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MEGCF: Multimodal Entity Graph Collaborative Filtering
for Personalized Recommendation

KANG LIU, FENG XUE, DAN GUO, LE WU, SHUJIE LI, and RICHANG HONG,

Hefei University of Technology, China

In most E-commerce platforms, whether the displayed items trigger the user’s interest largely depends on

their most eye-catching multimodal content. Consequently, increasing efforts focus on modeling multimodal

user preference, and the pressing paradigm is to incorporate complete multimodal deep features of the items

into the recommendation module. However, the existing studies ignore the mismatch problem between

multimodal feature extraction (MFE) and user interest modeling (UIM). That is, MFE and UIM have

different emphases. Specifically, MFE is migrated from and adapted to upstream tasks such as image classifi-

cation. In addition, it is mainly a content-oriented and non-personalized process, while UIM, with its greater

focus on understanding user interaction, is essentially a user-oriented and personalized process. Therefore,

the direct incorporation of MFE into UIM for purely user-oriented tasks, tends to introduce a large number

of preference-independent multimodal noise and contaminate the embedding representations in UIM.

This paper aims at solving the mismatch problem between MFE and UIM, so as to generate high-quality

embedding representations and better model multimodal user preferences. Towards this end, we develop a

novel model, multimodal entity graph collaborative filtering, short for MEGCF. The UIM of the proposed

model captures the semantic correlation between interactions and the features obtained from MFE, thus

making a better match between MFE and UIM. More precisely, semantic-rich entities are first extracted from

the multimodal data, since they are more relevant to user preferences than other multimodal information.

These entities are then integrated into the user-item interaction graph. Afterwards, a symmetric linearGraph

Convolution Network (GCN) module is constructed to perform message propagation over the graph, in

order to capture both high-order semantic correlation and collaborative filtering signals. Finally, the sentiment

information from the review data are used to fine-grainedly weight neighbor aggregation in the GCN, as it

reflects the overall quality of the items, and therefore it is an important modality information related to user

preferences. Extensive experiments demonstrate the effectiveness and rationality of MEGCF.1

CCS Concepts: • Information systems→ Recommender systems; Personalization;

1We release the complete codes of MEGCF at https://github.com/hfutmars/MEGCF.
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1 INTRODUCTION

The personalized recommender algorithm plays a crucial role in many online services, such as
E-commerce, content-sharing platform, and social media. Collaborative Filtering (CF) [26] is
the most widely used recommender method, which assumes that there is a correlation signal be-
tween observed user-item pairs through collaborative relationships, and the signal enables accu-
rate assessment of users’ preference over items, which is referred to as CF signal in some studies
[38, 39]. However, CF faces the challenges of sparsity and cold-start, that is, the inability to capture
sufficient CF signals from sparse interactions to generate high-quality recommendations. Content-
enriched recommender methods can efficiently alleviate this problem by drawing on additional
information of users and items, such as demographic features [3], attributes of items [6], social re-
lationships [47], knowledge graphs [35], and multimodal content (e.g., images, short videos, titles,
reviews, etc.) of items [43] (referred to as multimodal recommender method), in order to enrich
the representations of users and items. This work focuses on the research of multimodal recom-
mender methods due to the following two considerations: (1) in most recommendation scenarios,
multimodal information is the dominant presentation of the item and it directly engages with users.
Therefore, it contains abundant user preference-related clues that differ from the collaborative rela-
tionships in the interactions; and (2) the recent success of video-sharing platforms, such as Tiktok
and Kwai, bring increasing attention to extracting user preference over multimodal content.
The existing multimodal recommender efforts can be broadly categorized into two types

of frameworks: Separated Framework (SF) and End2end Framework (EF). They are both
equipped with two main modules: multimodal feature extraction (MFE) and user interest

modeling (UIM). In the SF-based methods [8, 28, 43, 52], the MFE module uses a pre-trained
network migrated from the upstream task to extract the full range of multimodal deep features.
In addition, the UIM module incorporates these deep features into the user preference modeling.
Compared with SF, EF-based methods [14, 15, 19, 30, 53] differ by fusing theMFE and UIMmodules
into an end2end framework and using interaction data to jointly optimize them. Note that a more
comprehensive overview of these multimodal recommender methods is provided in Section 2.3.
Although the existing studies demonstrate the effectiveness of this schema, they ignore the

mismatch problem between the MFE and UIM modules. Specifically, MFE, as a module tailored for
upstream tasks, aims at mining multimodal deep features that are relevant to the specific upstream
task but not to the user preferences. Therefore, it is a content-oriented process. On the contrary,
UIM, as the core of recommendation task, is a user-oriented and personalized module which aims
at collecting and then processing preference-related features. In general, MFE and UIM have com-
pletely different emphases. In other words, they are mismatched in user preference inference, thus
limiting the positive impact of multimodal information. In addition, the features output by theMFE
module contain a large amount of preference-independent noisy data, resulting in contamination
of the embedding representations. Figure 1 shows a specific mismatch phenomenon between user
preferences and visual feature extraction (VFE)module. That is, whether or not a user will pur-
chase an item is highly related to the semantic-rich entities (e .д., jacket, white hat, and jeans) in

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 30. Publication date: March 2023.

https://doi.org/10.1145/3544106


Multimodal Entity Graph Collaborative Filtering for Personalized Recommendation 30:3

Fig. 1. An example to illustrate the mismatch between user preferences and the visual feature extraction

(VFE) module when processing visual content, where VFE is generally a convolutional neural network pre-

trained on a large-scale visual dataset; User 1, User 2, and User 3 are users who interact with Item 1 together.

the image of this item, while the VFE module captures the full range of visual features that con-
tain a large number of preference-independent information (e .д., background, brightness, and the
relative position of the entities).
In order to solve the mismatch problem, it is fundamental to transform content-oriented

MFE into a user-oriented one, that is, mining preference-related information and filtering out
preference-independent noisy data. In practice, semantic-rich entities in multimodal content are
highly correlated to the user purchase behavior (c f . Figure 1). Therefore, extracting these seman-
tic entities rather than the full multimodal deep features facilitates the transformation of MFE.
Furthermore, the user sentiment information contained in item reviews is a crucial and typical
preference-related feature of textual modality, as it reflects the overall quality of the item, and the
users always tend to purchase high-quality items. Consequently, capturing sentiment information
can further transform the MFE module into user-oriented one.
After achieving the transformation of MFE, the next step is to establish an association between

