implicit
information from the selected features. An interesting obser-
vation is that MDS+AE+GCN doesn’t have better perfor-
mance than MDS+AE+GCN. This might be explained by the
fact that there is potential training loss in the training phrase
of AE and GCN. In other words, integrating AE and GCN
might possibly introduce more model biases. Specifically,
Figs. 11a and 12a show the comparisons of overall accuracy
over exploration steps. Figs. 11b and 12b, 11c and 12c, 11d
and 12d show the comparisons of precision, recall and F-
measure over different classes with 3000 exploration steps.

6.8 Study of GMM-Based Generative Rectified
Sampling

We study the impacts of GMM-based generative rectified
sampling, where the high-quality proportion p 2 ½0:1; 0:2;
0:3; 0:4; 1� respectively. Here, when p ¼ 1, our GMM-based

method reduces to the traditional sampling strategy, where
samples are considered as high-quality. We call the method
with p ¼ 1 as the non-GMMmethod.

Figs. 13 and 14 show all GMM-based sampling methods
(p < 1:0) outperform the non-GMM method (p ¼ 1:0). For
Dataset 1, p ¼ 0:2 shows the best performances and can
quickly explore a quality feature space, while For Dataset 2,
p ¼ 0:3 shows the best performances and can quickly
explore a quality feature space. Specifically, Figs. 13a and
14a show the comparisons of overall accuracy over explora-
tion steps. Figs. 13b and 14b, 13c and 14c, 13d and 14d show
the comparisons of precision, recall and F-measure over dif-
ferent classes with 3000 exploration steps.

6.9 Study of Softmax Sampling

We study the impacts of softmax sampling and compare it
with vanilla experience replay (uniformly sampling) and
GMM-based sampling. We use meta descriptive statistics as
the state representation method, and we use MARLFS as
feature selection method. We run each setting 5 times to
compare their averaged execution time per step. The explo-
ration step is set to 3000. Our experiments were conducted
on a machine with the following specification:

� Processor: 64-bit Intel I9-9920X @ 4.40 GHz with 12
core(s)

Fig. 9. Performance comparison of different reward functions on Dataset 1.

Fig. 10. Performance comparison of different reward functions on Dataset 2.

Fig. 11. Performance comparison of different representation learning methods on Dataset 1.
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� Memory: 128GiB DIMM DDR4 2666MHz
� SSD: 2 TB PCIe NVMe - M.2
Tables 3 and 4 show that the GMM-based sampling

method achieves the best accuracy, and the softmax sam-
pling method has a parellel accuracy with GMM-based sam-
pling, which are both higher than the uniform sampling.
Tables 5 and 6 show that the softmax sampling method
costs a bit more time than uniform sampling, and both of
them require less execution time than the GMM-based sam-
pling method.

6.10 Study of Interactive Reinforcement Learning

We study the impacts of IRL, where its apprenticeship steps
NA 2 ½0; 0:1; 0:2; 0:3; 0:4; 1� � 3000 respectively. We set K ¼
38 for K-Best Selection on Dataset1 and K ¼ 82 for K-Best

Selection on Dataset2. Here, when NA ¼ 0, the IRL strategy
will be reduced into the traditional exploration strategy,
and when NA ¼ 3000, the IRL spends all its exploration

Fig. 12. Performance comparison of different representation learning methods on Dataset 2.

Fig. 13. Performance comparison of different GMM sampling strategies on Dataset 1.

Fig. 14. Performance comparison of different GMM sampling strategies on Dataset 2.

TABLE 3
Overall Accuracy Comparison of Sampling Strategies on

Dataset 1

Dataset 1 Predictors

RF LASSO DT SVM XGBoost

Sampling Uniform 0.8585 0.8381 0.8392 0.8406 0.8627
GMM 0.8690 0.8424 0.8583 0.8542 0.8731
Softmax 0.8633 0.8400 0.8583 0.8496 0.8659

TABLE 4
Overall Accuracy Comparison of Sampling Strategies on

Dataset 2

Dataset 2 Predictors

RF LASSO DT SVM XGBoost

Sampling Uniform 0.9202 0.9330 0.9347 0.9287 0.9391
GMM 0.9560 0.9532 0.9592 0.9559 0.9603
Softmax 0.9423 0.9492 0.9533 0.9440 0.9586

TABLE 5
Execution Time Comparison of Sampling Strategies on

Dataset 1

Dataset 1 Predictors

RF LASSO DT SVM XGBoost

Sampling Uniform 1.04 s 0.46 s 0.50 s 17.34 s 4.97 s
GMM 1.44 s 0.93 s 0.94 s 17.86 s 5.42 s
Softmax 1.06 s 0.51 s 0.63 s 17.46 s 5.05 s
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steps being advised by K-Best Selection method. Fig. 15
shows that all IRL sampling methods (p ¼ 0:0) outperform
the non-GMM method (p > 0:0). For both Dataset 1 and
Dataset 2, p ¼ 0:2 shows the best performances and can
quickly explore a quality feature space.

7 CONCLUSION REMARKS

In this paper, we study the problem of automated feature
subspace exploration. Through this method, we can reduce
dimensionality, shorten training times, enhance generaliza-
tion, avoid overfitting, and improve predictive accuracy in
order to support downstream predictive tasks.We formulate
the problem of automated feature subspace exploration as a
multi-agent reinforcement learning framework, in which
each feature is associated to a feature agent, a feature agent
can decide to select or drop a feature, the reward function is
a combination of accuracy, redundancy, and relevance, and
the environment is the characteristics of the selected feature
subspace. To better represent the environment, we propose
three different representation learning methods. To acceler-
ating feature exploration, we develop a GMM-based genera-
tive rectified sampling strategy a softmax sampling strategy
and an IRL-based exploration strategy. Finally, we present
extensive experiments on two real world datasets to demon-
strate the effectiveness of the proposed method. The pro-
posed feature selection method can be widely used in the
data mining andmachine learning areas, and it is more help-
ful when users are not experts in feature selection but need
this technology in their work and research.
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