1434

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 51, NO. 3, MARCH 2021

Deep Attributed Network Embedding by Preserving
Structure and Attribute Information

Richang Hong

Abstract—Network embedding aims to learn distributed vector
representations of nodes in a network. The problem of network
embedding is fundamentally important. It plays crucial roles in
many applications, such as node classification, link prediction,
and so on. As the real-world networks are often sparse with few
observed links, many recent works have utilized the local and
global network structure proximity with shallow models for bet-
ter network embedding. In reality, each node is usually associated
with rich attributes. Some attributed network embedding models
leveraged the node attributes in these shallow network embed-
ding models to alleviate the data sparsity issue. Nevertheless,
the underlying structure of the network is complex. What is
more, the connection between the network structure and node
attributes is also hidden. Thus, these previous shallow mod-
els fail to capture the nonlinear deep information embedded in
the attributed network, resulting in the suboptimal embedding
results. In this paper, we propose a deep attributed network
embedding framework to capture the complex structure and
attribute information. Specifically, we first adopt a personalized
random walk-based model to capture the interaction between
network structure and node attributes from various degrees of
proximity. After that, we construct an enhanced matrix repre-
sentation of the attributed network by summarizing the various
degrees of proximity. Then, we design a deep neural network to
exploit the nonlinear complex information in the enhanced matrix
for network embedding. Thus, the proposed framework could
capture the complex attributed network structure by preserving
both the various degrees of network structure and node attributes
in a unified framework. Finally, empirical experiments show the
effectiveness of our proposed framework on a variety of network
embedding-based tasks.

Index Terms—Attribute proximity, attributed network embed-
ding, high-order proximity.

Manuscript received July 8, 2018; revised November 5, 2018; accepted
January 18, 2019. Date of publication March 1, 2019; date of current version
February 17, 2021. This work was supported in part by the National Key
Research and Development Program of China under Grant 2017YFB1002203,
in part by the National Natural Science Foundation of China under Grant
61602147, Grant 61602234, Grant 61572032, and Grant 61722204, in part by
the Anhui Provincial Natural Science Foundation under Grant 1708085QF155,
and in part by the Fundamental Research Funds for the Central Universities
under Grant JZ2018HGTB0230. This paper was recommended by Associate
Editor E. Chen. (Corresponding author: Le Wu.)

R. Hong, Y. He, and L. Wu are with the School of
Computer and Information, Hefei University of Technology, Hefei
230009, China (e-mail: hongrc.hfut@gmail.com; heyuan_95@163.com;
lewu.ustc@gmail.com).

Y. Ge is with the Department of Management Information Systems,
University of Arizona, Tucson, AZ 85721 USA (e-mail: yongge@
email.arizona.edu).

X. Wu is with the School of Computing and Informatics, University of
Louisiana at Lafayette, Lafayette, LA 70504 USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2019.2897152

, Member, IEEE, Yuan He, Le Wu

, Yong Ge, and Xindong Wu ", Fellow, IEEE

I. INTRODUCTION

N MANY real-world applications, the data exhibits the
Iinformation network structure, e.g., the social networks,
citation networks, and Internet. In these networks, the nodes
represent the entities in the information network, and the
edges denote the relationships between entities. Researchers
have well recognized that the network data is often sophis-
ticated with sparse edges, and it is technically challenging
to directly deal with it. To address this problem, one of the
effective strategies is to embed information networks into a
low-dimensional space, in which the useful information con-
veyed by the network is encoded [15]. Therefore, the network
embedding has become a hot topic in related areas, such as
machine learning and data mining. In these areas, research
works on network embedding focus on finding a way to
encode graph structure, so that it can be easily exploited
by machine learning models. In this paper, we focus on
network embedding in machine learning area. As a result,
every vertex is represented with a low-dimensional dense
vector. The learned low-dimensional embedding is useful in
numerous applications, such as node classification [57], link
prediction [8], [13], [50], and network visualization [42].

By representing the network as a graph structure, the ear-
lier works on network embedding could be traced back to
the classical models, such as IsoMAP [44] and Laplacian
Eigenmaps (LE) [3]. These models utilized the graph theory to
capture the local proximity between nodes with the observed
links. However, the real-world network is very sparse, with
many potential links missing and unobserved. By trivially
modeling the first-order observed proximity within nodes, the
global structure among nodes is neglected in the embedding
process. Thus, the performance is unsatisfactory due to the
insufficiency of modeling structure preserving properties in
the graph. Recently, some researchers argued that, besides the
first-order local proximity, it is also important to consider the
global structure of the network. For example, the recent works
of LINE [43] and SDNE [48] jointly considered the first-order
proximity and second-order proximity between vertices in the
network. Perozzi et al. [35] proposed a DeepWalk algorithm
that employed the generated random walk node sequences
in a network to capture the second-order and higher-order
proximity between nodes. These works advanced the previous
works by making full use of the local and global structure
of networks, usually leading to better network embedding
performance.

In real-world networks, besides the observed node-to-
node structure information, many nodes in the network are

2168-2216 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 10,2021 at 13:59:21 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5461-3986
https://orcid.org/0000-0003-4556-0581
https://orcid.org/0000-0003-2396-1704

HONG et al.: DANE BY PRESERVING STRUCTURE AND ATTRIBUTE INFORMATION

associated with rich attribute information. These networks
are called the attributed networks. In attributed networks, the
network embedding task is more challenging as it involves
learning low-dimensional representations of nodes that pre-
serve both the structure and the attribute information. In
fact, compared to the network structure embedding, the rich
attributes pose both opportunities and challenges for attributed
network embedding. On the one hand, researchers have long
demonstrated that node attributes are valuable for many
network-based applications, such as node classification [57],
link prediction [36], community profiling [49], and so on. The
rich node attributes provide valuable data sources to alleviate
the data sparsity issue in network embedding. On the other
hand, nevertheless, it is nontrivial to combine the attribute
information in the network embedding process. Several mod-
els attempted to tackle this problem by leveraging the attribute
information in these previous network embedding-based mod-
els [28], [34], [51]. For example, researchers proposed exten-
sions on DeepWalk [35] to incorporate text features of vertices
into network representation learning [34], [51]. LANE [28]
learned label informed attributed network embedding under the
classical matrix factorization-based network embedding mod-
els. In summary, these works were based on the previously
proposed shallow network embedding models, and alleviated
the data sparsity issue by preserving the attribute information
in the modeling process. Nevertheless, as the underlying
patterns of the attributed network are complex and highly
nonlinear, the limited representation ability of shallow mod-
els could hardly capture the complex patterns in the attributed
networks.

To this end, in order to capture the underlying complex pat-
terns of the attributed network, we propose to devise a deep
learning-based framework for learning node representations in
attributed networks. This is motivated by the recent success of
deep learning-based models for representation learning [40].
By using a cascade of multiple layers of nonlinear units in a
neural architecture, these deep learning-based models showed
substantial success for automatically learning useful represen-
tations from images [22], audio data [31], texts [47], and so on.
Thus, researchers from both industry and academia have been
in a race to apply deep learning-based methods for a wide
range of applications, such as network embedding [12] and
recommender systems [18], [19]. However, it is nontrivial to
directly apply these deep models for attributed network embed-
ding due to the uniqueness of the attributed network. In order
to capture the complex patterns in attributed networks, we
need to model the heterogeneity in attributed networks, includ-
ing preserving the local and global structure of the network,
as well as the node attribute information in a designed deep
model.

In this paper, we propose a deep attributed network embed-
ding (DANE) that deals with the data sparsity, structure and
attribute preserving, and nonlinearly patterns of attributed
network embedding in a unified framework. DANE is com-
posed of three steps. First, we adopt a personalized random
walk-based model to capture the interaction between network
structure and node attributes from various degrees of prox-
imity. In the second step, we construct an enhanced matrix
representation of the attributed network by summarizing the

1435

various degrees of proximity. With these two steps, the data
sparsity issue could be alleviated to some extent with the
various degrees of network structure and node attributes. In
the meantime, the local and global network structure, as well
as the node attributes are well preserved in the enhanced
matrix representation. In the third step, we design a deep
neural network to exploit the nonlinear complex patterns
in the enhanced matrix for network embedding. Thus, the
proposed framework could capture the complex attributed
network structure by preserving both the various degrees of
network structure and node attributes in a unified framework.
Finally, we conduct extensive experimental results on three
real-world attributed network data. The empirical experiments
clearly show the effectiveness of our proposed framework on
a variety of network embedding-based tasks.