MFE and UIM. Methodologically, EF is a reasonable option as it uses interaction data to jointly
optimize MFE and UIM. However, in fact, multimedia recommendations are generally applied in
sparse and cold-start scenarios, which means that the large number of learnable parameters in the
MFE module are difficult to be optimized. From this view, SF is considered as the overall frame-
work, and the MFE is treated as a pre-processing module. Moreover, multimodal semantic correla-
tion, which seamlessly associates the MFE and UIM through interaction relationship, is proposed.
Figure 2 presents a simple example to show the multimodal semantic correlation and its impor-
tance for modeling user preferences. The left subfigure shows that the interaction sparsity makes
the measurement of the similarity between nodes difficult (as there is no path between u1 and u2).
In the right subfigure, after incorporating the semantic entities, the similarity between u1 and u2
can be accurately measured due to the fact that a path <u1,i2,e2,i3,u2> emerges between them (the
similarity is referred to as the multimodal semantic correlation Cu1u2 between u1 and u2). Simi-
larly,Ci1i2 represents the semantic correlation between i1 and i2. In addition, semantic correlation
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Fig. 2. Illustration of multimodal semantic correlation, where u, i , and e denote the user, item, and semantic

entity, respectively, and Cab denotes the semantic correlation between a and b.

can also represent the user preference for entities (e .д., Cu1e1 ). e1 is clearly the best match for u1’s
preference, as the most paths between them exist.
In order to better quantify the aforementioned semantic correlation, the Graph Convolution

Network (GCN) [17] is the optimal choice as the recent study [9, 39] has demonstrated its outper-
formance in capturing high-order correlation between nodes on graph. In addition, the modeling
of this correlation can be further enhanced by fine-grained weighting of neighbor aggregation in
GCN, which is conventionally implemented by constructing attention networks [33]. However,
in the multimodal recommendation scenarios, the weighting strategy of self-attention is subopti-
mal, because it ignores the capture of preference-related sentiment information (or overall quality)
hidden in the items (evidence in Section 4.3.5). From this view, it is a better option to mine sen-
timent information from item reviews and then use it to weight neighbor aggregation. Moreover,
the weights obtained by sentiment information are static parameters, and therefore they do not
increase the training difficulty and computational burden of the model.
Generally speaking, in this paper, we propose a GCN-based multimodal recommender method,

referred to as MEGCF. First, we employ advanced deep learning techniques to mine semantic enti-
ties from multimodal content and seamlessly integrate them into the user-item interaction graph.
Next, we construct a symmetric linear GCN module to perform high-order message propagation
on the graph, thus modeling multimodal semantic correlation among nodes and extending it to
higher-order. Finally, in order to make full use of preference-related features in textual modality,
we utilize sentiment analysis techniques to extract sentiment features from item reviews and pro-
pose a sentiment weighting strategy to enhance the graph convolution operations. We conduct
extensive experiments on three public datasets, and the results show that our proposed method
significantly outperforms the state-of-the-art multimodal recommender method (GRCN [42]) and
GCN-based CF method (SGL[45]). Furthermore, we validate the effectiveness of each component
in MEGCF through sufficient ablation experiments.
We summarize the contributions of this paper as follows:

• Wehighlight themismatch problem betweenmultimodal feature extraction and user interest
modeling in existing multimodal recommender methods, which contaminates embeddings
and makes the models non-robust. To solve this problem, we propose to model multimodal
semantic correlation and extract sentiment information.
• We propose a novel GCN-based multimodal recommender method, referred to as MEGCF,
which utilizes multimodal semantic entity extraction and sentiment-weighted symmetric
linear GCNmodule to achieve simultaneous capture of high-order multimodal semantic cor-
relation and CF signals.
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• We conduct extensive experiments on three real-world datasets to validate the state-of-the-
art performance ofMEGCF. In addition, further ablation experiments are performed to verify
the effectiveness of each component in MEGCF. To facilitate subsequent research, we release
the complete code and data of MEGCF at https://github.com/hfutmars/MEGCF.

2 RELATEDWORK

In this section, we briefly review three types of recommender methods that are most relevant
to our work: traditional Collaborative Filtering (CF)-based methods, Graph Convolution Network
(GCN)-based recommender methods, and multimodal recommender methods.

2.1 Traditional CF-based Recommender Methods

Since the base framework of our work is the CF approach, we present CF and related work based
on it here. CF [26] assumes that similar users exhibit similar interests in items they historically
interacted with. Matrix Factorization (MF) [50] is the pioneering work of CF, which generates
dense embedding representations for users and items by mapping their ID information, and re-
constructs the unobserved interactions between users and items with the inner product of their
embeddings. BiasSVD [12] assumes that MF fails to accurately capture the difference in prefer-
ences between users (or items) and introduces bias terms on top of MF to compensate for the
weakness of embedding expressiveness. However, the model performance of MF and BiasSVD
strongly depends on sufficient interaction data, that is, they suffer from the problem of sparsity
and cold-start. To tackle this problem, one promising solution is to leverage side information that
may preserve clues related to user preferences. SVD++ [18] and FISM [13] incorporate collections
of items that users have historically interacted with into user embeddings, and their effectiveness
in explicitly modeling interactions have been validated in subsequent work [9, 39]. Unlike merely
using ID information, another family of CF methods focuses on mining user preferences from
interaction-independent information. For example, SVDFeature [3] is a feature-based MF model
that incorporates user and item attributes into the embeddings to enhance their expressiveness.
The knowledge graph-based recommender methods [34, 35] extract item-related attribute entities
and relations from external knowledge graphs into the item embeddings, thus achieving the asso-
ciation between user preferences and knowledge. In contrast to the above CF methods centered on
enhancing embedding, NCF [11] and DICF [49] use deep neural networks instead of simple inner
products, enhancing the modeling of complex interactions.

