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Abstract— Sentence semantic matching requires an agent to
determine the semantic relation between two sentences, which is
widely used in various natural language tasks, such as natural
language inference (NLI) and paraphrase identification (PI).
Much recent progress has been made in this area, especially
attention-based methods and pretrained language model-based
methods. However, most of these methods focus on all the
important parts in sentences in a static way and only emphasize
how important the words are to the query, inhibiting the ability of
the attention mechanism. In order to overcome this problem and
boost the performance of the attention mechanism, we propose
a novel dynamic reread (DRr) attention, which can pay close
attention to one small region of sentences at each step and reread
the important parts for better sentence representations. Based
on this attention variation, we develop a novel DRr network
(DRr-Net) for sentence semantic matching. Moreover, selecting
one small region in DRr attention seems insufficient for sentence
semantics, and employing pretrained language models as input
encoders will introduce incomplete and fragile representation
problems. To this end, we extend DRr-Net to locally aware
dynamic reread attention net (LadRa-Net), in which local struc-
ture of sentences is employed to alleviate the shortcoming of
byte-pair encoding (BPE) in pretrained language models and
boost the performance of DRr attention. Extensive experiments
on two popular sentence semantic matching tasks demonstrate
that DRr-Net can significantly improve the performance of
sentence semantic matching. Meanwhile, LadRa-Net is able to
achieve better performance by considering the local structures
of sentences. In addition, it is exceedingly interesting that some
discoveries in our experiments are consistent with some findings
of psychological research.
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I. INTRODUCTION

SENTENCE semantic matching is a fundamental technol-
ogy in natural language processing (NLP), which requires

an agent to predict the semantic relation between two sen-
tences. For example, in natural language inference (NLI),
sentence semantic matching is leveraged to determine whether
a hypothesis sentence can be inferred reasonably from a given
premise sentence [1]. In paraphrase identification (PI), it is uti-
lized to identify whether two sentences have identical meaning
or not [2]. Fig. 1 illustrates two representative examples about
NLI and PI, respectively.

As a fundamental yet challenging task, sentence seman-
tic matching has been applied in many fields, e.g., infor-
mation retrieval [3], question answering [4], [5], and dia-
logue system [6]. With the large annotated datasets, such
as Stanford NLI (SNLI) [7], SciTail [8], Quora [9], and
Microsoft Research Paraphrase Corpus (MSRP) [2], and
advancement of representation learning techniques, such as
convolutional neural network (CNN) [10], long short-term
memory (LSTM) [11], gated recurrent unit (GRU) [12], and
attention mechanism [13], [14], rapid development on sentence
semantic matching has been enabled. Early work often focuses
on designing different structures for matching modeling [1],
[14], [15]. Recently, pretrained language models (bidirectional
encoder representations from transformer (BERT) [16] and
generative pre-trained transformer (GPT) [17]) have become
the new scheme for language understanding. Researchers
employ these pretrained methods to process the input sen-
tences and design task-aware network structures for the final
tasks, which have achieved much progress in many NLP tasks.

However, there are still some limitations in most existing
methods. First, most of them adopt an attention mechanism
to select all the important parts of sentences in a static way,
restricting the ability of the attention mechanism. Inspired by
the idea that pretrained methods leverage dynamic embed-
ding methods to replace the static embedding methods (e.g.,
Word2Vec [18] and Glove [19]), we intend to make full use
of the attention mechanism dynamically, which is one of our
main contributions. In this direction, human reading behaviors
can bring us plenty of inspiration. “When reading a piece
of text, people will constantly change their focal point for
in-depth understanding based on what they already know.”
Taking case one in Fig. 1 as an example, when classifying the
inference relation between a and b1, we first try to understand
the global meaning of the sentence in a sequential manner
(i.e., reading it word by word) and grasp information as much
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Fig. 1. Examples for SNLI and Quora datasets.

as possible, such as the object: new couple and new book,
the place: bookstore and New York, and the time: Chinese new
year. After reading b1, we will pay more attention to the object
and the place. When confirming that the place is the same,
we will turn to identify whether the couple comes from China.
Finally, we can conclude that the relation is Neutral. Mean-
while, psychological research has also shown that there are
plenty of reading behaviors of humans for efficient language
understanding and communication. For example, humans only
pay attention to a small region of information at one time,
i.e., people only focus on 1.5 words each time when intensively
reading a piece of text [20]. Koch and Tsuchiya [21] have
demonstrated that people focused on less than seven different
objects at the same time. Therefore, how to capture these
important parts in a dynamic way and make full use of them
for in-depth semantic understanding is one of the challenges
that we should focus on.

Another easily overlooked limitation is the usage of byte-
pair encoding (BPE) or its variations in BERT-based methods.
Though this encoding method is capable of avoiding out-of-
vocab (OOV) problems, it splits a word into subword units,
which suffers from two problems: incomplete modeling and
fragile representation [22]. Therefore, we try to leverage local
structures of input sentences to alleviate these problems and
further improve the ability of our proposed dynamic attention
mechanism. For this direction, we can also learn from human
reading behaviors. As shown in Fig. 1, when predicting the
inference relation between a and b2, we will focus on the
couple and try to figure out how long they have been married.
Traditional methods may be confused by the four “new”s in a.
When taking the local structure into consideration, we obtain
that the first “new” is the attribute of the couple, indicating that
they are newly married. Thus, the inference relation between
a and b2 is “Entailment.” Biological researchers have also
observed that people will focus on what they care about
most and leverage peripheral vision [23], [24] to get the local
structure for understanding enhancement. Similar observations
have been found by Zheng et al. [25] through a lab study.
To this end, how to select and use the local structure effectively
while paying close attention to important words is another
problem that we need to tackle.

In order to solve the challenge of how to employ atten-
tion mechanism in a dynamic way for enhancing its ability
of selecting important parts, in our preliminary work [26],
we proposed the dynamic reread (DRr) attention, a novel
architecture that selects one important word at each reading
step and reads the important words repeatedly for precise sen-
tence semantic representation. Based on this novel attention,
we developed a dynamic reread network (DRr-Net) for sen-
tence semantic matching, in which global sentence encoding

is used to model sentences comprehensively and the DRr unit
is used to capture the important parts precisely for better
sentence semantic representation and matching. In this way,
DRr-Net was able to select the most important word to process
based on the learned information, which was in favor of
tackling the sentence semantic matching task.