We organize this paper as follows. In Section II, we review
the related work. In Section III, we briefly describe some pre-
liminaries. We present our proposed framework in Section IV,
followed by the experimental results in Section V. Finally, we
conclude the whole paper in Section VI.

II. RELATED WORK

In this section, we summarize the related work into
three categories: 1) classical network embedding models;
2) attributed network embedding models; and 3) deep neural
networks.

A. Network Embedding

Network embedding aims to embed information network
into a low-dimensional space, in which every vertex is rep-
resented as a low-dimensional vector [4], [9]. Earlier works
on network representation learning were related to dimen-
sion reduction, such as IsoMAP [44] and LE [3]. Recently,
proposed models of LINE [43] and SDNE [48] attempted to
preserve the first-order proximity and second-order proximity
in networks. Specifically, the first-order proximity denotes the
observed links in the graph. The second-order proximity of
nodes can be interpreted as that nodes with shared neighbors
being like to be similar, which is well supported in social the-
ory and linguistics [11]. In LINE, for each node, it first learned
the first-order and the second-order network embeddings sepa-
rately, and then concatenated these two representations as the
final node embedding. SDNE is proposed to simultaneously
model the first-order proximity and second-order proximity
in a semi-supervised deep autoencoder architecture. To bet-
ter preserve the global network structure, some algorithms
were proposed to capture high-order proximity in networks
for better embedding performance [5], [6], [35], [45]. Among
them, DeepWalk is one of the most popular approaches [35].
DeepWalk used local information from truncated random
walks as word-document sequences, and then a classical
SkimGram model from natural language modeling to generate
vertex representations. DNGR [6] applied a random surfing
model to capture graph structural information and applied the
stacked denoising autoencoder to generate low-dimensional
vertex representations. HOPE is proposed to capture both the
higher-order graph structure proximity and the asymmetric
transitivity in directed graphs [32]. Due to the success of

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 10,2021 at 13:59:21 UTC from IEEE Xplore. Restrictions apply.

1436

convolutional neural networks for image classification, some
recent works attempted to tackle the network embedding prob-
lems by defining graph convolutional operations [14], [21].
Besides, node embedding is also considered with hashing
techniques [27], evolutional graph embedding [29], and so on.

B. Attributed Network Embedding

Attributed network enhances the classical network struc-
ture with the detailed node attribute information, such as
user profiles in social networks and text messages associ-
ated with each article in citation networks. Many previous
works were proposed to exploit both structure and attribute
information for enhancing network-based tasks, such as link
prediction [2], sentiment analysis [41], and community detec-
tion [53]. Recently, attributed network embedding has attracted
a surge of research attention [20], [34], [51], [55]. By prov-
ing that DeepWalk, a state-of-the-art network representation
method, is equivalent to matrix factorization, text-associated
DeepWalk (TADW) is proposed to incorporate the text features
of vertices in the embedding space under the matrix factor-
ization framework [51]. TADW showed better performance
by incorporating the node textual information. Nevertheless,
the first-order proximity is neglected in the matrix factor-
ization process. Based on the objective function of TADW,
HSCA introduced a proposed regularization term that penal-
izes the distance between connected vertices in the embedding
space [55]. Given the basic idea of DeepWalk, TriDNR is
proposed to separately learn embeddings from node-node
structure relationship, node—word correlation, and label-word
correspondence. Nevertheless, all these works were relied on
the shallow models of matrix factorization-based variants and
DeepWalk variants [34]. Attributed network embedding has
also been considered for the incomplete graph with the mul-
tiview learning framework [25], [52]. A recently proposed
model SNE [28] aggregated more informative representations
from the ID embedding and the attribute embedding, both
of which are learned through the multilayer neural networks.
Hence, we argue that the patterns in attributed networks are
complex and hidden, and we aim to exploit the hidden patterns
in attributed networks with deep learning-based models.

C. Deep Neural Networks

Deep neural networks develop algorithms to automatically
learn the nonlinear, deep complex features of objects, and
have achieved success in fields like image classification [37],
natural language translation [7], and so on. Among all deep
learning models, autoencoder and its variants provide unsuper-
vised approaches for feature engineering, and have also been
adopted in many network-based applications. Researchers
proposed an autoencoder-based approach for learning node
representations in sparse networks [54]. The proposed method
showed comparable results compared to state-of-the-art mod-
els. Nevertheless, it only considered the first-order proximity
of nodes in the network without any global information.
DNGR [6] applied the stacked denoising autoencoder to
generate low-dimensional vertex representations. SDNE is a
semi-supervised deep autoencoder model by enforcing the

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 51, NO. 3, MARCH 2021

TABLE I
SUMMARY OF NOTATIONS

[Notations | Description
G The attributed network
V, E Set of vertices, edges
V], |E|] ,n Number of vertices, edges, attributes
S Structure adjacency matrix
A Structure transition matrix
XC RIVIXn Attribute information matrix
R Attribute proximity matrix
Pt The ¢ degree proximity matrix
Q Enhanced attributed network matrix
d Dimension of the learned representations
H ¢ RIVIxd Embedding matrix

first-order proximity as the supervised information in the
embedding space for network embedding without any attribute
information [48]. DRNE [45] is designed with a layer normal-
ized LSTM model to learn node representations with regular
equivalence information preserves. As the graph structure
evolves over time, DepthLGP, a deep generative model is
proposed for dynamic network embedding [29]. Borrowing
the success of these previous works, we provide one of the
first few attempts to use deep learning models for attributed
network embedding. In this paper, we focus on the most
common case when the static network structure and network
attributes are available, and leave the problem of how to model
dynamic network embeddings as a future work.

III. PROBLEM DEFINITION

In this section, we first introduce the definition of attributed
network embedding and define some important terminologies.
The main notations used in this paper are listed in Table I.

Definition 1 (Attributed Network): An attributed network is
denoted as G = (V, E, X), where V = {vi,v2,v3,..., vy}
denotes the set of nodes and E € RY*Y denotes a set of edges.
e;j represents the connection between v; and v;. Each node
v; € V is associated with an n-dimensional attribute vector x;.
Matrix X = [x1 : x2 : X3, ..., x,] € R™IVI captures all binary
features of the nodes.

Given an attributed network G, we can obtain a structure
adjacency matrix S, where the (i, j)th entry of S represents the
link information between v; and v;. For an unweighted graph,
we have S;; = 1 if there exists an edge from v; to v;, and
define it as O if there is no edge. For a weighted graph, if
there exists an edge from v; to v;, S;; denotes the detailed
weight between them.

Definition 2 (Attributed Network Embedding): Given an
attributed network G = (V,E,X), the task of attributed
network embedding is to represent each vertex v; € V into
a low-dimensional space with informative and continuous
representation, where structure proximity in E and attribute
proximity in X are preserved.

For better understanding, we illustrate an instance of
attributed network embedding in Fig. 1, where the left part
shows an attributed network, and the right part depicts the
embedding of the nodes. For example, as (v3 and vs) have
strong bonds in the structure space, the embeddings of them
are encouraged to be similar in the embedding space, so as

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 10,2021 at 13:59:21 UTC from IEEE Xplore. Restrictions apply.

HONG et al.: DANE BY PRESERVING STRUCTURE AND ATTRIBUTE INFORMATION

I
©6
®
©0J6)
@@@5@?@@0@@@@ O)
: ®
fender 1110/ 1] 1[0[1]1[1[1]0]1 @@
Ischool[T]O[T]0J0 0[O[1[0]1]0]1 (0
letwb-110To 0 1 [1[0[1[1[0]0[1]1)
{ewb-2 1To[1]0lo[o[1 o 11]0l0 R

Fig. 1. TIllustration of attributed network embedding. The input is an attributed
network and the output is the low-dimensional embeddings of the nodes. The
colored nodes share common attributes and have similar representations in
the embedding space.

the vertex pairs of (v and vg) and (v9 and vi3). This structure
preserving property is commonly adopted by most network
embedding models. In the attributed network embedding, ver-
tex pair (vg and vip) are close to each other as they have
similar attributes, though they are not directed connected.