2.2 GCN-based Recommender Methods

In Section 3.2, we propose an improved GCN module for extending low-order features to higher-
order. Thus, we present GCN-based recommender methods here. GCN [7, 17] is a deep neural
network proposed for graph-structured data. In recent years, it has been widely studied and led to
satisfactory results in recommender systems. The core paradigm of GCN is to iteratively aggregate
neighbor nodes into the embeddings of the target nodes, thus explicitly capturing important high-
order connectivities on the graph.
To the best of our knowledge, GC-MC [1] is the first approach that applies GCN to recommender

systems, which leverages graph convolution to aggregate one-hop neighbor nodes into the embed-
dings of the target nodes. PinSAGE [51] and NGCF [39] integrate high-order neighbor nodes into
the embedding generation of the target node. Specifically, PinSAGE combines random walks and
GCN to achieve embedding generation on large-scale item-item graphs, demonstrating that GCN-
based methods can be efficiently applied to web-scale recommendation scenarios. NGCF [39] is a
recommender framework which combines GCN and MF. It uses a layer aggregation mechanism
[48] to concatenate the embeddings of all the layers as the final node representations, in order to
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capture the semantic information preserved by different graph convolution layers. Some subse-
quent studies [2, 9, 22] deduced that the simplified GCN [44] is better suited for modeling inter-
actions in recommendation scenarios. LR-GCCF [2] and LightGCN [9] can be broadly seen as the
lightweight versions of NGCF. LRGCCF removes the nonlinear activation function fromNGCF and
re-analyzes the layer aggregation mechanism in NGCF from a residual perspective. LightGCN re-
moves both the nonlinear activation function and the weight transformation matrices from NGCF.
In addition, extensive experiments show that a more concise structure of LightGCN can achieve a
better performance. For convenience, we refer to the GCN module in LightGCN as the linear GCN
in this work. Essentially, the Graph Laplacian Norm in GCN can be considered as a scaling of node
degree (or popularity) at a fixed granularity, while users have different sensitivities to popularity
features. Consequently, JMPGCF [21] is proposed to construct different Graph Laplacian Norms
for GCNs, in order to capture multi-grained popularity features, and thus better model user pref-
erences on popularity. Although the previously mentioned GCN-based approaches achieve a high
performance by explicitlymodeling high-order connectivities, this schema of graph convolution ig-
nores the modeling of the diversity of user intents. Therefore, DGCF [40] is proposed to construct a
graph disentangling module, in order to iteratively refine the intent-aware interaction graphs and
factorial representations. Some researchers have recently tried to fuse contrastive learning and
GCN to implement recommendation. For instance, SGL [45] is a model-agnostic self-supervised
contrastive learning framework which incorporates node self-discrimination task into recommen-
dation module and jointly learns them. Thus, it alleviates the long-tail problem and enhances the
model robustness to noisy interactions.
It is important tomention that the GCNmodule in the proposedMEGCF is significantly different

from the above-mentioned GCN in terms of graph convolution operations and overall structure.
More precisely, we incorporate sentiment weighting strategy and popularity features based on
linear graph convolution. In addition, for the overall structure, we use two symmetric versions of
this GCN to construct the final module for embedding generation.

2.3 Multimodal Recommender Methods

Considering that the motivation of this study is to address the mismatch problem between mul-
timodal feature processing and user preference modeling, i .e ., it focuses on how to improve the
utilization of multimodal data in recommendation scenarios. Thus, the existing work on multi-
modal recommendations [31] is presented. Multimodal recommender methods can be considered
as content-enriched ones [46] that leverage multimodal content to assist in the recommendation.
The overall framework of the existing multimodal recommender efforts can be roughly divided
into two categories: Separated Framework (SF) and End2end Framework (EF). SF separates
the two modules, multimodal feature processing and user preference modeling, and uses the mul-
timodal features obtained in the former module to enrich the embedding representation in the
latter module. On the contrary, EF fuses these two modules and jointly learns the two tasks of mul-
timodal feature processing and user preference modeling in order to perform complementarity
between them.
First, we introduce the SF-based multimodal recommender methods. VBPR [8] is an early ap-

proach which uses Convolution Neural Network (CNN) pre-trained on ImageNet to extract
deep visual features of images and incorporate them into feature representations of items in the
MF framework. VPOI [36] incorporates pre-extracted deep visual features into the PMF [25] frame-
work in order to achieve POI check-in recommendations. Inspired by the fact that user preferences
tend to exhibit significant variability across different modalities, increasing efforts focus on simul-
taneously capturing clues of user preferences on multiple modalities. For instance, CKE [52] in-
corporates knowledge graphs, visual features, and textual features into embedding representation.
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MMGCN [43] is a GCN-based multimodal recommender method, which constructs three GCN
modules to model user preference on visual, textual, and audio modalities, respectively. Compared
with CKE, MMGCN can mine higher-order multimodal similarity features, thus achieving better
recommendation results. Based onMMGCN, MGAT [28] constructs the attention network to adap-
tively calculate the weights of user preferences on different modalities. MKGAT [27] leverages the
multimodal contents to construct a multimodal knowledge graph. In addition, the tail nodes of the
knowledge graph are dense vectors represented by fusing the deep features of different modali-
ties. These tail nodes are referred to as multimodal entities in MKGAT, which is fundamentally
different from the proposed multimodal semantic entities that do not use deep features but extract
semantic-rich entities from multimodal content. A recent GCN-based multimodal recommender
method, HUIGN [41], constructs a hierarchical graph structure and designs two types of informa-
tion aggregation modules (i .e ., intra-level and inter-level aggregation) to model multi-level user
intents. Therefore, it ensures the generation of high-quality user and item representations.
Afterwards, we introduce EF-based multimodal recommender methods. DVBPR [14] is an ex-

tended version of VBPR which integrates the CNN module into the MF module to jointly train
image representations and recommendation modules in an end-to-end manner. ConvMF [15] is
a fusion model of CNN and MF, in which the CNN module captures the contextual information
of item reviews. Therefore, it improves the prediction accuracy. DeepCoNN [53] constructs two
parallel CNN modules to learn the behavioral features of users and the attribute features of items
from user-related and item-related reviews, respectively. MRG [30] is a multi-task learning model
which models both the review generation module and the rating prediction module. It also jointly
learns both modules to better mine user preferences on textual modality. Methodologically, the
EF-based approach incorporates interaction data into the multimodal feature processing to guide
the mining of preference-related multimodal features, which is supposed to be stronger than the
SF-based approach. However, we argue that they still suffer from some limitations. Specifically,
multimodal recommender methods are mostly applied in sparse and cold-start recommendation
scenarios, which means that the large number of learnable parameters introduced by EF are dif-
ficult to be optimized. In addition, integrating multimodal feature processing modules on general
recommendation modules degrades the efficiency of model training and inference. Therefore, in
this paper, we adopt the idea of SF to implement MEGCF.
Despite the progress of these works, they all essentially use complete multimodal deep features

to participate in the feature representations of items while ignoring the mismatch problem be-
tween multimodal feature processing and user preference modeling, which results in embedding
contamination.