However, there still exists some space in DRr-Net for further
improvement. First, the encoding ability of global sentence
encoding is insufficient for input embedding. Replacing with
pretrained methods (e.g., BERT) will cause the problem that
BPE suffers from on the other hand. Second, selecting only
one important word at each reading step in DRr-Net may be
insufficient since words can express tremendously different
meanings with different local structures. Therefore, in this
article, we focus on using local structures to alleviate the
above problems. We propose the locally aware dynamic reread
attention net (LadRa-Net), an advanced architecture that lever-
ages pretrained language models to encode input sentences
and uses the local structure to alleviate the weaknesses of
BPE in pretrained methods and further enhance the ability
of our proposed dynamic reread (DRr) attention. In concrete
details, we first take advantage of pretrained BERT [16] to
encode input sentences from a global perspective. Meanwhile,
we develop a Phrase-CNN unit to capture local structures
of the input sentence with different composite kernels (e.g.,
bigram and trigram) over the output of BERT so that the
input sentences can be encoded sufficiently. After getting the
words and local phrase representations, a newly designed
dynamic sequential attention (DSA) unit is employed to per-
form dynamic attention in a sequential manner. Along this line,
not only the important parts can be measured dynamically but
also the corresponding local structure can be fully explored.
Meanwhile, the ability of BPE in pretrained models can
also be strengthened. Therefore, LadRa-Net is capable of
making better modeling of sentence semantics and doing better
prediction of sentence semantic relations.

The remainder of this article is organized as follows.
We will first introduce the related work in Section II. Then,
in Section III, we give a formal definition of a sentence
semantic matching task and propose two important issues that
will be tackled in this article. Next, the structure and technical
details of our proposed models are given in Sections IV and V.
The experiments and detailed analysis are given in Section VI.
Finally, we discuss and conclude our work in Section VII.

II. RELATED WORK

Our work is related to two lines of literature: 1) Sentence
Semantic Matching: focusing on the semantic representations
and relation verification of sentence pairs and 2) Human Atten-
tion Behavior: focusing on the study of attention mechanism
in human reading behavior.

A. Sentence Semantic Matching

Based on the learning schema, this part can be grouped into
two categories: traditional neural network (NN)-based meth-
ods and pretrained language model-based methods. We will
introduce each of them in the following parts.

1) Traditional Neural Network-Based Methods: With the
developments of various NN technologies, such as CNN [10],
recurrent NN (RNN) [11], attention mechanism [13], [27],Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on August 29,2024 at 02:18:35 UTC from IEEE Xplore.  Restrictions apply. 
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and graph NN (GNN) [28], [29], plenty of methods have
been exploited to model semantic matching on large datasets,
such as SNLI [7], SciTail [8], and Quora [9]. Traditionally,
researchers try to make full use of NN technologies to model
sentence semantic meanings in an end-to-end fashion. Among
them, RNNs mainly focus on the sequential information
and the semantic dependence of sequences [30]–[32]. CNNs
tend to capture the local context with different convolutional
filters [10], [33]. The attention mechanism is usually utilized
to extract the most important parts in sentences, capture the
semantic relations, and align the elements of two sentences
properly [34], [35]. For example, Tay et al. [36] employed
a stacked multilayer Bi-LSTM with alignment factorization
to measure all feature hierarchies among two sentences.
Yang et al. [37] utilized multilayer encoding and fusion block
based on CNN structure to build a fast and well-performed
sentence matching model. Kim et al. [1] proposed a coatten-
tion network to model the interaction between two sentences
and developed a densely connected structure to retain as
much information as possible. Dong et al. [38] adopted GNN
to access the structure information of input sentences for
comprehensive sentence relation modeling. Kun et al. [14]
combined these three architectures into a hybrid architecture,
in which CNN is utilized to generate phrase-level semantic
meanings, GRU is used for the word sequence and dependence
among sentences, and attention is adopted to integrate different
features for the final classification.

2) Pretrained Language Model-Based Methods: In order
to make full use of existing large language corpora, various
pretrained language models have been proposed. For example,
Vaswani et al. [13] proposed the transformer architecture,
in which multihead self-attention and residual connection are
used to analyze the inputs. By stacking multiple layers of
transformers, input sentences could be fully explored. Based
on the transformer and large language corpora, GPT [17] and
BERT [16] were proposed to learn language representations in
a pretrained manner. Among them, BERT achieved better per-
formance. It made full use of self-supervised mask language
model (MLM) and next sentence prediction (NSP) tasks to get
a comprehensive understanding of input sentences. Moreover,
by modifying the downstream tasks to the required form,
BERT was capable of providing promising representations for
inputs and improving the model performance effectively [16].
To further improve the performance of pretrained models, one
direction is modifying the input encoding and self-supervised
pretrained task usage. For example, XLNet [39] leveraged
a newly designed permutation language model (PLM)
task to narrow down the gap between pretrained tasks
and downstream tasks. In addition, there still exists much
promising work, such as RoBERTa [40], CharBERT [22], and
bidirectional and auto-regressive transformer (BART) [41].
Moreover, pretrained methods still have some weaknesses
in accessing external knowledge. To this end, many external
knowledge enriched methods have been proposed, such
as incorporating knowledge base [42], integrating entity
knowledge into pretrained stage [43], and considering syntax
and semantics knowledge [44].

The above work has made great progress in sentence
semantic matching and inspired us to fully utilize advanced

NNs and pretrained methods for sentence semantic modeling.
On the other hand, current methods still have some weaknesses
in dealing with sentence semantics and need to be further
improved. First, Ma et al. [22] has proved that BPE structure
in BERT is insufficient for word representations and easy
to be attacked. Meanwhile, attention operation in BERT is
calculated among the entire input sequence, in which the
irrelevant parts would interfere with the weights of important
parts. Thus, better modeling for input embedding should
be considered. Second, most existing methods only treat
the structured information (knowledge base) as prior knowl-
edge, ignoring the potential of reading behaviors of humans.
Humans invent many reading behaviors (e.g., skipping and
repeating) for language understanding and communication
efficiently [25], which can also be treated as prior knowledge.
Therefore, in this article, we take human reading behaviors
into consideration and propose the novel DRr and DSA
units to boost the ability of attention mechanisms for better
sentence semantic modeling. We design two-sentence semantic
matching models (i.e., DRr-Net and LadRa-Net) based on DRr
and DSA units separately to tackle the above problems.

B. Human Attention Behavior

Human learning has inspired various algorithm designs
throughout the development of machine learning [45]. For
example, curriculum learning [46] tries to train a model from
easier data to harder data, which imitates the meaningful learn-
ing order in human curricula. Attention mechanism helps an
agent to focus on the most relevant parts of input for output to
achieve better performance, which imitates the human ability
of quickly perceiving necessary information by selectively
attending to parts of what they saw [47]. Despite the success of
imitating human actions, we have to admit that these algorithm
designs still have large performance gaps with human beings
in more practical settings [25]. Learning better from human
behaviors may help models to achieve better performances.