Definition 3 (Structure Transition Probability): The struc-
ture transition matrix A € R!VI*IVI denotes the probability of
direct transitions between each pair of vertices. At each time,
vertex v; will connect with v; with a certain probability, which
is defined as A; ; and determined by the affinity score of vertex
pair (v, v;). Otherwise, if there is no connection between v;
and vj, the structure transition probability A;; equals 0.

Structure transition matrix A shows the transition probability
between nodes within one step, which can also be regarded
as a rescaled adjacency matrix S whose rows are normalized.
So, we can learn A as

o Sij

L= :
kaEV Si .k

In the above equation, A; ; denotes the transition probability

from v; to v;. Thus, the structure transition matrix A should
satisfy the following constraints:

1: OSAi.jS]

A (D

14
2: Viell,2,3,...,|V]], ZA’?J': 1. 2)
j=1

Definition 4 (Attribute Proximity Probability): The attribute
proximity probability represents the association between ver-
tices evidenced by their corresponding attributes, which is
related to the attribute proximity. All the attribute proxim-
ity probabilities can be represented in an attribute proximity
matrix R, where R;; is determined by the similarity between
x; and x;, i.e., the attribute vector representations of v; and
vj. The more common attributes two vertices share, the larger
attribute proximity probability between them.

To better obtain attribute proximity probability from het-
erogeneous and highly diverse attributes matrix X, we first set
matrix B to denote the proximity nodes in G evidenced by
attributes. Without the loss of generality, B;; is computed as

. ly ©x; ©xl

N ly © (xi +x —x; © xj)|
where x; is the one-hot encoding attribute vector representa-
tion of node v; and x; denotes the one-hot encoding attribute

3)

ij

1437

representation of v;. In fact, any attribute can be easily trans-
formed to one-hot encoding, and this one-hot encoding is also
widely applied in many real-world applications. Vector y € R"
controls the weights of each attribute, with y; € [0, 1] denotes
the importance of the kth attribute. Considering some attributes
are important, y plays an important role in balancing different
attributes.

Given the attribute proximity matrix R, the attribute proxim-
ity probability R; ; represents the scaled similarity of attributes
between two adjacent v; and v;. Similar to the normalization
of the structure adjacency matrix mentioned above, we per-
form the same procedure on node attribute proximity to obtain
the normalized attribute proximity matrix, which is defined as
follows:

Bij
kaEV Bi,k

where B ; is the attribute proximity of node v; and v;.

Rij= 4

IV. PROPOSED DANE FRAMEWORK

In this section, we describe our proposed DANE frame-
work for attributed network embedding. Given an attributed
network G, its structure transition matrix A and attribute prox-
imity matrix R as defined above, our goal is to learn a deep
embedding h; for each node v; in a low latent space, such
that the structure and attribute information are preserved. The
basic idea of DANE is that, instead of operating on the
structure adjacency matrix S, we borrow the random walk
idea of this attributed network to build an enhanced matrix
0 € RVl with structure transition matrix A and attribute
proximity matrix R. With this enhanced matrix Q, we could
use the unsupervised deep learning model to learn the embed-
dings of each node to capture the complex patterns of this
attributed network G. Given this basic idea, we present the
architecture of DANE in Fig. 2, which consists of three main
parts.

Part 1 (Step-Based Proximity Calculation): Based on
the random walk in graphs, at each step ¢, we build a
step-based proximity transition matrix P’ that captures the
proximity between nodes from ¢-degree of proximity with
both structure transition matrix A and attribute proximity
matrix R.

Part 2 (Proximity Fusion): Given the r-degree proximity
matrix sequences, we introduce a fusion method that pro-
duces a proximity fusion matrix Q@ C RIVI*XIVI based on
various P’ calculated above. Thus, Q preserves the various
orders of structure and attribute information of the attributed
network.

Part 3 (Deep Embedding): As the hidden information in
attributed networks is usually complex and nonlinear, given the
proximity fusion matrix Q, we use a deep embedding model
to get the embeddings of nodes in the final step.

Next, we introduce these three steps in detail.

A. Step-Based Proximity Calculation

The step-based proximity calculates the similarity between
nodes from different steps ¢t (rt = 1, 2, 3, ...), which is similar

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 10,2021 at 13:59:21 UTC from IEEE Xplore. Restrictions apply.

1438 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 51, NO. 3, MARCH 2021
step 1 step 2 step 3
proximity calculation proximity fusion deep embedding
Siftesis e O
" 18| o o |®
- QL@ QLD
s r HE 7 c] e [LTk
L 0 | 0] 1O o 10
+ . : O] 9
: 1nput g, . output q;
e enhanced matrix Q embedding :
: : [B pt : h=[0.24 0.67]n,
n n, } i «latent space~
Fig. 2. Tllustration of the overall framework of DANE.

to the Personalized PageRank model that is traditionally used
for ranking nodes in graphs [16], [33]. Nodes connect with
each other in an attributed network G is similar to that brows-
ing the links in the Internet. By borrowing the basic ideas in
Personalized PageRank, we also rely on the two assumptions
for network embedding.

1) Structure Random Walk Assumption: It implies that node
v; will walk to node v; with high probability if there is a
connection between v; and v;. Two vertexes in real-world
networks are always similar if they are linked by an
observed edge.

2) Attribute Proximity Assumption: It means that node v;
will possibly be similar to node v; if they have many
similar attributes. A pair of nodes (v;, v;) should have
more intimate relationship if they share many common
attributes.

These two assumptions have been proved reasonable in
many fields. For example, for the structure random walk
assumption, if a paper cites another paper, they probably con-
tain some common topics and should be close to each other in
the embedding space. Besides, social scientists have long con-
verged that individuals would develop friendships with others
of approximately the same age and same race [23], revealing
the attribute proximity assumption.

Given a source node v;, we assume that it walks the next
node from structure transition matrix A with probability «, and
with probability 1 — « it jumps to other nodes from attribute
proximity matrix R. Then, the first degree relationship between
node v; and v; is modeled as

A,) + (1 —a)R;j, if ey €E

1
Pij =

(&)

(I —o)Ri; otherwise.

Then, for any ¢ > 1, we can model the (z+ 1) th step-based
proximity based on the t-th proximity matrix P’ as

PHl = aP'A+ (1 — @)R. (6)

In the above equation, for the structure proximity at the
t+ 1th step is the ¢-th step proximity matrix P’ multiplied by

the graph structure matrix A. The node attribute proximity at
the ¢ 4+ 1th step is R as node attributes are static and do not
evolve with the graph structure. Then, the final (¢ 4+ 1)th step
proximity is fused by the #-th structure proximity and attribute
proximity.

Please note that, in step-based proximity calculation pro-
cess, the first degree proximity matrix P! could be treated
as the linear combination of structure transition matrix A and
attribute proximity matrix R, where only the first-order prox-
imity between nodes from the structure is considered. Then,
P? considers the second-order structure proximity between
nodes, as well as the attribute proximity. The larger the ¢, the
higher-order structure proximity, and the node attribute prox-
imity is modeled. In such a way, we could model the local
and global structure proximity, as well as the node attributes

with the proximity matrix sequences: P!, P2, ..., P'.

B. Proximity Fusion

In this section, we propose to merge the proximity matrix
sequences: Pl P2 ... P' into a matrix 0, that well pre-
serves the local and global structure information, and the
node attribute information. A simple idea is to simply aver-
age all these proximity matrices for merging. However, in
attributed networks, the closer connections between nodes (i.e.,
the smaller degree), the more intimate relationship between
two nodes. Intuitively, network embedding expects nodes with
low-order proximity to be more influential than those of high-
order proximity. So, it is better to design a weight function
with the weight monotonically decreasing as step ¢ increases.
Based on this intuition, it is desirable if the proximity fusion
matrix Q is defined as

T
Q=) wn-P' ™
=1
where w(f) is a decreasing function, i.e., w(t + 1) < w(?).

