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a b s t r a c t

For intelligent tutoring systems, Cognitive Diagnosis (CD) is a fundamental task that aims to estimate
the mastery degree of a student on each skill according to the exercise record. The CD task is considered
rather challenging since we need to model inner-relations and inter-relations among students, skills,
and questions to obtain more abundant information. Most existing methods attempt to solve this
problem through two-way interactions between students and questions (or between students and
skills), ignoring potential high-order relations among entities. Furthermore, how to construct an end-
to-end framework that can model the complex interactions among different types of entities at the
same time remains unexplored. Therefore, in this paper, we propose a graph-based Cognitive Diagnosis
model (GCDM) that directly discovers the interactions among students, skills, and questions through a
heterogeneous cognitive graph. Specifically, we design two graph-based layers: a performance-relative
propagator and an attentive knowledge aggregator. The former is applied to propagate a student’s
cognitive state through different types of graph edges, while the latter selectively gathers messages
from neighboring graph nodes. Extensive experimental results on two real-world datasets clearly show
the effectiveness and extendibility of our proposed model.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, online education has become increasingly
opular due to the growing need for distance learning. With the
elp of Massive Open Online Courses (MOOCs), students from
ll over the world can easily access a large variety of courses.
owever, MOOCs usually provide students with fixed exercises
nd educational materials, ignoring the different levels of com-
rehensive ability and learning capacity among students, which
eads to inflexible and inefficient applications [1–3].

The Intelligent Tutoring System (ITS) is a computer system
hat aims to provide different students with customized learning
esources and strategies [4,5]. Therefore, estimating a student’s
astery level of each skill or knowledge, called the Cognitive
iagnosis (CD) task, becomes crucial for an eligible ITS [6,7].
ig. 1 shows an example of the CD process. Generally, the stu-
ent will first take an exam to generate an exercise log that
onsists of questions and responses (i.e., correct or incorrect
nswers). Then, the CD model should infer his/her mastery de-
ree of each skill. According to the inference result, the tutoring
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E-mail address: zycheng2@iflytek.com (Z. Cheng).
ttps://doi.org/10.1016/j.knosys.2022.109547
950-7051/© 2022 Elsevier B.V. All rights reserved.
system will form a diagnostic report that shows customized feed-
back and instructions to help the student to improve mastery
levels of appropriate skills. The CD process can be costly for
most traditional tutoring systems relying primarily on manual
rules gathered from human tutors, especially when large-scale
applications are considered [8].

Solving CD problems in tutoring systems has been an active
area of study. In earlier studies, researchers focus mainly on
psychological algorithms since they conform to empirical rules
in the educational field. Classical Test Theory (CTT) is a series of
psychometric theories based on the assumption that a student’s
observed response is the sum of a true capability and an error
term [9–11]. These methods evaluate the quality of the learning
data from different aspects, including difficulty, discrimination,
and reliability [12]. Specifically, difficulty reflects how difficult an
item is for students; discrimination is the ability of an item to dis-
tinguish the mastery of knowledge concepts of different students;
reliability reflects the consistency of all items. Item Response
Model (IRM) stands for a group of psychological models that rely
on the Item Response Theory (IRT) [13,14]. IRT gathers student
portrait, item difficulty, and several other optional features into
a logistic function to predict student performance. In real-world
scenarios, IRMs are widely applied with their low complexity.

https://doi.org/10.1016/j.knosys.2022.109547
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Fig. 1. An example of cognitive diagnosis.
Fig. 2. The relationship among students, problems and knowledge.
ther approaches, such as DINA (deterministic inputs, noisy and
ate) [15] and NIDA (noisy inputs, deterministic and gate) [16],
ere then proposed to bring in multiple fine-grained skill mas-
ery. Most of these models are still based on simple interaction
unctions and thus show rather limited performance, especially
n complex real-world data [17].
In recent years, neural networks have attracted more and

ore attention in many fields since deep models have shown
owerful capacities to extract inner features and discover intri-
ate feature relationships. Some attempts have also been made to
mploy deep models to solve CD problems. Neural Cognitive Di-
gnosis Model (NeuralCDM) [18] adopts a neural network to learn
more complex interaction between student factors and exercise
actors. In addition, the Relation map drove Cognitive Diagno-
is (RCD) [19] model incorporates structural student-exercise-
oncept hierarchical relations into a deep framework.
Although these models successfully bring in richer inter-relat-

ons and inner-relations between students and exercises, how
nformation flows and propagates between different entities re-
ains undiscovered. In a common CD scenario, the process of

esting or exercising consists of two types of interactions, with
hich we can construct two relation graphs as shown in Fig. 2.
he first one is the Question-Knowledge graph that shows the
nderlying skills of each question. The second graph represents
he interactions between each student and all questions he/she
as made.
Graph-based frameworks have become a popular research

ield due to their more refined structural feature extraction abil-
ties and more explainable message merging processes. For most
raph-based models, model performance is usually determined
y the representations of nodes and edges. For example, Ran-
om Walk [20] generates a set of node paths by selecting ran-
om neighbored nodes recursively. These stochastic node paths
re then used as the training samples to reveal co-occurrence
elations among graph nodes. To improve model performance,

ode2vec [21] applies a more complex sampling mechanism

2

by combining depth-first sampling and breadth-first sampling.
Graph SAmple and aggreGatE (GraphSAGE) [22] is an induc-
tive framework that can efficiently learn embeddings for unseen
nodes through a trainable function that aggregates information
from neighbors. In GraphSAGE, different neighbored nodes are
considered to have equivalent effects on the core node during
the aggregation process, ignoring potential variance between dif-
ferent entities and connections. To solve this problem, Graph
Attention Network (GAT) [23] introduces a self-attention mech-
anism to achieve automatic weight assignment for neighboring
nodes.

Most of these graph-based methods are designed for isomor-
phic graphs where only one type of node and edge exist. Recently,
heterogeneous graphs have also been studied by the commu-
nity [24,25]. In a heterogeneous graph, different types of nodes
and edges co-exist, making it possible to model more complex
interactions in real-world scenarios. For example, in recommen-
dation systems, graph nodes are composed of different products
and users. Moreover, edges between graph nodes can have vari-
ous attributes, such as clicking, purchasing, and disliking, which
involves distinguishing information flows [26–28].

In tutoring systems, there are three types of entities:
students, skills, and questions. In most cases, students will do
exercises related to a number of skills, resulting in a ternary re-
lation map. To bring in potential graph information, Graph-Based
Knowledge Tracing (GKT) [29] applies a graph neural network
to solve the knowledge tracing problem, i.e., a task of tracking
a student’s latent trait dynamically after each exercising action.
Although GKT successfully introduces graph structure to the
modeling process of student capabilities, it focuses on the pair-
wise relations between directly related skills. It thus ignores the
potential high-level information flows through the whole graph.