Taking attention mechanism as an example,
Zheng et al. [25] observed some user behavior patterns
for better attention usage with a lab study. For example, in a
specific scenario (e.g., answer selection), users tended to pay
more attention to possible segments that are relevant to what
they want. They would reread more snippets of candidate
answers with more skip and up behaviors while ignoring
the irrelevant parts [25], [48]. Moreover, Sen et al. [49]
obtained significant similarities between human attention
and machine attention on a large text classification dataset
by experiments. Peng et al. [50] demonstrated that imitating
reverse thinking and inertial thinking of humans can improve
the model performance on reading comprehension tasks.
These observations indicated that human attention was
helpful for guiding NN design, and it is a very promising
direction.

Besides, psychologists also have similar observations. For
example, Yarbus [51] described that human attention “is
dependent on not only what is shown in the picture but also
the problem facing the observer and the information that he
hopes to gain.” By building an eye tracker, Wang et al. [20]
found that people may center on 1.5 words each time when
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reading a piece of text intensively. In addition, researchers had
already demonstrated that human eyes have a central vision
and peripheral vision. Central vision concentrated on what a
person needs at the current time. Peripheral vision used the
coarse-grained observation of the surroundings to support the
central vision [23], [24], [52].

These studies encourage us to learn from human learning
behaviors and improve model performance by incorporating
this behavior knowledge. Therefore, in this article, we focus
on utilizing behavior knowledge to further improve the model
performance on sentence semantic modeling.

III. PROBLEM STATEMENT

In this section, we formulate the sentence semantic match-
ing task as a supervised classification problem. Given the
triple (sa, sb, y), where sa = {wa

1,w
a
2, . . . ,w

a
la
} and sb =

{wb
1,w

b
2, . . . ,w

b
lb
} are the given sentences, wa

i and wb
j are

one-hot vectors that represent the i th and j th words in
the sentences, and la and lb indicate the total number of
words in sa and sb. The true label y ∈ Y indicates the
semantic relationship between the given sentence pair, where
Y = {entailment, contradiction, neutral} for the NLI task
and Y = {Yes, No} for the PI task. Our goal is to learn
the classifier ξ , which is able to compute the conditional
probability P(y|sa, sb) and predict the label for the given
sentence pair in the test set by y∗ = argmaxy∈Y P(y|sa, sb).

In order to do better sentence semantic matching, the fol-
lowing important challenges should be considered.

1) Static usage of attention may inhibit the ability of atten-
tion mechanism. How to adopt an attention mechanism
dynamically for important parts selection and sentence
semantic understanding?

2) The local structures are helpful for overcoming the
weaknesses of BPE in BERT and enhancing the ability
of DRr attention. How to select and use this information
efficiently while selecting the important words?

To this end, we propose DRr-Net and LadRa-Net to tackle
the above issues for sentence semantic matching.

IV. DRR NETWORK

The overall architecture is shown in Fig. 2(a), which con-
tains four main components: 1) input embedding; 2) global
sentence encoding; 3) DRr; and 4) label prediction. Next,
we will introduce each of them in detail.

A. Input Embedding

The input embedding converts each word of sentences into a
vector representation and constructs the representation matrix
for the sentences. We combine multiple features as the seman-
tics representations of words. To be specific, the inputs of
DRr-Net are one-hot representations sa = {wa

1,w
a
2, . . . ,w

a
la
}

and sb = {wb
1,w

b
2, . . . ,w

b
lb
}. For more comprehensive access

to the semantics of each word in sentences, we adopt the
concatenation of pretrained word embedding [19], character
features [53], and syntactical features [54], [55] to represent
each word in sentences. The word embedding is obtained

by mapping each token to a high-dimensional vector space
by pretrained word vector (840B Glove [19]). The character
features are obtained by applying a CNN with a max-pooling
layer to the learned character embeddings, which can represent
words in a finer granularity and help to avoid the out-of-
vocabulary problem that pretrained word vectors often suffer
from. The syntactical features consist of a one-hot part-of-
speech (POS) tagging feature, binary exact match feature, and
binary antonym feature, which have been proved useful for
sentence semantic understanding [54]. Next, we pass these
representations through a two-layer highway network [56] and
get the extravagant representations {ai |i = 1, 2, . . . , la} and
{b j | j = 1, 2, . . . , lb} for the words in sentences sa and sb.

B. Global Sentence Encoding

As is known to us all, humans can leverage enormous prior
knowledge to extract important parts for sentence semantics
directly. However, it is quite formidable for models. They
have to learn as much information as possible from the input
data. Since RNN is powerful to process the sequence and
helps models to capture the intradependence and interaction
of the input sequence, we select Stack-RNN [57] to process
sentences. It is composed of multiple RNN layers on top
of each other. Note that we utilize GRU as the base unit.
Specifically, let H l be the lth GRU layer. At the time step t ,
Stack-RNN can be expressed as follows:

hl
t = H l

�
xl

t , hl
t−1

�
, xl

t = hl−1
t (1)

where xl
t is the input of the t th step in the lth GRU layer.

While this architecture enables us to build up deeper represen-
tations, it cannot model sentence semantics comprehensively
and preserve all the learned information, and even worse, this
architecture might trigger explosion or make gradient problems
vanish. Thus, in order to optimize the capability of Stack-RNN
and motivated by Kim et al. [1], we concatenate the inputs
x (l−1) and the states h(l−1) of the (l − 1)th GRU layer as the
inputs of the lth GRU layer and modified (1) as follows:

hl
t = H l

�
xl

t , hl
t−1

�
, xl

t = �
hl−1

t ; xl−1
t

�
(2)

where [·; ·] denotes the concatenation operation. The final
outputs are denoted as {ha

i |i = 1, 2, . . . , la} and {hb
j | j =

1, 2, . . . , lb}, which can preserve all the information, as well
as the previous feature work in word embedding part.

However, this architecture only models the sentence and
stores all the information into vectors in a comprehensive
way. How to compress these vectors into one sentence rep-
resentation is still unclear. Since natural language has the
redundancy mechanism [58], different words have different
contributions to sentence semantics. Moreover, self-attention
can select the important parts at different positions from
a single sequence [13]. Therefore, it is natural to leverage
self-attention to generate sentence representations

Aa = �
ha

1, ha
2, . . . , ha

la

�

αa = ωTtanh
�
W Aa + b

�

ha =
la�

i=1

exp
�
αa

i

�
�la

k=1 exp
�
αa

k

� ha
i , i = 1, 2, . . . , la (3)
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Fig. 2. (a) Architecture of Dynamic Re-read Network (DRr-Net). (b) Stack-RNN processes the original sentence and preserves all the information from
bottom-most word embedding input to up-most recurrent output. (c) DRr Unit pays close attention to only one important word at each step with the learned
information and reread these important words for sentence semantic matching more precisely. (a) Architecture of DRr-Net. (b) Two-layer Stack-RNN unit
without attention. (c) DRr Unit.

where {W ∈ R
dg∗(dw+ls ∗dg),ω ∈ R

dg∗1} are the trainable
parameters. dg, dw and ls denotes the hidden size of GRU,
the embedding size of input words, and the stack layer number,
respectively. ha

i is the i th output of Stack-RNN for sentence
sa . ha denotes the global contextual representation of sentence
sa , which is actually a weighted summation of the outputs of
Stack-GRU. The same operation will be done on sentence sb

to get the global contextual representation hb.