3 METHODOLOGY

In this section, we present the overall framework of the MEGCF model shown in Figure 3, which
can be divided into three main components: (1) the multimodal semantic entity extraction layer
for extracting semantic-rich entities from multimodal data, and then incorporating them into the
user-item interaction graph; (2) the sentiment-weighted symmetric linear Graph Convolution Net-
work (GCN) module for capturing both high-order multimodal semantic correlation and CF signal
during embedding generation; and (3) the model prediction&optimization layer for estimating the
preference scores of user-item pairs and updating model parameters.

3.1 Multimodal Semantic Entity Extraction Layer

In order to reduce the negative impact of redundant information in multimodal data with low
relevance to user preferences, we propose to extract semantic entities from multimodal data and
associate them with items, as semantic entities have the potential to be more interest-provoking
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Fig. 3. Illustration of the proposed MEGCF. The target user and item areu1 and i1, MSE denotes multimodal

semantic entity, and L is the max number of graph convolution layers.

for users than other modal information such as background, position, angle, brightness, etc. In the
following, we detail the specific extraction of semantic entities for visual and textual modalities,
respectively, and utilize them and the user-item interaction graph to construct a collaborative
multimodal interaction graph.

3.1.1 Visual Semantic Entities Extraction. In order to ensure efficiency in entity extraction, we
use the technique of image classification rather than object detection to extract visual semantic
entities from images. Specifically, for an item i , we feed its corresponding image into a PNASNet
model [20] (an advanced image classification method) pre-trained on the ImageNet dataset. The
model then outputs a probability distribution over 1,000 categories, and we take the top-ranked
categories as the semantic entities in the image. These entities can also be understood as the most
likely sub-objects present in the image. Finally, we perform the above operations on all the items
to obtain EV , which is the set of semantic entities on the visual modality.

3.1.2 Textual Semantic Entities Extraction. The textual data of an item i consist of a title and
some reviews, on which we first perform pre-processing operations, including special characters
removal, words segmentation, and stop words removal. Afterwards, as the title is informative and
objective, we directly use the pre-processed words as textual entities in the title. Reviews express
users’ experiences and sentiment about the item i , and contain relatively less information. In ad-
dition, they are more subjective than titles. Therefore, we use the SGRank model [4] (an advanced
keyword extraction method) to further extract keywords from the pre-processed reviews, and its
outputs are the semantic entities in the reviews. Finally, we iteratively perform the above opera-
tions on all the items in order to obtain the set of semantic entities on the text modality, ET .
Compared with the direct utilization of full multimodal deep features, semantic entity extrac-

tion can better reduce the preference-independent multimodal content. However, this approach
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still has limitations in entity detection accuracy. More precisely, when the neural network model
pre-trained in the upstream task is directly migrated to the recommendation task, there is a signif-
icant degradation in entity detection accuracy (wrong or missing detection) occurs. Empirically,
fine-tuning the pre-trained model using partially labeled data from the recommendation task is
methodologically feasible. However, the multimodal data in the recommendation dataset are un-
labeled. Despite the problem of wrong or missing detection, the proposed MEGCF is significantly
stronger than most of the multimedia recommender methods (c f . Table 2). In addition, there is a
high probability that MEGCF will be further enhanced if we can improve the accuracy of entity
extraction. We leave it for future considerations.

3.1.3 Collaborative Multimodal Interaction Graph. First, user-item interactions can be trans-
lated into a bipartite graph structure G1 = {(u, rui , i ) |u ∈ U , i ∈ I}, whereU and I are the user
and item sets, respectively, rui = 1 denotes that there is an interaction between user u and item
i , otherwise rui = 0. Then, based on the affiliation between item I and the multimodal entities
E = EV ∪ ET , we construct an item-entity bipartite graph G2 = {(i, rie , e ) |i ∈ I, e ∈ E}, where
rie = 1 denotes that the entity e is extracted from the multimodal data of item i , otherwise rie = 0.
Finally, as shown in Figure 3, the item nodes are used as a bridge to fuse these two bipartite graphs
into a new user-item-entity tripartite graph, G = {(u, rui , i ), (i, rie , e ) |u ∈ U , i ∈ I, e ∈ E}, named
collaborative multimodal interaction graph.

3.2 Sentiment-weighted Symmetric Liner GCN Layer

We design a sentiment-weighted symmetric linear graph convolution block to perform message
propagation on the user-item graph G1 and the collaborative multimodal interaction graph G, in
order to capture the high-order CF signal and multimodal semantic correlation, respectively. In
the following, we detail the process of embedding generation in this block.

3.2.1 Embedding Initialization. Following the ID embedding-based recommender models, we
initialize all the users, items, and semantic entities by mapping their IDs to the corresponding
dense low-dimensional vector representations as follows:

V =
{
v (0)
u1 , . . . ,v

(0)
u |U | ,v

(0)
i1
, . . . ,v (0)

i |I | ,v
(0)
e1 , . . . ,v

(0)
e |E |

}
, (1)

where V ∈ R( |U |+ |I |+ |E |)×d is the embedding matrix of all the nodes in G, |U |, |I |, and |E |
are the number of users, items, and semantic entities, respectively, d is the dimension length of
embeddings. It is important to mention that the user and item nodes in G1, G2 and G are parameter
shared.

3.2.2 Review-based Sentiment Extraction. As the reviews are highly subjective and can reflect
the users’ sentiments towards the target item, we propose to use an advanced sentiment analysis
technique [29] to extract sentiment information from reviews, which allows fine-grained weight-
ing to items. We formulate the calculation of sentiment score for item i as follows:

si =

∑
t ∈Ti f (t )
|Ti | , (2)

where Ti is the review set for item i , |Ti | denotes the size of Ti , f (·) represents the pre-trained
SENTA model[29], which outputs the sentiment score from the input review, and si is the mean
sentiment score for item i .