To better utilize the graph topology, in this paper, we propose
a novel CD framework that models student capabilities directly
through a heterogeneous cognitive graph along with an innova-

tive propagation layer and an aggregation layer. These two layers
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re designed to extract high-level interactions among different
ntities and edges.
Our main contributions are summarized as follows:

1. To bring in richer inner- and inter-relations among stud-
ents, skills, and questions, we propose a novel graph-based
cognitive diagnosis framework that employs graph-level
operations directly on a heterogeneous cognitive graph.

2. We design a performance-relative propagation layer that
exploits exercise records to model students’ learning state,
along with an attentive knowledge aggregation layer that
applies an attention mechanism to distinguish different
types of edges.

3. Our model shows state-of-the-art performance in two real-
world CD datasets. In addition, we make extra analyses that
show the interpretability of the node embeddings learned
by our model.

. Related work

In this section, we will briefly introduce existing Cognitive
iagnosis frameworks and a group of graph learning methods.
irstly, we divide CD methods into two categories: the first cate-
ory includes paradigms in the field of psychological measure-
ent along with several traditional probabilistic models; the
econd category includes a series of deep learning models based
n neural networks. Then, we will illustrate the development of
he graph-based approaches.

.1. Educational psychometric theories

Psychometric theories have been widely applied in the field of
ducation as they are intuitive and easy to implement. Classical
est Theory (CTT) is designed to improve the reliability of the
iagnosis system [9–11]. CTT makes a core assumption that each
est-taker has a true score that can be regarded as a stable
easurement where no error or noise occurs. Thus, the observed
core of a student can be calculated by:

bserved_score = true_score + error_score, (1)

here the error score is a standard error of measurement that is
he same for all test-takers. CTT is usually used as a naive baseline
ince it is limited by the parameter setting where test-taker
haracteristics and test characteristics are bonded together.
Item Response Theory (IRT) [13,14] is a series of paradigms

hat have been widely applied in various domains. The core
ssumption IRT makes is that there exists a latent trait that
epresents the abilities of each test-taker. In the educational field,
he latent trait can be observed through a test-taker’s responses
o different items. IRT employs a logistic function named Item
haracteristic Curve (ICC) that fits the correlation between test-
aker characteristics and item properties to predict the response
i.e., the probability of a correct answer). The following is a
tandard 3-parameter item response function:

= c +
1

1 + e−D×a(θ−b) , (2)

where θ indicates the latent ability of the test-taker; item pa-
rameters a and b represent item discrimination and item dif-
ficulty, respectively; c refers to the guessing factor that simu-
lates the probability for a test-taker to give a correct answer
by pure guessing; D denotes a constant scaling factor. In ad-
dition, a series of multidimensional IRT models (MIRT) [30,31]
have been proposed to introduce multidimensional parameters,
which significantly improve the modeling ability of the logistic
function. To bring in more intractable and interpretable parame-
ters, CD approaches such as Deterministic Inputs, Noisy-And gate
(DINA) [15] and Noisy Inputs, Deterministic and Gate (NIDA) [16]
exploit a Q-matrix that explicitly identifies specific skills of each
item.
3

2.2. Deep-learning based models

Deep learning models have been applied in more and more
fields due to their strong capability of feature extraction and
feature interaction. Neural Cognitive Diagnosis (NCDM) [18] in-
corporates multiple neural layers to model the complex exercis-
ing process. To improve model interpretability, NCDM makes an
assumption inherited from IRT paradigms that the probability of
giving a correct answer increases monotonically with knowledge
proficiency.

Relation Map Driven Cognitive Diagnosis (RCD) [19] models
the structural relations among different entities via a multi-layer
relation map. It first encodes students, exercises, and skills with
trainable matrics, and then applies an attention network to per-
form node-level and map-level aggregation. GKT-CD [32] focuses
on improving model performance by combining the CD frame-
work and the knowledge tracing framework. It employs a gated
neural network to extract students’ latent traits based on the
hierarchical knowledge structure.

2.3. Graph learning and graph networks

Graph Learning. Learning with graph-like data, such as social
media, biological components, and financial networks, requires
effective representations of the graph topology. As a fundamental
sampling method, Random Walk transfers the idea of language
modeling in natural language processing to the domain of node
embedding. It learns node co-occurrences by generating stochas-
tic node paths. DeepWalk [33] applies a truncated random walk
algorithm to generate latent representations that contain local
information. Similarly, Node2vec [34] is a framework that pro-
duces continuous representations for graph nodes by mapping
each node to a low-dimensional feature space. It designs a flex-
ible neighborhood sampling method and a biased random walk
procedure that explore neighborhoods through breadth-first sam-
pling (BFS) or depth-first sampling (DFS). For graph learning
approaches, graph kernel has been an effective way of obtaining
distributed graph representations, but it often requires hand-
crafted features. To solve this problem, Graph2vec [35] constructs
rooted subgraphs to learn unsupervised and task-agnostic node
embeddings.

Graph Neural Network. To perform feature extraction and other
functions over the graph structure, a graph-based neural network
has become a prerequisite for many tasks [36]. The Graph Neural
Network (GNN) model [37] processes graph nodes by aggregating
feature vectors of the neighboring nodes. After that, many vari-
ants of GNN have been proposed to achieve better performance
on node and edge classification. For example, Graph Convolu-
tional Network (GCN) [38] employs a variant of the convolutional
layer that operates directly on graph structure. GCN uses an
efficient layer-wise propagation rule based on a first-order ap-
proximation of spectral convolutions. As an extension of GCN,
Relational Graph Convolutional Network (RGCN) [38] changes the
aggregation process from local graph neighborhoods to large-
scale relational nodes, dealing with highly multi-relational data
characteristics. Besides, to solve unseen node problems, Graph
SAmple and aggreGatE (GraphSAGE) [22] improves classical GCN
in two aspects. First, it replaces whole-graph sampling with a
sectional centroid node sampling, which makes large-scale dis-
tributed training and inductive learning accessible. Second, It
improves model capability on neighboring aggregation through
various aggregator architectures.

However, for most graph neural networks, neighboring nodes
are considered equivalent even if they have different node prop-
erties and relationships with the centroid. To solve this problem,
the Graph Attention Network (GAT) [23] employs a masked self-

attention mechanism that allocates different weights to each
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Fig. 3. The overview of the Graph-based Cognitive Diagnosis Model (GCDM).
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eighboring node according to node similarities without using
omplex matrix operations. As GAT relies on neither the en-
ire graph structure nor complex matrix operations to perform
omputation, it can be applied to address both inductive and
ransductive problems effectively.