C. DRr Mechanism

As mentioned in Section I, static usage of the attention
mechanism will inhibit its ability. Meanwhile, psychological
research has shown that people usually pay close attention
to the small part that they care about most and dynamically
change their focus point for an in-depth understanding of the
sentence [20]. Therefore, we develop the DRr mechanism to
solve the first challenge mentioned in Section III. As shown
in Fig. 2(c), the DRr unit selects the most important word at
each step with the consideration of global contextual repre-
sentations and the selections in previous steps.

In detail, the inputs of DRr unit are the final outputs {ha
i |i =

1, 2, . . . , la} and {hb
i |i = 1, 2, . . . , lb} of previous component.

In each reading step, we adopt attention mechanism to choose
one important word āt from the whole input sequence based on
the learned information (i.e., h̄

a
t−1, hb). Then, we utilize GRU

to encode the chosen word and generate the DRr representation
va for sentence sa as follows:

āt = F
��

ha
1, ha

2, . . . , ha
la

�
, h̄

a
t−1, hb�

h̄
a
t = GRU

�
āt , h̄

a
t−1

�
, t = 1, 2, . . . , T

va = h̄
a
T (4)

where hb is the global contextual representation for sentence
sb. T is the DRr length. We also employ the global contextual
representation ha as the initial state of GRU for sentence
a. F(·) is the choosing function, and we utilize attention

mechanism to achieve this function as follows:
Ā

a = �
ha

1, ha
2, . . . , ha

la

�

m̄a = ωT
d tanh

�
Wd Āa + �

Ud h̄
a
t−1 + Md hb� ⊗ ela

�

ᾱa =
la�

i=1

exp
�
m̄a

i

�
�la

k=1 exp
�
m̄a

k

�

āt = ha
j ,

�
j = Index

�
max

�
ᾱa

���
(5)

where {Wd ∈ R
da∗(dw+ls ∗dg), Ud ∈ R

da∗dg , Md ∈
R

da∗(dw+ls ∗dg), ωd ∈ R
da∗1} are trainable parameters. ela ∈ R

la

is a row vector of 1. Index(max(ᾱa)) denotes getting the
corresponding index of the maximum value in the attention
vector ᾱa . The outer product (Ud h̄

a
t−1 + Md hb) ⊗ ela means

repeating la times of the results (Ud h̄
a
t−1+Md hb). Specifically,

the global contextual representation hb of sentence sb is ben-
eficial for choosing the most relevant information in sentence
sa . The previous hidden state h̄

a
t−1 is capable of memorizing

what has been selected in the previous steps. Treating them as
the input of the attention unit, DRr-Net can select the most
important part from sentence sa at the t th time step with
the consideration of the information from sentence sb and the
previous steps.

However, Index(max(·)) operation has no derivative, which
means its gradient could not be calculated. Fortunately, our
goal is to select the most important part, which requires one
word at one step. Inspired by softmax function, we modify (5)
as follows to solve the nonderivative problem:

Āa = �
ha

1, ha
2, . . . , ha

la

�

m̄a = ωT
d tanh

�
Wd Āa + �

Ud h̄
a
t−1 + Md hb

� ⊗ ela

�

āt =
la�

i=1

exp
�
βm̄a

i

�
�la

k=1 exp
�
βm̄a

k

� ha
i (6)

where β is an arbitrarily big value. With this operation,
the weight āt of the most important word will be very close
to 1, and other weights will be very close to 0.
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D. Label Prediction

This component consists of three operations: matching,
fusion, and classification. In order to determine the overall
relation between two sentences, we leverage heuristic match-
ing [59] between global contextual representations ha , hb, and
DRr representations va and vb. Specifically, we use the ele-
mentwise product, their difference, and concatenation. Then,
we send them to multilayer perceptron (MLP) to calculate the
relation probability between two sentences. The MLP has two
hidden layers with rectified linear unit (ReLU) activation and
a softmax output layer

h = ��
ha; hb�; �

hb � ha�; �
hb − ha��

v = ��
va; vb

�; �
vb � va

�; �
vb − va

��

ph = MLP1(h)

pv = MLP2(v) (7)

where ph and pv denote the probability distributions of dif-
ferent classes with global contextual sentence representations
and dynamic important part representations, respectively.

After getting different probability distributions of the
semantic relations using different sentence semantic represen-
tations, we intend to integrate this information to achieve a
more robust performance. Thus, we utilize a fusion gate and
an MLP to integrate ph, pv and make the final classification,
which can be formulated as follows:

αh = σ
�
wT

h ph + bh
�

αv = σ
�
wT

v pv + bv

�

P
�
y|�sa, sb

�� = MLP3
�
αh ph + αv pv

�
. (8)

V. LOCALLY AWARE DRR ATTENTION NET

As mentioned in Section I, our proposed DRr-Net still has
some space for further improvement. First, the encoding capa-
bility of GRU has been proven weaker than transformer [16].
Replacing it with pretrained models (e.g., BERT) will import
the incomplete modeling and fragile representation that BPE
suffers from. Second, selecting only one important word at
each reading time is insufficient since words with different
contexts can express tremendously different meanings.

To solve the previous shortcomings, in this section, we focus
on the local information utilization and extend DRr-Net to a
novel LadRa-Net, which employs pretrained BERT to encode
sentences and a newly designed DSA for the usage of local
structures and the selection of important parts. Our key con-
tributions lie in two parts. The first is using a CNN-based
structure to alleviate the problem that BPE suffers from
and enhance the encoding ability of BERT. The second is
designing a novel DSA unit to integrate the chosen important
part and corresponding local structure in a sequential way
at each reading step for performance improvement of our
proposed dynamic attention mechanism. Moreover, the DSA
unit utilizes a coverage mechanism to ensure the diversity of
dynamic selection, which can help to evaluate the semantic
relation between the sentence pair more comprehensively.
Next, we will introduce the technical details of LadRa-Net.