In practice, in order to preserve the information rang-
ing from 1st degree to 7-th degree appropriately, we use an
exponential function adjusted with a parameter § as weight-
ing strategies in our implementation. Please note that, any

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 10,2021 at 13:59:21 UTC from IEEE Xplore. Restrictions apply.

HONG et al.: DANE BY PRESERVING STRUCTURE AND ATTRIBUTE INFORMATION

proximity function that satisfies (7) could be used as the prox-
imity fusion function. Then, the fusion function is indicated
as follows:

w(r) =g~ ®)

where 8 € (0, 1), and the weight w(#) diminishes as step ¢
increases.

The proximity fusion method that combines different orders
of proximity is widely adopted in some classical graph
similarity-based metrics (e.g., the Katz index), and the recent
HOPE [32] model for network embedding. Our proposed prox-
imity fusion method differs from these works as we focus on
the attributed network that considers both the structure proxim-
ity and attribute proximity, while these previous works mainly
focused on the graph structure without attribute proximity
modeling.

C. Deep Network Embedding

Since the fusion matrix Q contains the local and global
structure, as well as the node attribute of the attributed network
G, in this step, we focus on generating low-dimensional deep
embedding vectors from Q with deep models. Specifically,
stacked denoising autoencoder, a popular unsupervised deep
representation learning model, is especially suitable as the
deep learning model. It learns the deep representations of
inputs by learning a nonlinear from inputs, then reconstructs
the inputs from the deep representations. In the deep network
embedding procedure of DANE, given the fusion matrix Q, our
goal is to learn a mapping function f : Q — H € RIVI*4 where
H is the learned embedding matrix with the deep autoencoder
network. An autoencoder neural network is an unsupervised
model which is composed of two parts, i.e., the encoder and
decoder, and the structure of autoencoder is displayed in the
right part of Fig. 2. Here, we briefly introduce the two parts.

1) Encoder: The encoder part transforms input vector g; to
a hidden layer representation h;, where ¢; is the ith row of
the fusion matrix Q. The encoder part can be mathematically
formulated as

H=f(WQ+b) €))

where {W, b} are the parameters of the encoder with W €
RVl b e RY. £(-) is the activation functions.

2) Decoder: The decoder part reconstructs the input matrix
Q from the embedding matrix H, which can be formulated as

0 =g(WH+Vb) (10)
where {W’, b’} are the parameters of the decoder with W' €
RIVI*d b/ e RVl g(-) is the activation functions.

All the parameters are learned by solving the following
optimization problem:
4

min Y £(gi. Gi: W. b, W', b).

1

Y

In practice, redundant information and noise are also con-
tained in the fusion matrix Q. Denoising is a widely used
strategy that is introduced to reduce noise and enhance robust-
ness of autoencoder [46]. Stacked denoising autoencoder

1439

works by randomly dropping out the input before encoding
in the training step. In DANE, we perform deep embedding
using stacked denoising autoencoder with sparse inputs, then
our model could better reconstruct the input under a noisy or
partial input. Let m® e {0, 1}V denote the random binary
mask that dropouts the input vector. The process of input
corrupted by noise is then defined as qi.‘ =g om®. Asa
result, the revised objective function with dropout is shown as
follows:

14
~ A
: ~k k2 2 2
min£(Q.9) = 3 (@ =)3+ 5 - (w3 +1w'13)
i=

12)

where ® = [W, b, W, b'] is the parameter set of the deep
autoencoder.

We regularize the learned parameters to control the model
complexity so as to prevent overfitting. Squared L,-norm is
used in DANE. After building the basic architecture, we will
fine-tune the parameters using the stochastic gradient descent.

D. Model Learning and Discussion

In fact, the above proposed objective function is differen-
tiable. Therefore, similar as many deep learning-based models,
we could implement DANE with TensorFlow! to jointly
train model parameters by performing the stochastic gradient
descent [1].

1) Complexity Analysis: Our proposed DANE framework is
composed of three parts: 1) proximity calculation; 2) proxim-
ity fusion; and 3) deep embedding. Given a truncated step 7,
the time complexity of the first part is O(T|V|?), where |V] is
the number of vertices. The time complexity proximity fusion
step is O(|V|?). For deep embedding part, the time complex-
ity is O(d|E|), where d is the maximum dimension of the
hidden layer, and E is the number of edges. Since the edges
are very sparse (O(|E|) < 0(|V|3)), the total time complexity
of DANE is O(T|V]3).

2) Dealing With Incomplete Graph: The proposed DANE
framework is set with the assumption that both the network
structure and node attributes are available. In the real world,
the attributed graph may be incomplete, with missing node
links or missing node attributes. For example, in the social
network, some users are reluctant to complete their profile
information, leading to the incomplete node attributes of these
users. DANE is also flexible to this situation. By adapting the
proximity calculation step as shown in (5), DANE fuses the
structure and attribute proximity of each node with a balance
parameter «. For each node, when the node attribute is not
available, « = 1 for this node, showing that the embedding
of this node preserves the structure information. In contrast,
if a node only has the node attributes without any structure
information, ¢ = 0 for this node, denoting the node embedding
purely relies on the attribute information.

1 https://www.tensorflow.org/

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 10,2021 at 13:59:21 UTC from IEEE Xplore. Restrictions apply.

1440

TABLE 11
STATISTICS OF THE DATASETS

Dataset Nodes | Edges | Attributes | Labels
BlogCatalog 5196 | 171,743 8189 6
Flickr 7575 | 239,738 12047 9
Flickr3 2489 40,157 4843 3
Email-Eu-core 1005 25,571 42 -

V. EXPERIMENTS
A. Experimental Setup

Three public networks, i.e., BlogCatalog,2 Flickr, and
Email® are adopted for evaluation. All of them have been used
in the previous work [24], [26] and are publicly available.
Table II shows the statistics of these datasets and the detailed
descriptions of them are listed as follows.

1) BlogCatalog [26] is a social network, where people
can post blogs. Bloggers can follow others to form a
network. The keywords in users’ blog descriptions are
considered as his/her attribute information. In this online
social network, every user is labeled by categories,
which can be used as the label of the blogger. Then,
it can be evaluated on node classification application.

2) Flickr [26] is an image and video hosting website, where
users interact with each other via photograph sharing.
The network is formed by the following relationships
among users. The list of tags specified by every user
is considered as his/her attribute information. There are
nine groups on this website, and each user could join one
group. Each user’s group information could be regarded
as the label information of this user.

3) Flickr3 is a subset of Flickr dataset. We choose users
from three groups in Flickr as a new dataset. The three
different groups that users joined are presented as labels,
which can be used in visualization task.

4) Email-Eu-Core [24] is generated by email data from
a large European research institution. Members connect
with others through emails and the department they work
for are regarded as the attributes.

We compare our proposed DANE framework with the fol-
lowing five network embedding methods. The properties of
the baselines are summarized in Table Il and the detailed
descriptions are listed as follows.

1) TADW [51]: Tt is an algorithm that utilizes both network
and context attribute information under the framework
of matrix factorization to learn network representation.

2) DNGR [6]: Tt uses a random surfing model to cap-
ture global structure information and calculates the
PPMI matrix from probabilistic co-occurrence matrix.
Then, a stacked denoising autoencoder is used to learn
low-dimensional vertex representations from the PPMI
matrix.

3) LINE [43]: 1t learns two embedding vectors for each
node from the first-order and second-order proximity of
the network, respectively. The embedding vectors are
concatenated as the final representation for each node.

2http://people.tamu.edu/ xhuang/Code.html
3 https://snap.stanford.edu/data/email-Eu-core.html

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 51, NO. 3, MARCH 2021

4) DeepWalk [35]: Tt learns representations by employ-
ing truncated random walks on the plain graph and
using skip-gram with hierarchical softmax to analyze
the walking tracks.