Graph neural networks have been applied in many fields with
heir powerful processing and feature extracting capabilities on
raph-like data. For example, in recommender systems, a graph
tructure can be formed by users, items, and item properties.
raph neural networks are then constructed on the interaction
raph to extract feature representations and user portraits [39,
0]. In social networks, GNNs are fundamental tools for detecting
nomalies within emails and messages [41,42]. In medical treat-
ent, researchers employ variants of GNN to perform interaction
rediction among drugs and chemicals.
In the field of education, some attempts have also been made

o exploit graph-based approaches in the knowledge tracing task
hat aims to estimate the possibility for a student to answer
specific question correctly [29,43,44]. Although graph-based

nowledge tracing models show competitive capabilities, they
nly use the graph structure to obtain question embeddings,
gnoring potential high-level interactions among different entities
nd edges. Moreover, as far as we know, the employment of
raph neural networks in the cognitive diagnosis task is still
ndiscovered.

. Problem definition

In this section, we first introduce the concept of the hetero-
eneous cognitive graph. Then we formally define the process of
raph-based cognitive diagnosis.

.1. Heterogeneous cognitive graph

To discover the information contained within different types
f entities (i.e., students, knowledge skills, and questions) and
dges, we propose a heterogeneous cognitive graph to represent
he interactions among nodes in the task of cognitive diagnosis.
s shown in Fig. 2, the relationships among students, knowledge
kills, and questions can be represented by three forms of graphs,
amely the Question-Knowledge Graph, the Student Interaction
raph, and the Heterogeneous Cognitive Graph. Specifically, the
uestion-Knowledge Graph reflects the inclusion relations be-
ween questions and knowledge skills. The Student Interaction
raph shows the student responses to different questions. For ex-
mple, in Fig. 2, it can be seen that question q2 includes all three

knowledge skills k1, k2 and k3, and student s1 answers question
q1 correctly, while gives wrong answers to question q2 and q3. By
ombining the above two graphs, we obtain the Heterogeneous
ognitive Graph that contains three types of nodes and edges,
howing the complete exercising process of all students.
The Heterogeneous Cognitive Graph can be denoted by G =

(V, E), where V = {V , V , V } is the complete set of graph
s q k

4

nodes. The node set V consists of M student node indexes (Vs =

{s1, s2, . . . , sM}), N question node indexes (Vq = {q1, q2, . . . , qN}),
and K knowledge skill node indexes (Vk = {k1, k2, . . . , kK }).
E = {E0, E1, E2} denotes the complete set of graph edges. E0 and
E1 represent the set of incorrect and correct responses between
students and questions, respectively. E2 is the set of inclusion
relations between questions and knowledge skills. For example,
if student si gives a correct answer to question qj, the edge set E1
will then include an edge of ei,j; if question qj contains knowledge
skills kl1 and kl2 , the edge set E2 will then include two edges
j,l1 and ej,l2. For convenience, we use a relation indicator rel ∈

{0, 1, 2} to represent incorrect response, correct response, and
question-skill inclusion, respectively.

3.2. Graph-based cognitive diagnosis

Given the Heterogeneous Cognitive Graph G = (V, E), the
oal of the cognitive diagnosis task is to model each student’s
atent portrait (or cognitive state) and estimate his/her response
o target questions. As the response relationships are represented
y edges E0 and E1, the response prediction task is regarded as an
dge type prediction task. Thus, considering a student node si and
question node qj, the CD model aims to predict the relation type
eli,j ∈ {0, 1, 2}.

4. Graph-based cognitive diagnosis model

In this section, we will introduce our Graph-based Cogni-
tive Diagnosis Model (GCDM) in detail. Specifically, we will first
present the overall model structure of GCDM. Then we will show
the detailed design of the novel propagator and aggregator.

4.1. Overview

As shown in Fig. 3, there are four main components in GCDM:
(1) The embedding generator is responsible for vectorizing stu-
dents, questions, and knowledge skills to dense embeddings. (2)
The performance-relative propagator is designed to infer stu-
dents’ cognitive states with a learning gate that gathers infor-
mation from the response edges. (3) The attentive knowledge
aggregator then adaptively combines cognitive states from neigh-
boring nodes to form a more comprehensive and updated state
for the core student node. (4) The diagnosis predictor uses the up-
dated student and question embeddings to predict the student’s
response (i.e., the type of the relation edge). We will introduce
more technical details in the following subsections.

4.2. Embedding generator

For deep learning approaches, converting input features to
dense vectors is usually necessary for better modeling capabili-
ties [45]. In the CD task, the original inputs are in the form of node
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Fig. 4. Learning gate in performance-relative propagator.
ndexes (categorical data), making it hard to obtain information-
ich input features. One-hot encoding is a simple but commonly-
sed method that converts each categorical value into a new
ategorical column with a binary value of 1 or 0. However, it is
nevitable to encounter the curse of dimensionality for datasets
ith a large number of distinct feature labels — various phe-
omena arise when a complex modeling process is performed
n high-dimensional spaces with long and sparse node vectors.
herefore, we employ an embedding generator to convert the
ntities in the cognitive graph to dense node embeddings.
In this work, we employ a trainable matrix to learn node

mbeddings for different entities. Each row of the matrix is as-
ociated with a specific node index, with which we can look
p for the corresponding representations for the input node.
fter initialization, the node embeddings are learned during the
raining process.

The embedding generator encodes students, questions, and
nowledge skills to d-dimensional dense vectors, which be for-
ulated as follows:

= [ es1 , . . . , esN  
students embeddings

, eq1 , . . . , eqM  
questions embeddings

, ek1 , . . . , ekK  
skills embeddings

], (3)

where E ∈ R|V|×d is a trainable embedding matrix that is initial-
ized randomly. For any input node, we can use the node index id
to find the corresponding row vector from the matrix E:

eid = E[id]. (4)

It is noted that there are many other methods to embed the
entities in the cognitive graph (e.g., NCDM [18], DINA [15]). In this
paper, we choose a relatively simple approach since embedding
methods or initialization algorithms are not the core contribu-
tions and usually have limited effects on the model performance.

4.3. Performance-relative propagator

In the CD task, the primary source for inferring a student’s cog-
nitive state is his/her exercising or testing performance, i.e., the
responses to different questions. Intuitively, if a student gives
correct answers to questions related to a particular knowledge
concept, we believe the student has a strong mastery of this
knowledge concept. On the contrary, if a high proportion of
incorrect answers is observed, we believe that the student has
5

a relatively weak mastery. To precisely model students’ cogni-
tive states, we design a performance-relative propagator that
learns the information flow through edges between student and
question nodes.

The cognitive state (cs,q) reflected in an interaction between
student s and question q is mainly determined by two factors.
One is the knowledge state revealed in question q (eq). The other
is the cognitive degree that the student has achieved on question
q, denoted by ls,q. To obtain the cognitive degree ls,q, we propose
a learning gate that exploits the question features and the student
performance at the same time. As shown in Fig. 4, the learning
gate uses question embedding eq and the edge type rel as the
inputs. Then, a neural network is applied to merge the inputs and
form the cognitive degree ls,q. Specifically, if student s answers
question q incorrectly, we assume that the interaction makes no
contribution to the mastery level. Therefore, the cognitive degree
ls,q is calculated by:

ls,q = Wl,rel · [eq,Wrel · rel] + bl,rel, rel ∈ {0, 1}, (5)

whereWl,rel ∈ Rd×2d and bl,rel ∈ Rd×1 are trainable model weights
of the learning gate. Wrel ∈ Rd×1 is a trainable matrix that controls
the final cognitive degree according to the student response. It
can be seen that if rel = 0, Wrel produces no gain to ls,q.