A. Global Encoding

In order to encode sentences more comprehensively and
make full use of the pretrained language model, LadRa-
Net chooses BERT-base [16] to encode each word in the
sentences from a global perspective. Specifically, the input
sentence pair is first concatenated with “[SEP]” token and
added “[CLS]” at the beginning and the end as BERT requires.
Then, BPE tokenizer is employed to tokenize each word into
BPE tokens. Suppose that the final number of tokens in the
sentence pair is lab, and BERT generates L hidden states for
each BPE token B E RT l

t , 1 ≤ l ≤ L, 1 ≤ t ≤ lab. As shown
in Fig. 3(a), the contextual representation for the tth token in
input sentence pair at token level is then a per-layer weighted
sum of transformer block output, with weights α1, α2, . . . , αL

h0
t =

L�
l=1

αl B E RT l
t, 1 ≤ t ≤ lab (9)

where αl is the weight for the lth layer in BERT and is trained
during model training. h0

t is the contextual representation
for the t th token. Here, 0 denotes the index of weighted
output from BERT and is consistent with the description
in the following parts. Moreover, the output h0 of the first
special token “[CLS]” in the last block is treated as the
contextual representation for input sentence pair at sentence
level.

B. Local Structure Encoding

The semantic relationships within the sentence pair are not
only connected with the important words but also affected by
the corresponding local structure. Selecting only one important
word at each reading step in DRr-Net seems insufficient
for semantic relation modeling. Meanwhile, though BERT
leverages multilayer operation to perceive coarser granularity
and learns more about words or phrases, the used BPE will
import incomplete modeling and fragile representation prob-
lems for input sentences. To overcome the above shortcomings,
we adapt CNN with different composite kernels (e.g., bigram
and trigram) and propose the Phrase-CNN (PCNN) unit to
extract local contexts of input sentence pair. As illustrated
in Fig. 3(b), let hr

t be the local structure representation for the
t th token with the r th kernel. This process can be formulated
as follows:

hr
t = CNNr

��
h0

t−k, h0
t−k+1, . . . , h0

t+k−1, h0
t+k

��
,

t = 1, 2, . . . , lr−1, lr (10)

where k denotes the kernel size of the r th PCNN unit.
lr denotes the number of PCNN units. In order to maintain
consistency of the output of different encoding units in this
layer, the output length (i.e., number of output channels) of
each PCNN unit is the same as that of the input sequence.
Moreover, we intend to generate the contextual representations
hr based on the local structure information from PCNN more
comprehensively. Thus, we apply self-attention to generate
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(a)

(c)

(b)

Fig. 3. Overall architecture of Locally Aware Dynamic Re-read Attention Net (LadRa-Net) and DSA. (a) Weighted sum operation. (b) PCNN unit. (c) DSA
unit.

contextual representations over the output of PCNN

Ar
ab = �

hr
1, hr

2, . . . , hr
lab

�

αr = ωT
r tanh

�
W r Ar

ab + b
�

hr =
L�

i=1

exp
�
αr

i

�
�L

j=1 exp
�
αr

j

	 hr
i

hab = avg
��

h0, h1, h2, . . . , hlab
��

(11)

where {Wr ∈ R
da∗768,ωr ∈ R

da∗1} are trainable parameters.
hr

i is the i th token representation from the r th PCNN encoding
kernel. avg denotes the average-pooling. hab denotes the
sentence-level representation for input sentence pair. We have
to note that we adopt BERT-base as the basic encoder. Thus,
its output size 768 for each token affects the parameter size
of the following network structures of LadRa-Net.

C. Dynamic Sequential Attention

In our preliminary work [26], we leverage the DRr unit to
select one important word at each reading step. However, one
word can express tremendously different semantic meanings
due to different local structures. Only selecting one word
may be insufficient for precise sentence semantic modeling.
In order to leverage the corresponding local structures to enrich
the analysis of the selected important parts and represent these
parts more precisely, we develop a novel DSA unit, which
is shown in Fig. 3(c). DSA employs the learned information
to select the most important part in a sentence and uses
the local structure to boost its representation in a sequential
manner at each reading step. Then, a weighted sum operation
is employed to integrate the selected important part and the
corresponding local structure. After that, the enhanced result
will be treated as the input of GRU.

Concretely, DSA first employs the choosing function F(·)
and learned information (i.e., h̄t−1, hab, ā[0:(k−1)]

t ) to select the
most important part ā0

t from BERT output [h0
1, h0

2, . . . , h0
lab

]
at the current step. Then, the same operation is applied on
PCNN output ([hr

1, hr
2, . . . , hr

lab
], r = 1, 2, . . . , lr ) to select the

proper local structures ār
t in a sequential manner, which can

support the understanding to the important part. Next, it adopts
a weight sum to fuse all these selected information. Since

humans generally select these important parts in a sequential
manner, DSA also selects GRU to process the fusion results.
The fusion result āt is sent to a GRU and treated as the tth
input of this GRU as follows:

ār
t = F

��
hr

1, hr
2, . . . , hr

lab

�
, h̄t−1, hab, ā[0:(r−1)]

t

	

αr
t = ωT

f tanh
�
W f ār

t

�

āt =
lr�

r=1

exp
�
αr

t

�
�lr

j=1 exp
�
α

j
t

	 ār
t

h̄t = GRU
�
āt , h̄t−1

�
, t = 1, 2, . . . , T (12)

where ā[0:(r−1)]
t is previous r selections at time step t . h̄t−1

denotes the (t−1)th hidden state of GRU. h̄0 is initialized with
sentence-level representation hab. T is the length of dynamic
selection. F(·) is the choosing function. We select the additive
attention [60] to implement F(·) and modify it so that only
the most important feature is selected

Ār,a = �
hr

1, hr
2, . . . , hr

lab

�

m̄r
t = ωT

rdtanh

⎛
⎝W rd Ār +

⎛
⎝U rd h̄t−1 + M rdhab

+
r−1�
j=0

V rd ā j
t

⎞
⎠ ⊗ elab

⎞
⎠

ār
t =

lab�
i=1

exp
�
βm̄r

t,i

�
�lab

j=1 exp
�
βm̄r

t, j

	 hr
i (13)

where {W rd ∈ R
da∗768, U rd ∈ R

da∗dg , M rd ∈ R
da∗768, V rd ∈

R
da∗768,ωrd ∈ R

da∗1} are trainable parameters. Similar to
DRr-Net, we also modify the softmax with this arbitrary big
value β to imitate the process of the most important part
selection. One step further, DSA unit selects the important
parts of input sentences in an unsupervised manner, and this
unit is learned along with the end-to-end training of the entire
model. Therefore, the DSA unit might result in two problems:
1) Overselection: some important parts are selected repetitively
too many times and 2) Underselection: some important parts
are mistakenly ignored. Inspired by the coverage mechanism
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used in neural machine translation [61], we also propose to
leverage the coverage mechanism to remember the dynamic
selection at previous steps, and it will be updated after each
selection. Specifically, a coverage vector cr

t is used to indicate
the degree of which word is not concerned at the tth reading
step for the r th encoding unit, enabling the diversity of
dynamic selections in the model. This vector is initialized
as an lab dimension vector of 1, indicating that all words in
sentences have not been selected. After selecting the important
part at each reading step, we update this vector based on the
calculated attention weights m̄r

t and the hidden states Ār,a
of

input sentences. Thus, 13 will be modified as follows:
cr

0 = [1, 1, . . . , 1] ∈ R
lab

m̄r
t = cr

t−1ω
T
rdtanh

⎛
⎝W rd Ār +

⎛
⎝U rd h̄t−1 + M rdhab

+
r−1�
j=0

V rd ā j
t

⎞
⎠ ⊗ elab

⎞
⎠

cr
t = cr

t−1 − 1

φ
m̄r

t , φ = T · σ
�
Wφ Ār �

. (14)