In subsequent message propagation, we use si to weight all the item nodes in G1 and G.
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3.2.3 Sentiment-weighted Embedding Generation. The average sentiment in an item’s review di-
rectly reflects the overall quality of the item. Most users usually buy high-quality items, i .e ., there
is a higher affinity between user node and high-quality item node. Consequently, we propose to
use the average sentiment score to distinguish the importance of different neighbors during the
graph convolution process, so that the overall quality information mined from item reviews can
be incorporated into the node representation. Note that the Graph Laplacian Norm in GCNs es-
sentially uses node degree (number of interactions or popularity) to assign weights for neighbor
aggregations, which is significantly different from the review-based sentiment weights. There-
fore, using both the sentiment weights and Graph Laplacian Norm is a better option. It is worth
mentioning that GAT [33], which is a variant of GCN, uses a self-attention mechanism to weight
neighbor aggregations.We argue that theweighting strategy of GAT is suboptimal under themulti-
modal recommendation scenarios, because it only uses interactions and ignores the capture of sen-
timent information (or overall quality) inherent in the items (evidence in Section 4.3.5). In addition,
Linear GCNs can better capture high-order CF signals, compared with the traditional nonlinear
GCNs (evidence in [9, 22]).
Based on these considerations, we devise a linear sentiment-weighted GCN structure to perform

message propagation on the user-item interaction graph G1, in order to better capture high-order
CF signals. For convenience, we refer to this structure as LS-GCN-1. For the target user u1 and
item i1, we formulate their embedding generation in LS-GCN-1 as follows:

v (l )
i1 =

∑

u ∈Ni1∪i1

(si1)
γ |I |∑

i ∈I (si )γ
· 1

|Ni1 |0.5 |Nu |0.5−α · v
(l−1)
u , (3)

v (l )
u1 =

∑

i ∈Nu1∪u1

(si )
γ |I |∑

i ∈I (si )γ
· 1

|Nu1 |0.5 |Ni |0.5−α
· v (l−1)

i , (4)

where l denotes the number of current graph convolution layers, Nu and Ni are the neighbor
nodes of user node u and item node i in G1, respectively, |Nu | and |Ni | denotes the size of Nu

and Ni , respectively,
(si )

γ |I |∑
i∈I (si )γ is the weight allocated to item i using the sentiment score si in

Equation (2), which can also be considered as a normalization on the sentiment score si , |I | denotes
the number of items, and γ is used to smooth the sentiment score si (we set γ = 0.1 in experiments
for simplicity), note that we set si = 1.0 when i = u1 in Equation (4). In addition, following
the recent graph learning based method [21], we fine-tune the classical Graph Laplacian Norm

1
|Ni |0.5 |Nu |0.5 to the form of 1

|Ni |0.5 |Nu |0.5−α , where α ∈ (0, 0.5) is a hyper-parameter used to control

the model sensitivity to popularity information. For convenience, we term this improved Graph
Laplacian Norm as popularity-aware norm (short for PN, Section 4.3.2 validates the effectiveness
of PN). Specifically, when α is larger, the embedding value obtained from the graph convolution
is larger, which corresponds to the fact that the model is more sensitive to the popularity.
By multimodal semantic entity extraction and the construction of multimodal collaborative in-

teraction graphs, we can model important semantic correlation, and thus reduce the negative im-
pact of preference-independent multimodal information. Now we move forward to capture this
correlation and extend it to higher-order. We propose to construct a linear sentiment-weighted
GCN structure similar to LS-GCN-1, referred to as LS-GCN-2. More precisely, we use LS-GCN-2
to iteratively performmessage propagation over the collaborative multimodal interaction graph G,
in order to bridge multimodal entity information to user representations using item nodes, while
user-item interactions can, in turn, facilitate the learning of multimodal semantic correlation.
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We first formulate the embedding output at l-th layer in LS-GCN-2 for the target user node u1
as follows:

v∗ (l )u1 =
∑

i ∈Nu1∪u1

(si )
γ |I |∑

i ∈I (si )γ
· 1

|Nu1 |0.5 |Ni |0.5−α
· v∗ (l−1)i , (5)

where v∗ (0)i is the initialized embedding of i in Equation (1), which is equivalent to v (0)
i , note that

v∗ (l )i is inherently different fromv (l )
i in Equation (4) becausev∗ (l )i is incorporated with the message

from multimodal semantic entities.
We then present the embedding generation for the target entity e1 as follows:

v∗ (l )e1 =
∑

i ∈Ne1∪e1

(si )
γ |I |∑

i ∈I (si )γ
· 1

|Ne1 |0.5 |Ni |0.5−α
· v∗ (l−1)i , (6)

Note that we set si = 1.0 when i = e1.
Since in G, the neighbors of the item nodes include both user nodes and entity nodes, separating

message aggregation for the neighbor nodes based on the node type is necessary to generate the
item embedding representations. We finally formulate the embedding generation in LS-GCN-2 for
the target item i1 as follows:

v∗ (l )i1 =
∑

u ∈N (u )
i1 ∪i1

(si1)
γ |I |∑

i ∈I (si )γ
· v∗ (l−1)u

|Ni1 |0.5 |Nu |0.5−α
+
∑

e ∈N (e )
i1 ∪i1

(si1)
γ |I |∑

i ∈I (si )γ
· v∗ (l−1)e

|Ni1 |0.5 |Ne |0.5−α
, (7)

where N (u )
i1 and N (e )

i1 denote the user and entity neighbor nodes of item i1 in G, respectively, and
v∗ (0)e is the initialized embedding of the entity e in Equation (1), which is equivalent to v (0)

e .

3.3 Model Prediction & Optimization Layer

3.3.1 Prediction Function. In GCN, the node embeddings obtained at layer l already preserve
the information from all the previous layers. Therefore, we choose the outputs of the last layer as
the final representations of all the nodes. Considering an L-layer GCN here, for a target useru and
item i , we apply the inner product to calculate the user’s preference score for the item as follows:

ŷui = (v (L)
u )T · v (L)

i + (v∗ (L)u )T · v∗ (L)i . (8)

3.3.2 Objective Function. In order to optimize the MEGCF, we select the BPR loss [24] as a base
objective function, which is used in a wide range of recommendation methods. The core idea of
BPR loss is that the preference score between the observed user-item pair is higher than that of
the unobserved one.
Firstly, in order to ensure the learning of high-order CF signal, we construct the BPR loss using

the embeddings output from LS-GCN-1, that is, the embeddings in Equations (3) and (4).