5) AE+A: It concatenates linkage and attribute information
into one matrix, and conducts an autoencoder model [38]
on the joint matrix for mapping them into low-
dimensional vectors.

B. Parameter Settings

In our proposed DANE framework, we use stacked denois-
ing autoencoders to generate compressed vectors from the
constructed matrix Q. The structure of the deep embedding
varies with different datasets. We detail dimensions of each
layer in the stacked autoencoder of different datasets, which
are listed in Table IV.

Regarding the choice of the activation function in the
hidden layers of autoencoder, we have tried rectified linear
unit, hyperbolic tangent function (tanh), and sigmoid func-
tion. As these three functions show similar performance,
we choose the sigmoid function as a representative. Hence,
all the neurons are activated by the sigmoid function. The
parameters « and B are tuned by using grid search on
the validation set. We use a grid search among the fol-
lowing parameters: « € {0.95,0.9,0.85,0.8,0.75,0.7} and
B € {0.98,0.96,0.94,0.92, 0.9} to find the optimal param-
eters, where o denotes the random walk preference ratio
between structure information and attribute information and
B controls the downtrend of higher-order information.

C. Experimental Results

In this section, we report the results of DANE against
each baseline. Three classic applications are used to evalu-
ate the effectiveness of node embedding results: 1) multilabel
classification; 2) link prediction; and 3) visualization.

1) Multilabel Classification: Multilabel classification is an
important task that aims to predict the labels of unlabeled ver-
tices. The representations for the vertexes are generated from
the network embedding methods and are used as features to
classify each vertex into a set of labels. For the multilabel
classification task, similar to many other works, we adopt
Micro-F1 score and Macro-F1 score for evaluation [43], [56].

First, we define TP;, FP;, and TN; as the true positive, false
positive, and true negative of label i. Suppose M is the total
number of categories, recall p and precision 7 are obtained
by summing over all individual decisions

_ ZieM TP; ZieM TP;
> ¥ (TP; + FP;) > ¥ (TP; + FN))

Micro-F1 tends to be dominated by classifier’s performance

on common categories is then computed as
21 p

T4p

Macro-F1 is obtained by taking the average of F-measure
values for each category as

Micro-F1 =

ZieM Fi
M
where F; is the F1-measure for the label i.

Macro-F1 =

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 10,2021 at 13:59:21 UTC from IEEE Xplore. Restrictions apply.

HONG et al.: DANE BY PRESERVING STRUCTURE AND ATTRIBUTE INFORMATION

1441

TABLE III
SUMMARY OF THE BASELINES

Algorithms First-order Proximity | Second-order Proximity | Higher-order Proximity | Attributes | non-linearly
DANE V4 V4 vV
TADW [51] v vV V
DNGR [6] vV Vv N
LINE [43] Vv N
DeepWalk [35] N v/
AE+A [38] V v N

TABLE IV
STRUCTURE OF THE STACKED AUTOENCODER OF DIFFERENT DATASETS

Dataset nodes in each layer
BlogCatalog 5196-1200-300
Flickr 7575-1500-300
Flickr3 2489-600-150
Email-Eu-core 1005-240-60

We first learn embedding vectors from training datasets (all
links and attributes) under different models. After that, we use
the LibLinear package [10] to train the classifiers, which is
widely adopted in training one-versus-rest logistic regression
classifiers. We run this process for 50 rounds and report the
averaged Micro-F1 and Macro-F1 measures. For each round,
we randomly sample the vertices ranging from 10% to 90% as
labeled nodes and use these samples for training. The remain-
ing vertices are used for evaluation. Since the BlogCatalog
and Flickr datasets have the labels of each vertex, we show
the performance of these two datasets in Table V. From the
results, we have the following observations.

1) First and foremost, as shown in Table V, DANE achieves
the best performance among all the baselines under
all settings. It empirically demonstrates that DANE
could learn better network embeddings compared to the
baselines.

2) Focusing on methods that account for attributes (i.e.,
DANEm and TADW), we find these two methods per-
form better than DNGR and DeepWalk, as the latter
two methods only exploit network structure without
any attribute modeling. In both datasets of BlogCatalog
and Flickr, DNAE and TADW achieve more than 10%
gain over DeepWalk and DNGR in Macro-F1 and
Micro-F1 scores, demonstrating the significant improve-
ment of incorporating attribute information into network
representation learning.

3) By taking advantage of high-order proximity in
the network structure, DANE achieves more than
23% improvements than AE+A. Although attributes
information is taken into consideration, AE+A is the
worst among the network embedding methods, espe-
cially when the training percentage decreases from 30%
to 10%. It demonstrates that the higher-order proximity
is of great importance in preserving network information
for label classification especially when the dataset is very
sparse.

4) Our proposed framework always performs the best,
followed by the baseline of TADW. In fact, TADW
exploited the high-order proximity and attribute

proximity. We guess a possible reason is that our
proposed DANE framework modeled the complex
patterns in the attributed network with deep neural
networks, while the TADW relied on the shallow model
of matrix factorization.

2) Link Prediction: In this section, we concentrate on the
link prediction task which assesses the ability of learned
representations in reconstructing network structure [28]. We
use Precision@k, NDCG@k, Recall@k, and AUC, which
are widely used in link prediction [54] and recommenda-
tion [17], [39] to judge the ranking quality. Their definitions
are listed as follows.

1) Precision@k is defined as the ratio of true predicted

links selected for top-k edges. The Precision@k of user
v; can be calculated as follows:

[{vjlei; # 0, index(v;) < k}|
k

where index(v;) is the ranked index of predicted edge
eij to v; and ¢;; # 0O indicates there is a link between
Vi and Vj.

2) NDCG@k assigns higher importance to results at top
ranks, scoring successively lower ranks with marginal
fractional utility

Precision@k(v;) =

k
NDCG@k(v;) = Zx Z
j=1

20 —1
log, G+ 1)

where Z; is the normalizer to ensure the perfect ranking
has a value of 1 and r; is the graded relevance of node
at position j. In this paper, r; = 1, if there is an observed
link between v; and v;, and O otherwise.

3) Recall@k is the proportion of correctly predicted links
found in the top-k link prediction list. The Recall@k of
user v; is defined as follows:

[{vileij # 0, index(v;) < k}|

Recall@k(v;) =
l |{vjlei; # O}
where index(v;) is the ranked index of predicted edge
é,',j to v;.

4) AUC is defined as the area under the ROC curve. It is
a summary measure with good stability that essentially
average accuracy across the spectrum of test values. The
trivial AUC of a random guess method is 0.5 and the
larger the value, the better the performance.

In order to evaluate the overall performance of network rep-
resentations in link prediction, we randomly hold out 10%
links as the test dataset, 10% as the validation set, and the
remaining 80% links are used for training. Table VI shows

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 10,2021 at 13:59:21 UTC from IEEE Xplore. Restrictions apply.