D. Label Prediction

After getting the dynamic reading results at each important
position, it is natural to integrate the information for the
final prediction. Since the sentence-level outputs from BERT,
PCNN, and hidden states from GRU indicate the semantic rela-
tions from different perspectives, we utilize average pooling to
process the results [hab, h̄1, h̄2, . . . , h̄T ] for decision-making.
Then, we send the result v to a MLP for final classification.
The MLP consists of one hidden layer with ReLu an activation
and a softmax output layer

v = avg
��

hab, h̄1, h̄2, . . . , h̄T
��

P
�
y|�sa, sb

�� = MLP(v). (15)

VI. EXPERIMENT

In this section, we first give a brief introduction to the
datasets and evaluation methods. Then, we introduce imple-
mentation details about the proposed models. Next, we present
empirical results on all datasets and give a detailed analysis
of the model and experimental results. For all reported results,
we employ boldface and underline for the best and the second
best results, respectively.

A. Datasets and Evaluation Methods

To evaluate the proposed DRr-Net and LadRa-Net models,
we conduct an empirical evaluation based on two well-known
tasks (i.e., SNLI and PI). For each task, we select three
benchmark datasets for evaluation. Specifically, for NLI task,
we select SNLI [7], the Sentences Involving Compositional
Knowledge (SICK) [62], and SciTail [8] datasets to evaluate
the model performance. For PI task, we choose Quora [9],
MSRP [2], and Twitter-URL [63]. These two tasks cover the
asymmetric and symmetric sentence relations separately and
can exhibit different characteristics.

TABLE I

HYPERPARAMETERS CONFIGURATION IN DRr-Net AND LadRa-Net

Since both NLI and PI tasks can be treated as classification
problems, and most of the baselines employ accuracy as the
evaluation metric, we also use accuracy to compare the model
performance. Moreover, we leverage F1 to testify the models
on the Twitter-URL dataset as other baselines did. We have
to note that, for each experiment, we repeat the evaluation
process five times with different seeds and report the best
results.

B. Implementation Details and Model Training

In order to get the best performance, we leverage the
validation set to tune the hyperparameters. If the loss on the
validation set does not decrease in 1000 batches, we will stop
the training process and accept the best model on validation as
the final model. For MSRP [2] and Twitter-URL [63] that do
not have the validation set, we randomly split 5% data from
the training set as the validation set. Since the hyperparameters
will be various for different datasets, we list some common
hyperparameters of DRr-Net and LadRa-Net in Table I. They
will be described in the following part.

For DRr-Net, the word embedding size is set to 300, and
the character embedding size is set to 100. The stack layer
number in global sentence encoding is ds1 = 3. The reread
length in the DRr attention mechanism is T1 = 6. For initial-
ization, we obtained the word embedding from pretrained word
vectors (840B GloVe) [19], and the out-of-vocabulary (OOV)
words are randomly initialized. They are kept to be fixed
when training the entire model. All the model parameters are
initialized with the uniform distribution in the range between
−(6/(nin + nout))1/2 and (6/(nin + nout))1/2 as suggested by
Orr and Müller [64]. All biases are set as zeros.

For LadRa-Net, the kernel sizes of PCNN are set as 2 and
3, and the output dimensions of two-layer CNN are set as 500
and 768, the same as the output size of BERT. The length
of dynamic selection in DSA is set as 5. The optimizer that
we use is the Adam optimizer, and the initial learning rate is
0.001.

For both methods, we leverage Adam as the optimizer, and
the initial learning rate is 0.001. During training, we design a
learning rate decay methods called Cosine Warm Up Decay,
in which cosine operation and training epochs are utilized to
update the learning rate in a nonlinear manner. Corresponding
details can be found in the released code.1

1https://github.com/little1tow/Cosine-Warm-Up-Decay-method
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TABLE II

EXPERIMENTAL RESULTS (ACCURACY) ON SNLI AND SICK DATASETS

C. NLI Results
1) Performance on SNLI and SICK: As illustrated

in Table II, for BERT-free methods, Co-Stack Residual Affinity
Networks (CSRAN) [36] and RE2 [37] achieve the best perfor-
mance. The following is our proposed DRr-Net. Though DRr-
Net did not perform the best, it leverages a relatively simple
structure (DRr unit) to achieve competitive results compared
with the complex multiple RNN and attention calculation
mixing layers used in CSRAN and RE2. This phenomenon
supports the effectiveness of our proposed DRr attention. For
powerful pretrained models, we first note that “[CLS]” output
from the last layer of pretrained models is leveraged for
final classification, and we employ the same training strategy
as our proposed methods did for a fair comparison. This
is also the reason why the results of pretrained models are
a little different from the General Language Understanding
Evaluation (GLUE) leaderboard. From the table, we can
first observe that BERT-based methods outperform all the
BERT-free methods by a large margin, demonstrating the pow-
erful encoding capability of pretrained methods. Moreover,
LadRa-Net performs better than these pretrained models. Since
they all leverage the pretrained methods as the basic encoders,
the performance improvement of LadRa-Net can demonstrate
the usefulness of local structure. By employing the local
structure, LadRa-Net can access the complete words or phrases
in the input sentences, alleviating the incomplete modeling or
fragile representation of Binance Chain Tokenization Standard
(BEP) [22] and achieving better performance. On the other
hand, local structure and DRr attention utilization require more
parameters to be trained. Thus, it may be a little underfitting
when the dataset is small, which is the possible reason why
LadRa-Net did not achieve the best performance on the SICK
dataset. A similar performance can also be observed on the
MSRP dataset from Table IV.

Among all baselines, CSRAN and RE2 are the current best
BERT-free methods. RoBERTa-base [40] achieves the best
performance among BERT-based methods. After a detailed
analysis, we conclude the following observations. First, both
CSRAN and RE2 stack multilayer blocks to achieve impres-
sive performance, which is similar to the transformers in
BERT-based methods. This observation proves that stacking
multilayer blocks is, indeed, helpful for semantic representa-
tion. Second, RoBERTa-base achieves better performance than
BERT-large, which is counterfactual. We speculate the possible
reason is that we did not fine-tune BERT-large well on these

TABLE III

EXPERIMENTAL RESULTS (ACCURACY) ON THE SCITAIL DATASET

datasets since there are huge amounts of parameters. Based
on this reason, we only select BERT-base and RoBERTa-base
as the basic encoders in LadRa-Net. Third, the improvement
between results (13) and (9) is smaller than the improvement
between results (12) and (7) in Table II. This phenomenon
supports the fact that these BERT-base models are not well
trained [40]. Selecting RoBERTa-base as the basic encoder
will be a better choice in sentence semantic modeling.