To obtain the cognitive state cs,q from a student–question
interaction, we multiply the knowledge state and the cognitive
degree element-by-element as follows:

cs,q = eq ⊙ ls,q. (6)

In the Heterogeneous Cognitive Graph, each question can be
related to more than one knowledge skill. Therefore, we use the
knowledge inclusion state cq,k to distinguish questions by their
neighboring skills. Similarly, the inclusion state for skill k in ques-
tion q is determined by two factors: one is the knowledge skill
embedding ek; the other is the inclusion degree lq,k indicating the
level for the knowledge contained in the question. The inclusion
state is then calculated by:

lq,k = Wl,rel · [ek,Wrel] + bl,rel, rel = 2, (7)

cq,k = ek ⊙ lq,k. (8)

The cognitive state and the inclusion state will be propagated
along the graph edges and then aggregated to update the target
student node.



Y. Su, Z. Cheng, J. Wu et al. Knowledge-Based Systems 253 (2022) 109547

4

m
c
i
l
t
s
n
b

i
a
c
n
t
o
a
d
o
e
t
d
s
a
n
s
s
n
w
r
c

g
c
i
n
c
d

a

I
w

Fig. 5. Attentive knowledge aggregator.
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.4. Attentive knowledge aggregator

In practice, students’ mastery of a knowledge concept can be
ore accurately inferred by repeated tests on the same con-
ept. Similarly, we can mine the students’ cognitive states by
ntegrating a large number of students’ answers from practice
ogs. It is also reflected in the cognitive graph. The student and
he practiced questions will form a subgraph, which shows the
tudent’s specific cognitive structure. In the subgraph, the student
ode can aggregate his/her cognitive states from the neighbors
ased on the interaction between the student and questions.
However, different questions have different investigative abil-

ties and test students from different perspectives [46,47]. For ex-
mple, some questions may be too simple to distinguish students’
ognitive states. Therefore, the test results of these questions are
ot referential enough. In addition, some questions investigate
wo knowledge concepts, ‘‘Division’’ and ‘‘Equation’’, while some
f these questions focus on the knowledge concept ‘‘Division’’
nd others focus on the ‘‘Equation’’. Therefore, the reflexes of
ifferent response relationships between students and questions
n students’ cognitive states are not the same. Instead of consid-
ring different neighbors equivalent to the core node, we propose
he attentive knowledge aggregator to distinguish the effect of
ifferent cognitive interaction processes on students’ cognitive
tates, as shown in Fig. 5. In particular, the attentive knowledge
ggregator adaptively aggregates different cognitive states from
eighbor nodes to obtain a comprehensive target nodes repre-
entation. The cognitive states that reflect the students’ cognitive
tate more effectively are given a higher weight, while the cog-
itive states generated from the cognitive interaction process
ith less information may be ignored. Finally, by aggregating the
eflex from different cognitive interactions, we can obtain the
omprehensive cognitive states of the student nodes.
Specifically, for student node s, the attentive knowledge ag-

regator first calculates the coefficient of importance on different
ognitive interactions in the attentive layer. For each cognitive
nteraction between the student node and the neighbor question
ode qi inN , we obtain the coefficient of importance as,qi with the
ognitive state cs,qi and the student node embeddings es, which is
enoted as:

s,qi = Wa · [Wn · es,Wn · cs,qi ], qi ∈ N . (9)

t is worth noting that Wn ∈ Rhd×d is a linear mapping matrix
ith shared parameters, which can transfer the node features.
6

n particular, there is a multi-head attentive layer when h > 1.
esides, Wa ∈ Rd×1 maps the spliced higher-dimensional features
o a real number as,qi . Then we normalize the coefficients of
mportance as,qi from all the interactions to obtain the attention
eight as:

s,qi =
exp (LeakyReLU(as,qi ))∑

qj∈N
exp (LeakyReLU(as,qj ))

, (10)

that is, the weight of the corresponding cognitive states. Finally,
we weighted aggregate the cognitive states of all neighbor nodes
and added them with the original representation of the student
node es to obtain the new representation of the cognitive states:

e′

s = es +

∑
qi∈N

αs,qi × cs,qi . (11)

Similarly, the importance of different knowledge concepts also
varies for different questions. For a question that tests multiple
knowledge concepts, some knowledge concepts are the core test
sites of this question, but other knowledge concepts are often
secondary test sites. Therefore, we use the same layer to calculate
the attention weights of the cognitive states of different knowl-
edge concept nodes and aggregate them into the question node
representation as:

aq,ki = Wa · [Wn · eq,Wn · cq,ki ], ki ∈ N , (12)

αq,ki =
exp (LeakyReLU(aq,ki ))∑

kj∈N
exp (LeakyReLU(aq,kj ))

, (13)

′

q = eq +

∑
ki∈N

αq,ki × cq,ki . (14)

4.5. Diagnosis predictor

With the Propagation and Aggregation on the heterogeneous
cognitive graph, we update the embeddings of student nodes and
questions nodes. We finally predict the student performance in
the diagnosis predictor.

In our paper, considering the linking between student nodes
and question nodes, we define the student performance predic-
tion in the form of an edge prediction task on the cognitive
graph. For certain an edge between the student node si and
question node qj, we expect to predict the type of the edge, which
represents whether the student answers the question correctly.
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herefore, with the student–question node pair (si, qj), we cal-
ulate the performance of the student si on the question qj as:

= F(e′

si + e′

qj ). (15)

imilarly, taking the correlation between student nodes and
nowledge concept nodes into count, we can define the cognitive
tates on knowledge concepts from the cognitive graph as:

= F(e′

si + ek). (16)

It is noting that the F(·) is a diagnosis function, which uses
both the student and question node representations to obtain
the final prediction. In our paper, we simply implement it with
a linear function to verify the effectiveness of our graph-based
cognitive diagnosis model, which can be denoted as:

p = Wp · (esi + eqj ) + bp. (17)

We use the cross entropy loss as the loss function when opti-
izing our model. We minimize the gaps between the prediction
and the ground truth result y as:

oss =

∑
i

(yi log pi + (1 − yi) log(1 − pi)). (18)

Finally, our model has strong extendibility. Apparently, with
the representations of students and questions, the existing cog-
nitive diagnostic methods can be attached following our model. In
that case, the GCDM is regarded as an encoding layer, and we can
replace the student and question representations in other cogni-
tive diagnosis models with the es and eq in GCDM. Take some
important cognitive diagnosis models for example as follows:

IRT. IRT is a cognitive diagnosis method of modeling stu-
dents’ cognitive states and questions’ parameters by a logistic-like
function. Take the typical 2-parameter IRT function for example:

p =
1

1 + exp (−D × a × (θ − b))
, (19)

here θ is the student ability, b is the question difficulty and a is
he question discrimination. D denotes a constant scaling factor.
o extend from IRT, we replace the student representation and
uestion difficulty with unidimensional es and eq. And a can be

defined as a trainable parameters. The IRT-based extension can
be denoted as:

p =
1

1 + exp (−D × a × (esi − eqj ))
. (20)

MIRT. MIRT is a multidimensional extension of the IRT, which
odels students and exercises on the multiple knowledge per-
pective, which is denoted as:

=
1

1 + exp (−Qe × (hs − he))
, (21)

here hs is the student representation, the he is the question
epresentation and Qe is the Q-matrix, which is a multi-hot vector
nd represents the knowledge concepts related to the question.
To extend from MIRT, we replace the student representation

nd question representation with es and eq. The MIRT-based
extension can be denoted as:

p =
1

1 + exp (−Qe × (esi − eqj ))
. (22)

NCDM. NCDM encodes students and questions and automati-
cally fits the complex interaction functions between students and
questions based on the networks, which is defined as

p = F (Q · (hs
− hdiff) ∗ hdisc), (23)
e

7

where hs is the student representation, hdiff is the question diffi-
culty and hdisc is the question discrimination, respectively, and ∗

denotes scalar multiplication. Besides, Qe is the Q-matrix, which
is a multi-hot vector and represents the knowledge concepts
related to the question. F (·) is a multi-layer full connection layer
that fits the complex interaction functions between students and
questions.

To extend from NCDM, we regard our GCDM as a pre-trained
encoder and similar to IRT and MIRT, we replace the student rep-
resentation and question difficulty with es and eq. And hdisc can
be defined as a trainable parameters. The NCDM-based extension
can be denoted as:

p = F (Qe ⊙ (esi − eqj ) ∗ hdisc). (24)

5. Experiments

In this section, we conduct extensive experiments to demon-
strate the effectiveness of our proposed GCDM. Specifically, we
first describe the real-world datasets used in our experiments
(Section 5.1). Then we introduce the experimental setups, includ-
ing data partitioning, model implementations, and the compared
models (Section 5.2). After that, we carry out experiments from
the following three aspects (Section 5.3): (1) We demonstrate
the performances of graph-based cognitive diagnosis on the het-
erogeneous cognitive graph; (2) We evaluate the performance of
GCDM in the cold start situation from exercise perspective; (3)
We analyze the correlation of graph nodes. (4) We calculate the
consistency of students’ cognitive states and performances, and
then conduct the case study to verify the interpretation of our
model.

5.1. Datasets

In the experiments, we used two real-world educational
datasets which are commonly used for student performance
prediction, namely ASSIST0910 (ASSISTments 2009–2010 ‘‘skill
builder’’1) and ASSIST2017 (ASSISTments 20172). Both the open
datasets are collected from the ASSISTments online tutoring sys-
tems, which record the mathematics logs of students. To mine the
high-order relationship in the cognitive process of students, we
build the heterogeneous cognitive graph based on the datasets.
ASSIST0910. Based on ASSIST0910, we build a cognitive graph
with 21,998 nodes which consist of 4128 student nodes, 17,746
question nodes and 123 knowledge concepts nodes (i.e., ‘‘Equa-
tion’’ and ‘‘Conversion’’), and 581,744 edges (with reverse edges)
from logs which consist of 3 types (right answer, wrong answer,
and question-knowledge correspondence).
ASSIST2017. Based on ASSIST2017, we build a cognitive graph
with 4974 nodes which consist of 1709 students nodes, 3162
question nodes and 102 knowledge concepts nodes, and
1,891,956 edges which consist of the same 3 types as the former
graph.

Furthermore, Table 1 shows more detailed statistics of the two
datasets.

5.2. Experimental setups

5.2.1. Data partitioning
On both datasets, we sample 80% of edges between students

and questions for each student, along with all edges between
questions and knowledge concepts, and then use them as the
training set. The remaining 20% of edges between students and

1 https://github.com/bigdata-ustc/EduData.
2 https://github.com/bigdata-ustc/EduData.

https://github.com/bigdata-ustc/EduData
https://github.com/bigdata-ustc/EduData
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Table 1
Statistics of the datasets: ASSIST0910 and ASSIST2017.
Statistics ASSIST0910 ASSIST2017

# of nodes 21,998 4974
# of students 4128 1709
# of questions 17,746 3162
# of knowledge concepts 123 102
# of edges 581,744 1,891,956
# of records 267,415 942,816
# records per student 64.78 551.67
# knowledge concepts per item 1.37 1.0
# density 0.0012 0.0764

questions are used as the testing set for the corresponding stu-
dent. We also sample 10% from the training set to form the
validation set to develop our models. For each model we evaluate,
we run 5 times on each dataset and use the average result as
the final result. Especially, to avoid the leakage of validation set
and test set data in the prediction process along with graph
structure whether it is training or testing, we mask all edges
in the validation set and test set and build the heterogeneous
cognitive graph only with the training set nodes and edges. In this
way, the model only can use the training data when sampling the
neighbor nodes and edges.

5.2.2. Training settings
We initialize all parameters in GCDM with Xavier initializa-

ion following [48] with the uniform distribution in the range
−

√
(6/ni + no),

√
(6/ni + no)), where ni and no are the dimen-

ions of the input and output, respectively. We then train the
CDM with mini-batches of 1024 and a learning rate of 0.0005
nder the Adam optimizer. We also implement algorithms in-
luding Dropout [49] (dropout rate = 0.4) and gradient clip (clip
alue = 5) to avoid over-fitting, which generates a slight im-
rovement in model performance and thus will not be discussed
n detail. On both datasets, we train our models for at most 50
pochs to obtain the best performances.

.2.3. Model comparison
To illustrate the effectiveness of our proposals, we implement

everal existing cognitive baselines3 which are trained on the
ecord logs:

1. IRT [50]: IRT is a cognitive diagnosis method of modeling
students’ cognitive states and questions’ parameters by a
logistic-like function.

2. MIRT [50]: MIRT is a multidimensional extension of the
IRT, which models students and exercises on the multiple
knowledge perspectives.

3. DINA [15]: DINA is a cognitive diagnosis method of mod-
eling each student’s knowledge proficiency by a binary
vector with Q-matrix.

4. NCDM [18]: NCDM is one of the most recent CD mod-
els based on neural networks. It encodes the student and
questions and automatically fits the complex interaction
functions between students and questions based on the
networks.

5. RCD [19]: RCD focuses on the multiple relations and models
the interactive and structural relations via a multi-layer
student-exercise-concept relation map.

esides, we also compare with some graph neural networks
hich are trained on the cognitive graph to verify our methods:

3 https://github.com/bigdata-ustc/EduCDM.
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1. GCN [51]: GCN proposes a graph convolution method that
updates the node embedding with all the neighbor nodes.