L1 =
∑

(u,i, j )∈O
−lnσ ([v (L)

u ]
T · v (L)

i − [v (L)
u ]

T · v (L)
j ) + λ1 · | |H1 | |22 , (9)

where O = {(u, i, j ) |(u, i ) ∈ R+, (u, j ) � R+} is the full training data, R+ denotes the full observed
user-item interactions in G1, σ (·) is a sigmoid function,H1 = {Vu

(L),Vi
(L) } denotes the trainable

parameters in this step, Vu
(L) = {v (L)

u1 , . . . ,v
(L)
u |U | } and Vi

(L) = {v (L)
i1
, . . . ,v (L)

i |I | } are the user and

item embeddings obtained at L-th layer in LS-GCN-1, respectively, and λ1 is the coefficient of L2
regularization forH1.

Afterwards, in order to facilitate the capture of high-order multimodal semantic correlations,
we utilize the embeddings output from LS-GCN-2 (i .e ., the embeddings in Equations (5) and (7))
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to construct the corresponding BPR loss:

L2 =
∑

(u,i, j )∈O
−lnσ ([v∗ (L)u ]

T · v∗ (L)i − [v∗ (L)u ]
T · v∗ (L)j ) + λ2 · | |H2 | |22 , (10)

where H2 = {V∗ (L)u ,V∗ (L)i } denotes the trainable parameters in this step, V∗u (L) =

{v∗ (L)u1 , . . . ,v
∗ (L)
u |U | } andV∗i (L) = {v∗ (L)i1

, . . . ,v∗ (L)i |I | } are the user and item embeddings obtained at L-

th layer in LS-GCN-2, respectively, and λ2 is the coefficient of L2 regularization forH2. It is worth
mentioning that since the embeddings of users and items are incorporated with the information
of multimodal entities through multiple message propagation, the optimization of this objective
function can be considered as using the interactions to support the learning of user preferences
over multimodal semantics.
Finally, we propose an objective function to jointly learn the Equations (9) and (10) as follows:

L = L1 + L2. (11)

We adopt the mini-batch Adam optimizer [16] to minimize the loss in Equation (11) and update
the model parameters.

3.4 Complexity Analysis of MEGCF

Here we analyze the complexity of MEGCF. To the best of our knowledge, LightGCN is the most
efficient GCN-based recommendation model. Therefore, we compare its complexity with that of
MEGCF. As for the model size, the model parameters introduced by LightGCN are the initialized
embeddings of users and items, while MEGCF additionally introduces the embeddings of entity
nodes. In the following, we analyze the time complexity of MEGCF and LightGCN for the complete
model training process.
Assuming that the number of edges on the user-item interaction graph G1 and the multimodal

interaction graph G are |E | and |Em |, respectively, d denotes the embedding length, s represents
the number of training epochs, B is the size of each training batch, and L denotes the depth of GCN
layers. Their computational complexity comes mainly from two parts: (1) the graph convolution
process, and (2) the calculation of BPR loss.

• For the graph convolution process, the time complexities of MEGCF to perform one graph
convolution on G1 and G are O (2|E |) and O (2|Em |), respectively. Thus, its complexity in

the whole training process is O (2( |E | + |Em |)Lds |E |B ), while the complexity of LightGCN is

O (2|E |Lds |E |
B
).

• For the calculation of BPR loss, the scoring prediction is the core operation to be considered.
Note that both MEGCF and LightGCN use a simple inner product as the prediction function
and its complexity isO (d ). Thus, the time complexity for LightGCN at this part in the whole
training process isO (2|E |ds ). Since MEGCF needs to perform scoring predictions on G1 and
G, respectively (c f . Equations (9) and (10)), the corresponding time complexity of MEGCF
is twice that of LightGCN, i .e ., O (4|E |ds ).

Therefore, the overall training complexity of the proposed MEGCF is close to O (2( |E | +
|Em |)Lds |E |B + 4|E |ds ), while the complexity of LightGCN is O (2|E |Lds |E |

B
+ 2|E |ds ).

4 EXPERIMENT

In this section, we conduct experiments to evaluate our proposed MEGCF, and some ablation stud-
ies to verify the effectiveness of each component inMEGCF.We aim to answer three main research
questions as follows:
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Table 1. Statistics of the Datasets, where # VE and # TE Denote the

Number of Visual and Textual Entities Introduced in

Section 3.1, Respectively, and Density is Calculated

by Using #Interaction/(#User × #Item)

Dataset # User # Item # Interaction Density # VE # TE

Beauty 15,576 8,678 139,318 0.00103 1,080 11,450

Art 25,165 9,324 201,427 0.00086 962 11,215

Taobao 12,539 8,735 83,648 0.00076 1,127 8,476

• RQ1:Howdoes our proposedMEGCF perform comparedwith the state-of-the-art baselines?
• RQ2: Whether the components (modality-specific semantic correlation, symmetric lin-
ear GCN structure, sentiment-weighted neighbor aggregation, and joint loss function) in
MEGCF are effective?
• RQ3: Whether the capture of multimodal semantic correlations is helpful for modeling
modality-level item similarity and user preference?

4.1 Experimental Settings

4.1.1 Datasets. Since our work aims to study multimodal data processing in recommenda-
tions, we choose two real-world datasets from Amazon.com introduced by [23], Beauty and
Arts_crafts_and_Sewing (short for Art)2; both of them contain images, titles, and reviews. Be-
sides, we select another fashion collocation dataset, Taobao,3 which is published in the Tianchi
competition. This dataset contains images and titles, except reviews, so the MEGCF run on this
dataset is not equipped with the strategy of sentiment-weighted neighbor aggregation. To ensure
the quality of these three datasets, we apply the 5-core setting, that is, retaining that all users and
items have at least five interactions.
We present the details of these three datasets in Table 1. Following the convention setting

[8, 11, 49], we apply the leave-one-out evaluation [24] to randomly sample one item for each user
to form the test set and another one to form the validation set, and the remaining interaction data
to serve as the training set.

4.1.2 Evaluate Metrics. We select two protocols: Hit Ratio (HR) and Normalized Discounted Cu-

mulative Gain (NDCG), which are widely used in recent works [10, 11, 49] to evaluate model per-
formance. Specifically, we compute the average HR@k and NDCG@k for each user in the test
set. Note that for each user, we randomly sample 99 items from all items that the user has not
interacted with as negative samples.