2) Performance on SciTail Test: Table III reports the exper-
imental results on SciTail [8]. Compared with the other two
NLI datasets, the SciTail dataset requires models to focus on
entailment relation recognition. Moreover, both premise and
hypothesis sentences are derived from the existing data source,
which makes sentence pairs more linguistically challeng-
ing [8]. From the table, we can observe that, even using mul-
tilayer blocks, the performance of CSRAN is still 0.9% lower
than DRr-Net. This observation indicates that our proposed
DRr attention can deal with more complex and realistic situ-
ations. However, GRU used in DRr-Net still has some weak-
nesses in encoding input sentences, which leads DRr-Net to
be 0.9% lower than fine-tuned transformer [17]. Compared
with these BERT-based methods, we can observe that LadRa-
Net with BERT-base can outperform RoBERTa on this dataset,
which not only indicates the usefulness of DRr attention but
also demonstrates that local structure can alleviate the weak-
nesses of BPE and boost the performance of DRr attention.

D. PI Results

In addition to the NLI task, we also select the PI task
to verify the performance of our proposed models. Different
from the NLI task, the PI task focuses on the symmetric
semantic relation and requires an agent to classifies whether
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TABLE IV

EXPERIMENTAL RESULTS (ACCURACY) ON QUORA AND MSRP DATASETS

TABLE V

EXPERIMENTAL RESULTS (F1) ON THE TWITTER-URL DATASET

two sentences express the same meaning, which is critical for
question answering community, such as Quora and Zhihu.2

1) Performance on Quora and MSRP: Table IV reports the
results on Quora and MSRP datasets. Still, our proposed meth-
ods achieve highly competitive performance by making full
use of DRr attention and local structure. Besides, we observe
that all methods have a better performance on the Quora
dataset than the MSRP dataset. One possible reason is that the
Quora dataset has more data (over 400k sentence pairs) than
the MSRP dataset (only 5801 sentence pairs). In addition to the
data size, we speculate that intersentence interaction is proba-
bly another possible reason. The Quora dataset contains many
sentence pairs with less complicated interactions (e.g., many
identical words in two sentences) [71]. Thus, all the methods
can achieve better performance on the Quora dataset. When
analyzing the performance on MSRP, we can observe that
A Lite BERT (ALBERT)-base [68] achieves the best perfor-
mance on the MSRP dataset. Meanwhile, our proposed DRr-
Net outperforms RE2 by a large margin (+4.4%). On the other
hand, LadRa-Net with RoBERTa-base is not even as good
as RoBERTa-base (−0.3%). Since the MSRP dataset only
contains 5801 sentence pairs, relatively complex structures
are harder to optimize well, let alone a better performance.
This phenomenon is also consistent with the performance of
our proposed models on the SICK dataset, which is shown
in Table II.

2) Performance on Twitter-URL: Table V shows the results
(F1 value) on the Twitter-URL dataset [63]. In addition
to the impressive performance, we also find some interest-
ing phenomena. First, pairwise word interaction modeling
(PWIM) [74] is the best model among all BERT-free baselines

2https://www.quora.com/, https://www.zhihu.com/

and even has a highly competitive performance compared
with BERT-based methods. By utilizing Bi-LSTM to encode
the input sentences and a 19-layer deep CNN to integrate
the features, PWIM makes a fully exploration on the local
structure on sentences and achieves very competitive per-
formance. However, the encoding and representing abilities
of Bi-LSTM are still weaker than BERT. Thus, we observe
that BERT-based methods still outperform PWIM on this
dataset. On the contrary, LadRa-Net not only selects BERT as
the encoder to obtain comprehensive representations of input
sentences but also leverages local structure to alleviate the
problems of BPE in BERT and strengthen the ability of our
proposed DRr attention. Thus, we can observe that LadRa-
Net achieves the best and the second best performances with
different BERT-like encoders, surpassing these baselines.

E. Ablation Performance

The overall performance has proven the superiority of our
proposed models. However, which part is more important
for performance improvement is still unclear. Consequently,
we conduct an ablation study on different test sets to examine
the effectiveness of each component in DRr-Net and LadRa-
Net. Since it is very flexible to change different basic encoders
in LadRa-Net, we just examine the performance of LadRa-
Net with BERT-base as the encoder and employ LadRa-Net to
represent “LadRa-Net with BERT-base” for simplicity.

1) Performance of DRr-Net: First, we select the global
contextual sentence vector ha as the initial vector of the
GRU in DRr processing and hb as the guide vector of the
dynamic selection operation. Therefore, DRr-Net can have a
comprehensive understanding of sentence sa and search the
most relevant part with the consideration of sentence sb and
learned information at each step. When we remove each of
them individually, we can obtain the results from Table VI(1)
and (2). These results demonstrate that the performance of
both models decreases by nearly 2.0%, which is indicative
that the initial vector and guide vector are critical for deciding
which part should be concerned more at each step.

Second, we are curious whether only one of the represen-
tations (i.e., global result or dynamic result) is enough for
semantic matching. To this end, we remove the global results
and reread results from DRr-Net. As illustrated in Table VI(3)
and (4), both results are extremely important for classification.
Among them, global results play a more important role, which
is consistent with human behavior. People generally read the
text from the beginning to the end and then continue reading
till reaching the end so that they can understand the sentence
semantics from a global perspective [25]. Moreover, humans
have the capability to leverage enormous prior knowledge to
extract the important parts, which is quite arduous for models
to access the knowledge. Therefore, the performance of the
input encoder is essential for our proposed models, and a better
encoder (e.g., BERT) can boost the model performance.

2) Performance of LadRa-Net: There are three main com-
ponents in LadRa-Net: 1) BERT encoder; 2) PCNN unit; and
3) DSA unit. Therefore, we first examine their effectiveness
by removing each of them. Table VII(1)–(4) reports the
corresponding results. We can observe that the BERT encoder
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(a) (c) (d)(b)

Fig. 4. Performance (accuracy) of DRr-Net and LadRa-Net with different hyperparameters, including the number stack layers (1–4) and reading lengths (1–10)
for DRr-Net, and dynamical reading lengths (1–8) and different kernel size (1–3) for LadRa-Net. (a) Number of GRU layers in Stack-RNN in DRr-Net. (b) DRr
length of the DRr unit in DRr-Net. (c) Dynamic reading length of DSA in LadRa-Net. (d) Different kernel size of PCNN in LadRa-Net.