2. RGCN [38]: RGCN focuses on a different type of edges in the
graph and it updates the node embeddings from neighbor
nodes by types.

3. SAGE [22]: SAGE samples part of the neighbor nodes and
aggregates the nodes to the source node to update the new
embedding.

4. GAT [23]: GAT learns the importance of neighbor nodes
and employs a weighted sum function to update the source
node embedding.

5. GIN [37]: GIN introduces the MLP (Multilayer Perceptron)
to learn the aggregation function to aggregate the node
embedding.

In addition, to understand the specific effects brought by each
key proposal in GCDM, we compare the complete GCDMwith two
simplified variants:

1. w/o propagator: we implement a simplified model based
on GCDM without a performance-relative propagator. This
model ignores the impact on the cognitive states of stu-
dents from response relationships. Instead, in this model,
source node delivers the node embedding to the neighbor
nodes along edges directly, that is, cs,q = eq transformed
from Eq. (6).

2. w/o aggregator: we implement a simplified model based
on GCDM without attentive knowledge aggregator. This
model ignores differences among questions and differences
among knowledge concepts. Instead, the model allows
nodes equally aggregate all neighbor nodes, that is, e′

s =∑
qi∈N

cs,qi/N transformed from Eq. (11).

In the following experiments, all the above-mentioned base-
lines and our proposed models are implemented by PyTorch. For
fairness, all the methods are trained with the optimal settings de-
scribed in their original paper to guarantee the performances. All
models are trained on the same Linux server with four 2.30 GHz
Intel Xeon E5-2650 CPUs, two NVIDIA Tesla M40 GPUs, and
256 GB memory to achieve the best performance for comparison.

5.3. Results and analysis

5.3.1. Evaluation metrics
In our experiments, we process cognitive diagnosis with the

student performance prediction task. To verify the prediction, we
employ some widely used metrics [52,53]. To be specific, we use
the ROC Curve (AUC) and Prediction Accuracy (ACC) to measure
the prediction performance from a classification perspective in
the range of [0, 1]. The larger the values are, the better the
results. Besides, we use the Root Mean Square Error (RMSE) to
quantify the gaps between predictions and true responses. The
lower RMSE is, the better the model performs.

5.3.2. Performance prediction
To verify the effectiveness of our proposed models, we first

evaluate the accuracy performances on student performance pre-
diction tasks. In the experiment, we selected all the baselines
mentioned in Section 5.2.3, including CD baselines and GNN
baselines for comparison. We use the metrics of ACC, AUC, RMSE
mentioned in our experiments. Table 2 lists the overall results on
both datasets with the evaluation metrics mentioned.

There are some key observations: (1) GCDM performs better
than existing cognitive diagnosis methods. It shows our graph-
based cognitive diagnosis model on the heterogeneous cognitive
graph is more effective, since GCDM models the high order rela-

tionships from the graph. (2) GCDM also outperforms the general

https://github.com/bigdata-ustc/EduCDM
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Table 2
Student prediction performances for metrics on both datasets.
Methods ASSIST0910 ASSIST2017

ACC RMSE AUC ACC RMSE AUC

IRT 0.654 0.472 0.681 0.658 0.464 0.668
MIRT 0.707 0.461 0.716 0.668 0.461 0.678
DINA 0.644 0.495 0.680 0.613 0.519 0.654
NCDM 0.726 0.441 0.752 0.685 0.453 0.699
RCD 0.724 0.427 0.761 0.694 0.450 0.709

GCN 0.710 0.461 0.725 0.652 0.467 0.668
RGCN 0.718 0.449 0.749 0.682 0.455 0.697
SAGE 0.723 0.437 0.751 0.690 0.452 0.704
GIN 0.721 0.437 0.750 0.689 0.452 0.701
GAT 0.721 0.442 0.751 0.676 0.464 0.681

GCD-IRT 0.669 0.451 0.720 0.673 0.457 0.687
GCD-MIRT 0.719 0.454 0.738 0.692 0.450 0.705
GCD-NCDM 0.722 0.439 0.747 0.684 0.456 0.693

w/o aggregator 0.726 0.428 0.763 0.692 0.450 0.707
w/o propagator 0.725 0.427 0.761 0.691 0.451 0.709
GCDM 0.729 0.425 0.766 0.695 0.448 0.712

Table 3
Student prediction performances of cold start new questions for metrics on both
datasets.
Methods ASSIST0910 ASSIST2017

ACC RMSE AUC ACC RMSE AUC

RCD 0.656 0.472 0.604 0.583 0.491 0.579
GCN 0.641 0.481 0.599 0.578 0.498 0.529
RGCN 0.655 0.489 0.572 0.581 0.491 0.559
SAGE 0.527 0.611 0.515 0.542 0.521 0.510
GIN 0.621 0.500 0.586 0.569 0.502 0.516
GAT 0.652 0.535 0.611 0.525 0.502 0.526

GCDM 0.664 0.469 0.624 0.591 0.487 0.580

graph neural networks. It shows our method that takes charac-
ters in the cognitive graph into account can mine not only the
topology information of the graph but also the cognitive relation-
ship. It will benefit the cognitive diagnosis issue. (3) Compared
with the simplified models (w/o aggregator and w/o propagator),
the complete GCDM also has better performance. It shows both
the performance-relative propagator and attentive knowledge
aggregator play a role in cognitive diagnosis on the heteroge-
neous cognitive graph. We should fully explore the topological
information and cognitive information from each student’s cog-
nitive subgraph. (4) GNN-based models perform relatively well.
It indicates that the cognitive graph can provide more cognitive
information from the interactions among students, questions,
and knowledge tracing, than only considering the pair-wised
interactions. (5) The extended models, GCD-*, get relatively good
performances. It shows that the information from the cognitive
graph plays an important role in cognitive state modeling. Based
on the cognitive graph, we can obtain more comprehensive repre-
sentations of the cognitive states of students and questions. More
efficient inputs lead to more accurate outputs in the cognitive
diagnosis models.

5.3.3. Cold start evaluation
Compared with non-graph-based cognitive diagnosis methods,

raph-based methods can model the high order relationships of
uestions based on the knowledge concept nodes, where the
nowledge system is usually public and complete. Therefore,
raph-based methods may be more robust when meeting new
uestions [54]. The cognitive diagnosis methods only based on
esponse logs cannot work on new questions [55], since the
uestions are encoded into initialized embedding. To verify the
ffectiveness of our proposed models in the cold start situation,

e re-partition the datasets. We use a similar method to partition

9

datasets as described in the normal experiment setting. For each
student node, we sample 80% of edges between students and
questions, along with all edges between questions and knowledge
concepts, and then use them as the training set. The remaining
20% of edges between students and questions are used as the
testing set for the corresponding student. The only difference is
that the questions in the test set are selected to make sure they
have not been seen during the training process. In other words,
the model is trained on edges from known question nodes, but it
is tested on edges related to unseen question nodes. We select all
the graph-based baselines, including RCD and GNN baselines for
comparison. Similarly, we use the metrics of ACC, AUC, and RMSE
mentioned in our experiments. Table 3 lists the results on both
datasets on the graph-based methods mentioned.