1442

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 51, NO. 3, MARCH 2021

TABLE V
MULTILABEL CLASSIFICATION ON BLOGCATALOG AND FLICKR WITH DIFFERENT ALGORITHMS
BlogCatalog Dataset
Model Macro-F1 Micro-F1
90% 70% 50% 30% 10% 90% 70% 50% 30% 10%
DANE 0.8485 | 0.8385 | 0.8273 | 0.8169 | 0.7787 | 0.8503 | 0.8456 | 0.8381 | 0.8237 | 0.7861
TADW 0.8271 | 0.8238 | 0.8121 | 0.7957 | 0.7429 0.834 0.8308 | 0.8197 | 0.8058 | 0.7588
DNGR 0.7031 | 0.7027 | 0.6969 | 0.6892 | 0.6709 | 0.7082 | 0.7069 | 0.7011 | 0.6879 | 0.6765
LINE 0.7058 | 0.6997 | 0.6939 | 0.6818 | 0.6363 | 0.7135 | 0.7072 | 0.7009 | 0.6884 | 0.6421
DeepWalk 0.6887 | 0.6812 | 0.6745 | 0.6552 | 0.5747 | 0.6981 | 0.6906 | 0.6832 | 0.6625 | 0.5796
AE+A 0.6194 | 0.6132 | 0.6032 | 0.5775 0.501 0.6292 | 0.6217 | 0.6113 | 0.5861 | 0.5121
Flickr Dataset
Model Macro-F1 Micro-F1
90% 70% 50% 30% 10% 90% 70% 50% 30% 10%
DANE 0.7319 | 0.7331 | 0.7231 | 0.7056 | 0.6486 | 0.7386 | 0.7367 | 0.7266 | 0.7097 | 0.6548
TADW 0.7171 | 0.7115 | 0.7022 | 0.6836 | 0.6343 | 0.7192 | 0.7131 | 0.7036 | 0.6847 | 0.6346
DNGR 0.6045 | 0.5893 | 0.5707 | 0.5444 | 0.4977 | 0.6105 | 0.5942 | 0.5743 | 0.5472 | 0.5018
LINE 0.5774 | 0.5738 | 0.5676 | 0.5552 | 0.5180 | 0.5893 | 0.5836 | 0.5772 | 0.5651 | 0.5278
DeepWalk 0.5540 | 0.5495 | 0.5381 | 0.5147 | 0.4256 | 0.5656 | 0.5601 | 0.5479 | 0.5233 | 0.4295
AE+A 0.5227 | 0.5187 | 0.5042 | 0.4791 | 0.4097 | 0.5348 | 0.5291 | 0.5147 | 0.4902 | 0.4225
TABLE VI
LINK PREDICTION PERFORMANCE ON FLICKR AND EMAIL-EU-CORE WITH DIFFERENT ALGORITHMS
Model Flickr Dataset Email-Eu-core Dataset
Precision@3 | NDCG@3 | Recall@3 | AUC | Precision@3 | NDCG@3 | Recall@3 | AUC
DANE 0.4576 0.4912 0.1839 0.9363 0.3943 0.4183 0.4297 0.9515
TADW 0.4328 0.4583 0.1739 0.9358 0.3793 0.4001 0.4139 0.9314
DNGR 0.4261 0.4565 0.1713 0.9233 0.3844 0.4086 0.4194 0.9135
LINE 0.3827 0.4123 0.1545 0.9098 0.3674 0.3874 0.3986 0.9087
DeepWalk 0.4197 0.4462 0.1687 0.9319 0.3742 0.3969 0.4084 0.9256
AE+A 0.3789 0.3964 0.1523 0.9029 0.3628 0.3894 0.361 0.9149

Precision@3, NDCG@3, Recall@3, and AUC score of DANE
and baselines on Flickr and Email-Eu-core datasets. A higher
value indicates a better performance. The best performance is
highlighted in bold. Based on this table, we have the following
observations.

1) The results show that the representations learned by
DANE have higher scores compared to the baselines
under all measures, which demonstrates that the learned
network representations of our method have much better
power in the link prediction task. For instance, on Flickr,
our method achieves at least 3.29% improvement than
baselines for NDCG@3.

The effectiveness of modeling attribute and high-
order proximity information is highly demonstrated in
Table VI. For example, DNGR generally outperforms
LINE, for the reason that higher degree information
can be captured in DNGR. And DANE achieves bet-
ter performance than DNGR, which shows the posi-
tive effects of incorporating attributes into the network
embedding process. It demonstrates that capturing suf-
ficient information for link prediction can partially alle-
viate data sparsity issue and reach a better performance.

3) Visualization: Another way of assessing the quality of
the network embeddings is through visualization. We conduct
visualization experiments by following Tang et al. [43] and
comparing the performance of our model with the baselines on
Flick3. We choose Flick3 as it is a part of Flickr dataset with
three classes, and it is suitable for visualization. We first learn
low-dimensional node embeddings from the original dataset

2)

with different models. Then the learned graph representations
are fed as the input to t-SNE tool [30]. As a result, nodes are
mapped as two-dimensional (2-D) vectors and graphs can be
visualized on the 2-D space. Nodes with the same label share
the same color, and a good visualization performance is that
points of the same color are close to each other. Fig. 3 shows
the visualization figure with different embedding methods.

Many attributed networks have community structure, which
shows dense vertexes—vertexes connections and highly simi-
lar properties within the same categories, but relation among
vertices outside the community is sparse. Then, the clustering
structure can be learned with different embedding approaches
and create meaningful visualizations. Fig. 3 compares the visu-
alization results with different modes. It is obvious that AE+E
achieves the worse performance as the points belonging to dif-
ferent categories are mixed with each other. The clusters of
three categories are formed in LINE, DeepWalk, and DNGR.
However, some points with different labels are still mixed with
each other, especially the points in red. For TADW and DNGR,
the results look better because three groups are formed and
the boundaries of different groups are very clear in DANE.
We guess the reason is that the abundant attribute information
which can reflect user’ habits is taken into consideration in
TADW and DANE.

D. Analysis on Model

In this section, we investigate the performance of DANE
under different parameter settings. Specifically, we evaluate

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 10,2021 at 13:59:21 UTC from IEEE Xplore. Restrictions apply.

HONG et al.: DANE BY PRESERVING STRUCTURE AND ATTRIBUTE INFORMATION

1443

(@ () ©

Fig. 3.
__p—g—n—8—0—1 ——u—8—8—1
0sf a—8="="1 08;_M—2=
7 e F Y — VY YV
v—v" r/v./v
07 / = 07f
g g
g 5
E A = < <«
=06 — Z o6l et ;
<« < —B—=10—0—1=8
/ / =6 —g—1t=4
05 0 =2 —d—t=1
0.1 0.3 0.5 D1 0.3 0.5 0.7 0.9
Percent Percent
(a) (b)
Fig. 4. Performance comparison on different ¢ with weighting parameter

B = 0.96. (a) Macro-F1. (b) Micro-F1.

the effectiveness of DANE from the impact of step size T,
the impact of balance point «, and the impact of embedding
dimension d. We use the node classification on BlogCatalog
with Macro-F1 and Micro-F1 scores as an example to show
the results. The trend is similar in Flickr and Email-Eu-core
datasets.

1) Impact of Step Size T: Step size T captures the global
higher-order structure information. As 7 increases, more
global structure is captured. In order to present the impact of
high-order proximity intuitively, performances over a series
of step sizes T are shown in Fig. 4. Different degrees
of proximity are fused by weighting strategies of (7) with
B = 0.96, which has been previously learned. When 7T = 1,
the performance is totally determined by the observed first-
order relationship between vertexes. As shown in the figure,
step size T = 2 has an obvious improvement over step size
T = 1, which indicates the importance of second-order prox-
imity. The second-order proximity captures the neighborhood
information between nodes, and two nodes have larger second-
order proximity if they share similar neighborhood structure
even though they are not directly connected. With the increase
of T, higher degree information is captured, And the perfor-
mances of T = 10 is much better than 7 = 1 and 7 = 2.
However, the improvement margin over different step sizes
sharply decline when the step increases from ¢ = 8 to r = 10.
We suspect that weaker information stored in #-th degree
relational information can account for this, as mentioned
in Section IV-B

2) Impact of Balance Point o: Parameter « balances the
weight of structure information and attribute information (5).
The smaller the o, the more attention is paid to attribute prox-
imity during the random walk process. In this section, we
investigate the effects of parameters o and show the results in
Fig. 5. When o = 1, the performance is totally determined by

@ © ®

Visualization of Flickr3 network by different algorithms. (a) DANE. (b) TADW. (c) DNGR. (d) LINE. (e) DeepWalk. (f) AE+A.

—

—p]

050 %v\v§1 050 /:\v\

[[

o 0.75 s 0.75

S 5]

S —B—Train0.9 = —m—-T 0.9

= 0.70 —-o— |:‘::::u7 = 0.70 —o— |;::::u7

Train0.5 Train0.5
065 i 06s] o
1.0 0.9 0.8 0.7 0.6 1.0 0.9 0.8 0.7 0.6

o o
(a) (b)
Fig. 5. Performance comparison on different o with different proportions of

train-set. Train0.9 expresses 90% nodes are sampled as train set. (a) Macro-F1.
(b) Micro-F1.