TABLE VI

ABLATION PERFORMANCE (ACCURACY) OF DRr-Net

is still the most important component, which is consistent with
the observation in the ablation performance in DRr-Net. As a
new scheme of NLP, BERT-based methods can help models
access knowledge from large language corpora and surpass
other NN methods by a large percentage.

One of the main contributions of LadRa-Net is to model the
local structure of input sentences. To verify the usefulness of
the local structure, we remove the PCNN unit from LadRa-
Net and add the PCNN unit into BERT-base for the evaluation.
Compared with the results between Table VII(1) and (2),
we can observe that the local structure can improve the perfor-
mance of the BERT-base. Moreover, by considering the local
structure, BERT-base can achieve the second best performance
on the SNLI dataset. Meanwhile, the comparison between
Table VII(3) and (7) also reports that the local structure can
further boost the model performance. This phenomenon is also
the same as the observation from Twitter-URL experiments in
Section VI-D. All of these indicate the usefulness of local
structure. Furthermore, when removing hab from the Label
Prediction component and only taking the results of the DSA
unit into account, model performance has a big drop. Since
DSA only focuses on the important parts and local contexts,
it lacks a global understanding of input sentences. Meanwhile,
removing hab also means ignoring the superiority of BERT.
Therefore, its performance would be greatly reduced.

F. Sensitivity of Parameters

As mentioned in Sections IV and V, two hyperparameters
affect the performance of each model separately:

1) the stack layer number ls of Stack-RNN and the dynamic
reading length T1 of DRr for DRr-Net;

2) the kernel size dk of PCNN and the dynamic reading
length T2 of DSA for LadRa-Net.

Therefore, we evaluate their impact on NLI tasks with different
hyperparameter settings. The results are reported in Fig. 4.

First, the most important hyperparameter that both
models have is the dynamic reading length (i.e., T1 and
T2). We observe from Fig. 4(b) that the performance of
DRr-Net first becomes better with the increasing of reread
length. When the reread length T1 is between 5 and 7,

TABLE VII

ABLATION PERFORMANCE (ACCURACY) OF LadRa-Net

DRr-Net achieves the best performance. This phenomenon
is consistent with the psychological findings that human
attention focuses on nearly seven words [75]. When the
length is bigger than 7, the accuracy of DRr-Net decreases
to varying degrees. In other words, too short a reading
length may be possible to cause the model to ignore some
important parts, and too long a reading length may weaken
the capability of capturing the important part, as well as
understanding the semantic meaning intensively.

When it comes to LadRa-Net, we can obtain a similar
phenomenon from Fig. 4(c). Different from DRr-Net, the best
shot is around T2 = 5, and LadRa-Net is more sensitive to
the dynamic reading length. With the help of a BERT-based
encoder and local structure utilization, LadRa-Net can achieve
better performance with short reread length and save some
time. However, LadRa-Net is more complex than DRr-Net,
especially the BERT-base encoder. We need to tune the hyper-
parameters carefully for the model performance.

Second, Fig. 4(a) reports the model performance with differ-
ent ls’s. We can observe that the performance becomes better
with the increase in ls . With the continuous increase in GRU
layers, the increasing rate of accuracy will slow down and even
become worse on some test sets. With the consideration of
model architecture, the scale of parameters will grow rapidly
with the increasing of GRU layers, which may trigger the
model hard to optimize, and even worse, the gradient might
explode or vanish. Moreover, the encoding capability of GRU
is not comparable with BERT. To this end, we replace GRU
with BERT-base in LadRa-Net.

Third, Fig. 4(D) illustrates the performance of LadRa-Net
with different combinations of kernel size dk . We observe
that the model performance will increase with the increase
in dk. As mentioned before, PCNN is capable of capturing
the local structure to enhance semantic modeling. This result
demonstrates that a large kernel size can help LadRa-Net to
consider more local information and also proves the usefulness
of the local structure. However, the effect of dk = 1 is
not obvious. With the consideration of model complexity,
we select 2 and 3 as our final kernel sizes.
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TABLE VIII

SOME EXAMPLES OF REREAD SEQUENCE AND THE CLASSIFICATION

G. Case Study and Error Analysis

To visually demonstrate the validity of DRr-Net and
LadRa-Net, we give some random examples from the SNLI
dataset since the core idea of DRr-Net and LadRa-Net is the
DRr attention. For simplicity, we list the dynamic reading
sequences of DRr-Net on these examples. The results are
shown in Table VIII.

For the first example in Table VIII, DRr-Net pours attention
to words “walk, couple, street” in sentence sa and “couple,
sitting, bench” in sentence sb. Then, DRr-Net repeatedly
processes these important words for the final decision. From
these words, we can conclude that the relation of this sentence
pair was contradiction easily. Moreover, when checking the
entailment relation in the second example, DRr-Net processes
the same important words repeatedly, i.e., reading “red shirt”
multiple times. In other words, DRr-Net does choose the
important region and reread these important parts multiple
times for the final decision. In order to better verify the ability
of DRr-Net, we make an error analysis on the misclassification
examples. In the fourth example, when sentence sa contains
more information than sentence sb, DRr-Net may consider the
unseen information more and make a misclassified decision.
Moreover, when the sentence pair has very complex semantic
relations, e.g., the last example in Table VIII, the model may
be confused about its semantics and suffer from one of the
important words, which leads to a wrong classification result.

VII. CONCLUSION AND FUTURE WORK

In this article, we presented a study on sentence seman-
tic representation and matching. Specifically, we investigated
that most attention-based methods attempted to select all the
important parts in a static way, restricting the ability of the
attention mechanism. Inspired by the dynamic embedding
methods used in pretrained language models and the obser-
vation that people would constantly change their focal point
for an in-depth understanding of sentences, we proposed a
newly designed DRr attention, which is able to pay close
attention to a small region of sentences at each time and reread
the important parts for better sentence semantic matching.
Based on this attention mechanism, we developed a novel
DRr-Net for sentence semantic matching. Moreover, the GRU
encoder used in DRr-Net still has some weaknesses in repre-
senting sentence semantics. Therefore, we employ a pretrained
language model (e.g., BERT and RoBERTa) as the input
encoder. One step further, the BPE used in pretrained language

models still suffered from incomplete modeling and fragile
representation problems. In order to alleviate these problems
and further boost the ability of DRr attention, we proposed
to take local structures of sentences into consideration and
extended DRr-Net to LadRa-Net. Finally, extensive experi-
ments on two sentence semantic matching tasks (i.e., NLI
and PI) demonstrated that DRr-Net could significantly improve
the performance of sentence semantic matching. Furthermore,
LadRa-Net was able to model sentence semantics more pre-
cisely and achieve better performance by considering the local
structures of sentences.

In the future, we will focus on providing more information
for dynamic rereading attention to better sentence semantic
representing and matching. We also hope that our work could
inspire relative research and lead to many future works.
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