We first calculate the average scoring rate of the test set in a
cold start situation over the two datasets. The scoring rate is 0.652
in ASSIST0910 and 0.422 in ASSIST2017, which can be regarded
as the expected accuracy with a complete guess process on the
cold question. From Table 3, we can draw the following conclu-
sions: (1) Most graph-based methods perform better than the
expected indicators. It shows that the graph-based methods can
work on the cold questions. This is probably because graph-based
methods can obtain the relatively appropriate representation of
cold questions by the question-knowledge edges from the cogni-
tive graph. When it comes to getting a representation of a cold
question, traditional methods usually only provide a randomly
initialized representation, resulting in unavailability. The graph-
based method will generate it based on the graph structure where
the question is located in. According to the subgraph of the cold
question, the information from related entities nodes, such as
related knowledge concepts of the question will be synthesized
to obtain a more informative, more accurate representation. (2)
We find that the GCDM is more robust than other basic methods.
It means that GCDM can mine the high order relations between
known questions and cold questions better so that it maintains
relatively good performances in widely cold situations. This is
because GCDM can better propagate and aggregate the informa-
tion of nodes to obtain a reasonable representation of the central
node.

5.3.4. Node correlation analysis
As mentioned before, we build a heterogeneous cognitive

graph based on the interaction data between students and ques-
tions. We then define the student performance prediction as
an edge prediction task for cognitive diagnosis. In this case,
we conduct some interesting visualization experiments on the
heterogeneous cognitive graph. Therefore we can analyze the
entities in the cognitive process, such as student, question, and
knowledge concept from a graph perspective. Specially, we il-
lustrate student nodes, question nodes, and knowledge concept
nodes, respectively.
Student node distribution. In this experiment, we visualize the
student node embedding es from GCDM by reducing their di-
mension with t-SNE [56], which is commonly used to reduce the
dimension of vector to 2D data. Then we color the student nodes
by the corresponding student’s average response scores in Fig. 6.
Especially, in this figure, we color the students who perform
better lighter, while color the students who perform worse are
darker to distinguish the students.

Fig. 6 shows the distribution of student nodes. It is noted that
the distribution of student nodes has a close relationship with
the student’s average score. As we position the student nodes
referring to the node embeddings, that is the student cognitive
states, the student who has similar scores tend to be more con-
tiguous. For example, the students located on the right part are
mostly with better scores (more than 0.8), while the students



Y. Su, Z. Cheng, J. Wu et al. Knowledge-Based Systems 253 (2022) 109547

l
0
t
e
i
w
I
t
Q
v
d
g
e
w
i
c
v
t
f
T
E
n

d
k
a
e
t
o
n
t
r
n
d

q
o
m
(
d
e
T
d
n
i
h
s

c

Fig. 6. The student nodes embeddings of GCDM reduced dimension by t-SNE colored with average score in ASSIST0910.
C

ocated on the left part are mostly with worse scores (less than
.2). Generally, similar cognitive subgraphs of student nodes lead
o similar interactions, which further leads to similar student
mbeddings and overall grades. It also proves our model can
dentify and construct higher-order connections among students
ho perform similarly from the heterogeneous cognitive graph.

n particular, GCDM can define similar student nodes based on
he neighbor subgraph structure.
uestion node clustering. In this experiment, we expect to
alidate whether graph-based methods can mine the high or-
er relationships among question nodes. Specifically, we choose
raph-based methods including our GCDM to analyze the node
mbedding on clustering impressions, since in these methods,
e do not initialize the question nodes with knowledge concept

nformation, nor do we explicitly update some elements of the
ognitive states by introducing the Q-matrix. Specifically, we
isualize the node embedding by reducing their dimension with
-SNE [56]. For better illustration, we choose questions from
our different knowledge concepts (‘‘Equation Solving More Than
wo Steps’’, ‘‘Pythagorean Theorem’’, ‘‘Probability of Two Distinct
vents’’, and ‘‘Solving for a Variable’’). We then label question
odes of each knowledge concept with different colors.
Fig. 7 illustrates the distribution of question nodes’ embed-

ing. It can be seen that questions nodes associated with the same
nowledge concept tend to be located together. The distributions
t the knowledge perspective in question nodes are generated
ntirely from the structure of the cognitive graph. It shows that
he graph-based methods indeed find the high order relationship
f questions from the graph structure, even though there are
o direct edges among questions in the heterogeneous cogni-
ive graph. Specifically, graph-based methods can capture the
ich information from topological structures between question
odes and knowledge concept nodes and abstract the unique
istribution of the question in the knowledge concepts.
We also perform a quantitative evaluation to compare the

uestion node clustering effect of the graph-based models in
ur experiments. Specifically, three commonly-used validation
etrics, cohesion, separation, and Calinski–Harabasz coefficient

CH), are measured on ASSIST0910. Cohesion shows the internal
ispersion of clusters. The lower the cohesion, the more compact
ach cluster is. Separation shows the dispersion between clusters.
he higher the separation, the better capability the model has in
ifferentiating a cluster from others. CH considers both the inter-
al dispersion of clusters and the dispersion between clusters, as
t is the normalized ratio of separation to cohesion. Therefore, a
igher value of CH indicates that the clusters are dense and well
eparated. These metrics are formulated as follows:

ohesion =
1
n

n∑
(
1
mi

mi∑
∥clusterij − meani∥), (25)
i=1 j=1

10
separation =
1
n

n∑
i=1

∥meani − mean∥, (26)

H =
(M − n)

∑n
i=1 mi∥meani − mean∥2

(n − 1)
∑n

i=1
∑mi

j=1 ∥clusterij − meani∥
2
, (27)

where M denotes the total number of question nodes, mi denotes
the number of question nodes in cluster i, and n is the number of
clusters. clusterij denote the position of node j in cluster i. meani
and mean are the centroid of cluster i and the centroid of all
nodes, respectively.