0.85 —

o——o— | 0.85

SAE—
£ 0.80 // B

=]
%
=]
\

Macro-F1
Micro-F1

0.75
0.75 ain0.5 —w—"Train0.3
Train0.1
200 300 400 500 200 300 400 500
Dimension Dimension
(a) (b)
Fig. 6. Performance over different dimension d on different proportion of

train-set. Train0.9 expresses 90% nodes are sampled as train set. (a) Macro-F1.
(b) Micro-F1.

the structure proximity. It is obvious that the performance of
o = 0.8 is better than that of « = 1, which demonstrates that
both structure information and attribute proximity are essen-
tial for network embedding. When « decreases from 1 to 0.8,
the more attention is paid to attribute information and the
performance of DANE improves. However, when « is lower
than 0.8, the performance becomes worse as fewer attention is
paid to the structure proximity. The result reveals o« = 0.8 is
the equilibrium point of the structure and attribute proximity
in the BlogCatalog dataset.

3) Impact of Embedding Dimension d: We finally study
how the dimension of embedding vectors affects the node clas-
sification performance. We vary the dimension d from 200 to
500. The Macro-F1 and Micro-F1 scores of different ratios
of train dataset are shown in Fig. 6. As we can see, initially
the performance raises with the increase of d. This is intu-
itive as smaller values of embedding dimensions are hard to
encode abundant information that is contained in the fusion
matrix Q. It is obvious that when d = 300, the performance is
good. However, when the number of dimensions continuously

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 10,2021 at 13:59:21 UTC from IEEE Xplore. Restrictions apply.

1444

increases, the performance of DANE keeps stable and drops
slowly. The reason is that too large a number of dimensions
may introduce noises and deteriorate the performance.

VI. CONCLUSION

In this paper, we proposed to tackle the problem of
attributed network embedding, which involved learning low-
dimensional representations of nodes that preserve both the
structure and the attribute information. We proposed a DANE
framework that tackled the data sparsity, structure and
attribute preserving, and nonlinearly patterns of attributed
network embedding in a unified framework. Specifically, the
DANE framework is composed of three steps. First, a step-
based random walk is proposed to capture the interaction
between network structure and node attributes from vari-
ous degrees of proximity. Then, we constructed an enhanced
matrix representation of the attributed network by summariz-
ing the various degrees of proximity. In the third step, we
designed a deep neural network to exploit the complex, and
nonlinear patterns in the enhanced matrix for network embed-
ding. We conducted extensive experimental results on various
datasets, and the results clearly showed the superiority of our
proposed DANE framework compared to the state-of-the-art
baselines.

In the future, we would like to explore and extend the
proposed DANE framework for attributed network embedding
models from the following two directions. First, we would
improve the efficiency of DANE by learning to hash tech-
niques, such that it could be applied to large-scale industrial
scenarios. Second, as the network structure evolves over time,
new edges come and old edges disappear. The incoming nodes
may be incomplete with missing links or missing attributes.
We plan to design the incremental algorithms for attributed
network embedding as a future direction.

REFERENCES

[1] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. 12th USENIX Symp. Oper. Syst. Design Implement., 2016,
pp. 265-283.

[2] L. Backstrom and J. Leskovec, “Supervised random walks: Predicting
and recommending links in social networks,” in Proc. ACM 4th Int.
Conf. Web Search Web Data Min., 2011, pp. 635-644.

[3] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural Comput., vol. 15, no. 6,
pp. 1373-1396, Jun. 2003.

[4] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey of
graph embedding: Problems, techniques and applications,” IEEE Trans.
Knowl. Data Eng., vol. 30, no. 9, pp. 1616-1637, Sep. 2018.

[5] S. Cao, W. Lu, and Q. Xu, “GraRep: Learning graph representations
with global structural information,” in Proc. 24th ACM Int. Conf. Inf.
Knowl. Manag., 2015, pp. 891-900.

[6] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning
graph representations,” in Proc. 13th AAAI Conf. Artif. Intell., 2016,
pp. 1145-1152.

[71 K. Cho et al., “Learning phrase representations using RNN encoder—
decoder for statistical machine translation,” in Proc. Conf. Empirical
Methods Nat. Lang. Process., 2014, pp. 1724-1734.

[8] L. Cui, J. Wu, D. Pi, P. Zhang, and P. Kennedy, “Dual implicit mining-
based latent friend recommendation,” IEEE Trans. Syst., Man, Cybern.,
Syst., to be published.

[9] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network embedding,”
IEEE Trans. Knowl. Data Eng., vol. 14, no. 8, pp. 1-19, Aug. 2015.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 51, NO. 3, MARCH 2021

[10] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” J. Mach. Learn.
Res., vol. 9, pp. 1871-1874, Aug. 2008.

[11] J. R. Firth, “A synopsis of linguistic theory 1930-1955,” in Studies in
Linguistic Analysis. Oxford, U.K.: Blackwell, 1957, pp. 1-32.

[12] M. Gao, L. Chen, X. He, and A. Zhou, “BiNE: Bipartite network embed-
ding,” in Proc. 41st Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval,
2018, pp. 715-724.

[13] S. Gao, L. Denoyer, and P. Gallinari, “Temporal link prediction by inte-
grating content and structure information,” in Proc. 20th ACM Int. Conf.
Inf. Knowl. Manag., 2011, pp. 1169-1174.

[14] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 1024-1035.

[15] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” IEEE Data Eng. Bull., vol. 40, no. 3,
pp. 52-74, Dec. 2017.

[16] T. H. Haveliwala, “Topic-sensitive PageRank: A context-sensitive rank-
ing algorithm for Web search,” IEEE Trans. Knowl. Data Eng., vol. 15,
no. 4, pp. 784-796, Jul./Aug. 2003.

[17] X. He, T. Chen, M.-Y. Kan, and X. Chen, “TriRank: Review-aware
explainable recommendation by modeling aspects,” in Proc. 24th ACM
Int. Conf. Inf. Knowl. Manag., 2015, pp. 1661-1670.

[18] X. He and T.-S. Chua, “Neural factorization machines for sparse
predictive analytics,” in Proc. 40th Int. ACM SIGIR Conf. Res. Develop.
Inf. Retrieval, 2017, pp. 355-364.

[19] X. He et al., “Neural collaborative filtering,” in Proc. 26th Int. Conf.
World Wide Web, 2017, pp. 173-182.

[20] X. Huang, J. Li, and X. Hu, “Accelerated attributed network embedding,”
in Proc. SIAM Int. Conf. Data Min., 2017, pp. 633-641.

[21] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. 5th Int. Conf. Learn. Represent., 2017,
pp. 1-14.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1106-1114.

[23] S. B. Kurth, “Friendships and friendly relations,” in Friendship as a
Social Institution. New York, NY, USA: Routledge, 2017, pp. 136-170.

[24] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution:
Densification and shrinking diameters,” ACM Trans. Knowl. Disc. Data,
vol. 1, no. 1, p. 2, 2007.

[25] C. Li et al., “PPNE: Property preserving network embedding,” in Proc.
Int. Conf. Database Syst. Adv. Appl., 2017, pp. 163-179.

[26] J. Li, X. Hu, J. Tang, and H. Liu, “Unsupervised streaming feature
selection in social media,” in Proc. 24th ACM Int. Conf. Inf. Knowl.
Manag., 2015, pp. 1041-1050.

[27] D. Lian et al., “High-order proximity preserving information network
hashing,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Disc. Data
Min., 2018, pp. 1744-1753.

[28] L. Liao, X. He, H. Zhang, and T.-S. Chua, “Attributed social
network embedding,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 12,
pp. 2257-2270, Dec. 2018.

[29] J. Ma, P. Cui, and W. Zhu, “DepthLGP: Learning embeddings of out-
of-sample nodes in dynamic networks,” in Proc. 32nd AAAI Conf. Artif.
Intell., 2018, pp. 370-377.

[30] L. V.D. Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach.
Learn. Res., vol. 9, pp. 2579-2605, Nov. 2008.