4.1.3 Baselines. To demonstrate the effectiveness of our proposed MEGCF, we compare it with
the following baselines:

• BPRMF [50]:Matrix Factorization (MF) is a classical collaborative filteringmethod, which
is widely used as a recommender baseline. BPRMF optimizes MF using BPR loss.
• SVD++ [18]: this is a variant of MF, which integrates the historical interactions into user
embeddings. It can also be viewed as a one-layer linear GCN that only passes messages for
user nodes. To ensure fairness, we employ BPR loss to optimize this baseline.

2http://deepyeti.ucsd.edu/jianmo/amazon/index.html.
3https://tianchi.aliyun.com/competition/entrance/231506/information.
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• VBPR [8]: this model incorporates visual features into the item representations and applies
the MF framework to predict the preference scores of user-item pairs.
• CKE [52]: This model incorporates visual features, textual features, and knowledge graph
into the item representations, and uses MF as the overall framework. In the experiments, we
consider only visual and textual features since there is no available knowledge graph in the
datasets.
• NGCF [39]: this model adopts a nonlinear GCN to iteratively perform message propagation
on the user-item graph and concatenates the embedding obtained from each GCN layer as
the final representations of the user and item nodes.
• MMGCN [43]: this is a multimodal recommendation model, which considers features of vi-
sual, textual, and audio modalities. It also applies three nonlinear GCNs to perform message
passing on the user-item graphs that hold data of different modalities, respectively, so as to
learn fine-grained modality-specific user preferences. It finally fuses embeddings of differ-
ent modalities as the final representations of users and items. In the experiment, we consider
only visual and textual features due to the limitation of the datasets.
• LightGCN [9]: this is the state-of-the-art GCN-based CF model, which incorporates a linear
GCN into CF scenarios and uses the summation of the embeddings obtained at each layer as
the final representation.
• GRCN [42]: this is the state-of-the-art multimodal recommendation method, whose main
framework can be viewed as a linear GCN, where multimodal features of items are used to
weight the neighbor aggregation, and finally the output of each graph convolution layer is
summed and concatenated with the multimodal features as the final node representations.

4.1.4 Hyper-parameter Settings. For all methods of comparison, we set the embedding size and
batch size to 64 and 2048, respectively. We tune the learning rate in {10−4, 10−3, 10−2, 10−1, 1}
and search the coefficient of L2 regularization in {10−5, 10−4, 10−3, 10−2, 10−1, 1}. For GCN-based
methods, i.e., NGCF, MMGCN, LightGCN, GRCN, and our proposed MEGCF, we tune the number
of graph convolution layers in {1, 2, 3, 4, 5, 6}. Besides, we use the Xavier initializer [5] to achieve
the embedding initialization for all models.

4.2 Overall Comparison (RQ1)

To evaluate our proposed MEGCF, we compare it with traditional CF models (BPRMF and
SVD++), GCN-based CF models (NGCF and LightGCN), and multimodal-based models (VBPR,
CKE, MMGCN, and GRCN). Table 2 and Figure 4 report the performance of all the models. We
obtain the following findings:

• BPRMF performs the weakest in all the cases, which indicates that the use of simple inner
product strongly depends on sufficient interaction andmakes it difficult to model complex in-
teraction connectivity in sparse scenarios. SVD++ outperforms BPRMF on the three datasets,
which demonstrates that explicitly incorporating historical interactions into the user embed-
ding is helpful for modeling user preferences.
• The GCN-based methods (NGCF, MMGCN, LightGCN, GRCN) consistently outperform
BPRMF and SVD++, which demonstrates the effectiveness of explicitly capturing high-order
CF signals. In addition, LightGCN achieves a significant improvement over NGCF on the
three datasets, which is due to the fact that the linear GCN used by LightGCN is more suit-
able for capturing high-order CF signals than the nonlinear GCN used by NGCF (evidence
is also given in [9]).
• The multimodal baselines (VBPR, CKE, and MMGCN) always outperform SVD++, which
demonstrates the effectiveness of modeling modality-level user preferences in solving
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Table 2. Overall Performance Comparison

Metric Models
Beauty Art Taobao

k = 5 k = 10 k = 20 k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

HR@k

BPRMF 0.4274 0.5173 0.6231 0.6333 0.7052 0.7829 0.3215 0.4049 0.5155

SVD++ 0.4584 0.5520 0.6659 0.6530 0.7425 0.8285 0.3374 0.4293 0.5466

VBPR 0.4722 0.5670 0.6665 0.6699 0.7464 0.8262 0.3464 0.4364 0.5512

CKE 0.4810 0.5894 0.6950 0.6719 0.7632 0.8461 0.3560 0.4550 0.5789

NGCF 0.4853 0.5820 0.6810 0.6742 0.7541 0.8287 0.3575 0.4593 0.5841

MMGCN 0.4934 0.6067 0.7166 0.6769 0.7702 0.8546 0.3649 0.4695 0.5902

LightGCN 0.5002 0.6063 0.7178 0.6814 0.7639 0.8329 0.3848 0.4893 0.6237

GRCN 0.5087 0.6204 0.7241 0.6905 0.7743 0.8532 0.3865 0.4996 0.6375

MEGCF 0.5439 0.6464 0.7448 0.7116 0.7902 0.8651 0.4045 0.5212 0.6516

%Improv . 6.92% 4.19% 2.86% 3.06% 2.05% 1.39% 4.65% 4.32% 2.21%

NDCG@k

BPRMF 0.3343 0.3634 0.3900 0.5597 0.5829 0.6025 0.2465 0.2733 0.3011

SVD++ 0.3592 0.3895 0.4157 0.5627 0.5916 0.6134 0.2523 0.2819 0.3114

VBPR 0.3665 0.3973 0.4224 0.5830 0.6078 0.6280 0.2639 0.2928 0.3216

CKE 0.3650 0.4002 0.4269 0.5739 0.6030 0.6245 0.2622 0.2941 0.3253

NGCF 0.3776 0.4089 0.4339 0.5882 0.6141 0.6330 0.2658 0.2986 0.3301

MMGCN 0.3714 0.4081 0.4359 0.5643 0.5945 0.6159 0.2709 0.3047 0.3351

LightGCN 0.3807 0.4152 0.4435 0.5886 0.6153 0.6340 0.2840 0.3176 0.3515

GRCN 0.3910 0.4272 0.4533 0.5937 0.6208 0.6407 0.2861 0.3225 0.3573

MEGCF 0.4257 0.4590 0.4838 0.6144 0.6398 0.6588 0.3020 0.3397 0.3726

%Improv . 8.87% 7.44% 6.73% 3.49% 3.06% 2.83% 5.56% 5.33% 4.28%

Fig. 4. Performance comparison of all the models over the different k on the three datasets.