As shown in Fig. 8, GCDM has the lowest cohesion and a
relatively high CH (second only to GAT), indicating that our model
generates a well-dispersed question node distribution, and the
topological relationships learned from the heterogeneous cogni-
tive graph help to mine higher-order relationships of questions.
It is noted that GAT shows the highest CH as it has a lower
cohesion compared to our model. This is primarily due to the
direct propagation method applied in GAT that usually generates
more compact clusters of connected graph nodes. Meanwhile,
in GCDM, node information is propagated in a more complex
and differentiated way with the performance-relative propaga-
tor, which may result in relatively sparse clusters compared to
GAT. Nevertheless, GCDM still shows competitive results and
overperforms most graph-based models in CH.
Knowledge concept node correlation. Then in this experiment,
we expect to verify whether the relation of knowledge concept
nodes can be mined from GCDM in an unsupervised way since
there are no edges linking knowledge concepts in our datasets.
We also visualize the knowledge concept nodes from our GCDM
following the same process by reducing their dimension with
t-SNE as shown in Fig. 9. Fig. 9 illustrates the distribution of
knowledge concept nodes’ embedding. It can be found that the
embeddings of knowledge concepts are not uniformly distributed.
Instead, some nodes are clustered closer. For example, we can
find the node k1 representing the knowledge concept ‘‘Addition
and Subtraction Integers’’ and k2 representing the knowledge
concept ‘‘Addition and Subtraction Fractions’’ are located nearby.
Similarly, the node k3 which represents knowledge concept ‘‘Re-
flection’’ and k4 which represents knowledge concept ‘‘Transla-
tions’’ are located nearby. The ‘‘Addition and Subtraction Integers’’
and ‘‘Addition and Subtraction Fractions’’ are concepts that are
very relevant in terms of knowledge. It shows that to some extent
our GCDM can find the relationship of knowledge concepts based
on the heterogeneous cognitive graph, even though there are
no direct edges among knowledge nodes. It may lead to some
unsupervised knowledge topology discovery. For example, we can
annotate knowledge concepts, divide knowledge concepts and
automatically discover knowledge relationships. This is because
relevant knowledge concepts often appear in certain questions in
form of co-occurrence, which will form the unique topology in
the cognitive graph and be discovered by our method.
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Fig. 7. The question nodes embeddings of graph-based methods reduced dimension by t-SNE on five knowledge concepts in ASSIST0910.
Fig. 8. Three metrics showing the question node clustering effect of each graph-based model in the experiment on ASSIST0910.
.3.5. Model interpretation
uantization of Interpretation. In educational scenarios, the
omparability of students is also important. We need to make
ure the consistency of students’ cognitive states and perfor-
ances to some extent. Intuitively, if student a performs better
n questions on concept k than student b, he may have a better
astery of the concept. However, it is difficult to directly evaluate

his part since there is no direct way to get the actual cognitive
11
states of students. In that case, following [18,57,58], we adopt
the Degree of Agreement (DOA) metric to evaluate the ranking
performance of each model. Particularly, DOA result on a specific
knowledge concept k is defined as:

DOA(k) =
1
Z

N∑ N∑
δ(hak, hbk)

M∑
1k(q)

1j(a, b) ∩ δ(yaj, ybj)
1j(a, b)

, (28)

a=1 b=1 q=1
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Fig. 9. The knowledge nodes embeddings of GCDM reduced dimension by t-SNE in ASSIST0910. k1: Addition and Subtraction Integers; k2: Addition and Subtraction
ractions; k3: Reflection; k4: Translations.
Fig. 10. DOA results of models on both datasets.
Fig. 11. An example of a Cognitive Diagnosis process in ASSIST-0910.
D
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here Z =
∑N

a=1
∑N

b=1 δ(hak, hbk). hak is the cognitive states of
tudent a on the knowledge concepts k as Eq. (16). δ(x, y) is an
ndicator function, where δ(x, y) = 1 if x > y. 1k(q) is another
ndicator function, where 1k(q) = 1 if the questions q contains
knowledge concept k. Furthermore, we average DOA(k) of all
concepts as DOA to measure the overall performance on the all
knowledge concepts, which is denoted as DOA =

∑K
k=1 DOA(K ) ∈

[0.0, 1.0], the larger DOA, the better performance on ranking
performances.

As [18] suggested, among traditional models, IRT and MIRT,
there is no clear correspondence between their latent features
and knowledge concepts, we, therefore, compare with DINA,
NCDM, and RCD which adopt the Q-matrix and the most solid
graph-based method, SAGE. Fig. 10 shows the performances on
DOA. From the table, we can observe the NCDM has the best
performances on DOA. It shows the NCDM where Q-matrix is
explicitly introduced and relatively simple neural networks are
used to maintain fairly high interpretability. While among the
methods with the graph structure, we find the GCDM gets the
second level DOA on both datasets. It shows among the methods,
even without Q-matrix, GCDM can better mine the high order
12
relation between student nodes and knowledge nodes. By more
reasonable mining of the topology structure in the cognitive
graph, the representation of the student nodes is more concrete
instead of a kind of inexplicable abstract representation, which
fully reflects the cognitive degree of students on different knowl-
edge concepts. Besides, compared with the RCD, we can find the
larger the cognitive graph, that is the graph from ASSIST2017, our
GCDM may relatively better learn the information on the graph.
This is because in more complex cognitive graph, the higher-
order relationships of nodes based on cognitive and topological
relationships in the graph structure are more prominent, and the
advantages of our method are more obvious.

Case Study. In Fig. 11, we show an example of applying our model
to obtain a diagnostic result of a student from the ASSIST0910
dataset. In this case, the student has finished the first four ques-
tions out of q1 ∼ q5, and we need to estimate whether the
student can answer the last question correctly. The knowledge
concepts of the first three questions k1, k2, k3 (Ordering Positive
ecimals, Ordering Fractions, Ordering Integers) and those of the
ast two questions k4, k5 (Reflection, Translations) are two sets
f similar knowledge groups. These skills (within each group) are
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onceptually similar and connected to a set of related questions.
e then reveal the latent capabilities (cognitive states) of the

tudent on different knowledge concepts, where the orange curve
ndicates the maximum capability (i.e., giving a correct answer
ith a predicted possibility of 1.0) and the blue curve shows the
redicted capabilities of the chosen student. In the figure, we
an find that among different knowledge concepts, the concepts
ith high cognitive states tend to be the concepts that students
core high. While the GCDM considers that the student may
erform similarly in similar knowledge concepts. So that since
he student performs well on similar knowledge concepts, an
ccidental wrong answer on k2 will not excessively reduce the
odel’s estimate of his cognitive state on this knowledge con-
ept. Besides, even if the student has not practiced the questions
orresponding to k5, the GCDM gives a positive estimate of a
tudent’s cognitive states concerning the performances of the
elevant knowledge points k4. The posterior results show that the
tudent later obtains a high score on this knowledge concept. This
hows that the cognitive states h of the students diagnosed are
onsistent with the performances of the student, and are related
o the internal correlation between knowledge concepts, which
re explainable.

. Conclusion

In this paper, we focused on the cognitive diagnosis on the
eterogeneous cognitive graph and proposed a novel Graph-
ased Cognitive Diagnosis Model (GCDM). Specifically, we first
uilt the heterogeneous cognitive graph, where the students,
uestions, and knowledge concepts are individual nodes and the
nteractions between students and questions and correlations
etween questions and knowledge concepts link these nodes.
hen we designed the graph-based learning modules, including
erformance-relative propagator and attentive Knowledge ag-
regator to infer and update the cognitive states on the graph.
inally, extensive experiments on real-world datasets clearly
howed the effectiveness and extendibility of our GCDM. We
ope this work could lead to further studies.
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