[31] A. A. Nugraha, A. Liutkus, and E. Vincent, “Multichannel audio source
separation with deep neural networks,” IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 24, no. 9, pp. 1652-1664, Sep. 2016.

[32] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity
preserving graph embedding,” in Proc. 22nd ACM SIGKDD Int. Conf.
Knowl. Disc. Data Min., 2016, pp. 1105-1114.

[33] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: Bringing order to the Web,” Stanford InfoLab, Stanford, CA,
USA, Rep. 1999-66, Nov. 1999.

[34] S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-party deep
network representation,” in Proc. 25th Int. Joint Conf. Artif. Intell., 2016,
pp. 1895-1901.

[35] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of
social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Disc. Data Min., 2014, pp. 701-710.

[36] D. Rafailidis and A. Nanopoulos, “Modeling users preference dynamics
and side information in recommender systems,” IEEE Trans. Syst., Man,
Cybern., Syst., vol. 46, no. 6, pp. 782—792, Jun. 2016.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 10,2021 at 13:59:21 UTC from IEEE Xplore. Restrictions apply.

HONG et al.: DANE BY PRESERVING STRUCTURE AND ATTRIBUTE INFORMATION

[37] J. Schmidhuber, U. Meier, and D. Ciresan, “Multi-column deep neural
networks for image classification,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2012, pp. 3642-3649.

S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “AutoRec:
Autoencoders meet collaborative filtering,” in Proc. 24th Int. Conf. World
Wide Web, 2015, pp. 111-112.

P. Sun, L. Wu, and M. Wang, “Attentive recurrent social recommenda-
tion,” in Proc. 41st Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval,
2018, pp. 185-194.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 3104-3112.

C. Tan et al, “User-level sentiment analysis incorporating social
networks,” in Proc. 17th ACM SIGKDD Int. Conf. Knowl. Disc. Data
Min., 2011, pp. 1397-1405.

J. Tang, J. Liu, M. Zhang, and Q. Mei, “Visualizing large-scale and
high-dimensional data,” in Proc. 25th Int. Conf. World Wide Web, 2016,
pp. 287-297.

J. Tang et al., “LINE: Large-scale information network embedding,” in
Proc. 24th Int. Conf. World Wide Web, 2015, pp. 1067-1077.

J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5500, pp. 2319-2323, 2000.

K. Tu, P. Cui, X. Wang, P. S. Yu, and W. Zhu, “Deep recursive network
embedding with regular equivalence,” in Proc. 24th ACM SIGKDD Int.
Conf. Knowl. Disc. Data Min., 2018, pp. 2357-2366.

P. Vincent, H. Larochelle, 1. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” J. Mach. Learn. Res.,
vol. 11, pp. 3371-3408, Dec. 2010.

D. Wang, P. Cui, M. Ou, and W. Zhu, “Deep multimodal hashing with
orthogonal regularization,” in Proc. 24th Int. Joint Conf. Artif. Intell.,
2015, pp. 2291-2297.

D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Disc. Data Min., 2016,
pp. 1225-1234.

Z. Wang et al., “Discovering and profiling overlapping communities in
location-based social networks,” IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 44, no. 4, pp. 499-509, Apr. 2014.

L. Wu et al., “Modeling the evolution of users’ preferences and social
links in social networking services,” IEEE Trans. Knowl. Data Eng.,
vol. 29, no. 6, pp. 1240-1253, Jun. 2017.

C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network repre-
sentation learning with rich text information,” in Proc. 24th Int. Joint
Conf. Artif. Intell., 2015, pp. 2111-2117.

D. Yang, S. Wang, C. Li, X. Zhang, and Z. Li, “From properties to
links: Deep network embedding on incomplete graphs,” in Proc. ACM
Conf. Inf. Knowl. Manag., 2017, pp. 367-376.

T. Yang, R. Jin, Y. Chi, and S. Zhu, “Combining link and content for
community detection: A discriminative approach,” in Proc. 15th ACM
SIGKDD Int. Conf. Knowl. Disc. Data Min., 2009, pp. 927-936.

S. Zhai and Z. Zhang, “Dropout training of matrix factorization and
autoencoder for link prediction in sparse graphs,” in Proc. SIAM Int.
Conf. Data Min., 2015, pp. 451-459.

D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Homophily, structure, and
content augmented network representation learning,” in Proc. 16th Int.
Conf. Data Min., 2016, pp. 609-618.

M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning algo-
rithms,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 8, pp. 1819-1837,
Aug. 2014.

S. Zhu, K. Yu, Y. Chi, and Y. Gong, “Combining content and link for
classification using matrix factorization,” in Proc. 30th Int. ACM SIGIR
Conf. Res. Develop. Inf. Retrieval, 2007, pp. 487-494.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Richang Hong (M’12) received the Ph.D. degree
from the University of Science and Technology of
China, Hefei, China, in 2008.

He is currently a Professor with the Hefei
University of Technology, Hefei. His current
research interests include multimedia question
answering, video content analysis, and pattern recog-
nition. He has coauthored over 60 publications in the
above areas.

Mr. Hong was a recipient of the Best Paper Award
in the ACM Multimedia 2010. He is a member of
the Association for Computing Machinery.

1445

Yuan He received the B.S. degree in electronic
information science and technology from the Hefei
University of Technology, Hefei, China, in 2016,
where she is currently pursuing the M.S. degree in
electronics and communications engineering.

Her current research interests include social
network analysis and recommender systems.

Le Wu received the Ph.D. degree in computer sci-
ence from the University of Science and Technology
of China, Hefei, China, in 2016.

She is currently an Assistant Professor with the
Hefei University of Technology, Hefei. She has
published over 20 papers in top conferences and
journals, such as AAAI Conference on Artificial
Intelligence, ACM Knowledge Discovery and Data

Mining, International Joint Conference on Artificial
‘ A Intelligence, International Conference on Research

on Development in Information Retrieval, SIAM
International Conference on Data Mining, IEEE International Conference on
Data Mining, ACM International Conference on Information and Knowledge
Management, the TEEE TRANSACTIONS ON KNOWLEDGE AND DATA
ENGINEERING, and ACM Transactions on Intelligent Systems and Technology.
Her current research interests include data mining, recommender system, and
social network analysis.

Ms. Wu was a recipient of the Distinguished Dissertation Award from China
Association for Artificial Intelligence and the Best of SDM 2015 Award.

0

Yong Ge received the Ph.D. degree in information
technology from the Rutgers, The State University
of New Jersey, New Brunswick, NJ, USA, in 2013.
He is an Assistant Professor of management
information systems with the University of Arizona,
Tucson, AZ, USA. He has published prolifically in
refereed journals and conference proceedings, such
as the IEEE TRANSACTIONS ON KNOWLEDGE
AND DATA ENGINEERING, ACM Transactions
on Information Systems, ACM Transactions on
Knowledge Discovery From Data, ACM Knowledge
Discovery and Data Mining (ACM SIGKDD), SIAM International
Conference on Data Mining, IEEE International Conference on Data Mining
(IEEE ICDM), and ACM Conference on Recommender Systems. His current
research interests include data mining and business analytics.
Mr. Ge was a recipient of the ICDM-2011 Best Research Paper Award. He
was also a Program Committee Member at ACM SIGKDD and IEEE ICDM.

Xindong Wu (F’11) received the Ph.D. degree
in artificial intelligence from the University of
Edinburgh, Edinburgh, U.K.

He is currently an Alfred and Helen Lamson
Endowed Professor of computer science with the
School of Computing and Informatics, University
of Louisiana at Lafayette, Lafayette, LA, USA.
His current research interests include data min-
ing, knowledge-based systems, and Web information
exploration.

Dr. Wu is the Steering Committee Chair of the
IEEE International Conference on Data Mining and the Editor-in-Chief of
Knowledge and Information Systems (Springer) and Advanced Information
and Knowledge Processing (Springer). He was the Editor-in-Chief of the
TEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING from
2005 to 2008. He is a fellow of American Association for the Advancement
of Science.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 10,2021 at 13:59:21 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