sparsity problems. CKE slightly outperforms VBPR w.r.t. HR in most cases, which is own-
ing to the additional incorporation of deep textual features in CKE. However, CKE is often
weaker than VBPR w.r.t. NDCG especially on the Art dataset, which is attributed to the fact
that the textual deep features that CKE additionally incorporates contain too much noise
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unrelated to user preferences, thus contaminating the embedding representation and weak-
ening the modeling of ranking preferences.
• MMGCN outperforms NGCF in most cases, which indicates that incorporating multimodal
features while capturing high-order CF signals can further improve the model performance.
Unexpectedly, in terms of NDCG on the Art dataset, MMGCN is weaker than NGCF, CKE,
and VBPR. This may be due to the fact that MMGCN extends multimodal features to a
higher order through the user-item interaction graph, which in turn amplifies the preference-
independent information and intensifies the contamination of embeddings, thereby weaken-
ing the modeling of user preferences in terms of ranking. The results of GRCN confirm this
analysis, since GRCN, combining higher-order CF signal and lower-order multimodal fea-
tures, consistently achieves a high performancew .r .t . NDCG.
• MEGCF achieves the optimal performance on the three datasets, which demonstrates the
importance of simultaneously mining high-order multimodal semantic correlation and CF
signal. In particular, MEGCF achieves maximum improvements of 8.87% and average im-
provements of 4.40% compared with the strongest baseline GRCN (the method with an un-
derline). An important observation is that MEGCF achieves more remarkable improvements
on NDCG than on HR, which may be attributed to the fact that the multimodal semantic
correlation captured in MEGCF is more advantageous for ranking preference modeling. In-
depth experiments in Section 4.3.1 further validate this analysis, as after eliminating all the
multimodal information (i .e ., themodel variantw/oV&T), themodel performance decreases
more on NDCG than on HR. It is worth mentioning that the multimodal recommender base-
lines (VBPR, CKE, andMMGCN) perform poorly on NDCG, while MEGCF achieves a greater
improvement on NDCG. This indicates that for alleviating the embedding contamination,
mining semantic correlation from multimodal content (i .e ., the strategy in MEGCF) is more
effective than incorporating complete multimodal deep features.

4.3 Study of MEGCF (RQ2)

In this section, we aim to investigate the effectiveness of all the components inMEGCF. Specifically,
we first study the impact of modality-specific semantic correlation on model performance. Then,
we further decompose the symmetric GCN modules in MEGCF and study the gains they bring to
the model. Next, we investigate the effectiveness of the proposed joint loss function. After that, we
compare the impacts of sentiment weighting strategy on different GCN-basedmethods. Finally, we
assess the influence of the number of graph convolution layers in MEGCF and other GCN-based
baselines.

4.3.1 Is Modality-specific Semantic Correlation Helpful? MEGCF mines semantic entities from
visual and textual modalities, respectively, and captures high-order multimodal semantic corre-
lation using user-item interactions and these semantic entities. In order to study the impact of
semantic correlation of different modalities on the model performance, we set up the following
variants of MEGCF:

• w/o V: this model is obtained by removing the visual semantic entities from MEGCF.
• w/o T: this model is obtained by removing the textual semantic entities from MEGCF.
• w/o V&T: this model removes both textual and visual semantic entities, which is equivalent
to the symmetric GCN module in MEGCF capturing only the high-order CF signals.

We conduct ablation experiments on the three datasets. Figure 5 and Table 3 record the model per-
formance of the three variants and MEGCF w.r.t. HR@k and NDCG@k . We find that the curve of
w/o V&T always lies at the bottom, i .e ., the model performs worst when the multimodal semantic
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Fig. 5. Effect of modality-specific semantic correlation on MEGCF.

Table 3. Ablation Study of Components in MEGCF

Methods

Beauty Art Taobao

HR@k NDCG@k HR@k NDCG@k HR@k NDCG@k

k = 10 k = 20 k = 10 k = 20 k = 10 k = 20 k = 10 k = 20 k = 10 k = 20 k = 10 k = 20

w/o V&T 0.6047 0.7105 0.4124 0.4391 0.7477 0.8250 0.6131 0.6327 0.4978 0.6329 0.3209 0.3549

w/o V 0.6226 0.7271 0.4326 0.4589 0.7716 0.8466 0.6201 0.6391 0.5076 0.6362 0.3278 0.3603

w/o T 0.6150 0.7118 0.4328 0.4574 0.7642 0.8421 0.6185 0.6383 0.5079 0.6316 0.3304 0.3617

MEGCFд1 0.6026 0.7093 0.4145 0.4415 0.7542 0.8314 0.6145 0.6340 0.4990 0.6244 0.3241 0.3557

MEGCFд2 0.6156 0.7345 0.4100 0.4400 0.7654 0.8448 0.6103 0.6304 0.4849 0.6217 0.3196 0.3540

w/o L1 0.5902 0.7171 0.3609 0.3930 0.7411 0.8455 0.5239 0.5504 0.4751 0.6355 0.2625 0.3030

w/o L2 0.6161 0.7214 0.4255 0.4522 0.7355 0.8139 0.5975 0.6173 0.5047 0.6387 0.3250 0.3587

w/o PN 0.6359 0.7358 0.4509 0.4763 0.7809 0.8557 0.6297 0.6493 0.5109 0.6404 0.3329 0.3665

MEGCF 0.6464 0.7448 0.4590 0.4838 0.7912 0.8648 0.6383 0.6569 0.5212 0.6516 0.3397 0.3726

entities are not used, which indicates the importance of capturing multimodal semantic correla-
tions. Furthermore, the curves of w/o V andw/o T considering visual or textual information alone
are consistently close to each other, i .e ., the capture of visual and textual semantic correlations pro-
vides similar gains in model performance. This may be due to the fact that in the recommendation
scenarios for these three datasets (E-commerce), the visual and textual contents of the item con-
tribute similarly to triggering the user’s interaction behavior (i .e ., whether the user will like the
item or not). MEGCF consistently outperforms w/o V and w/o T, which indicates that the visual
and textual features are significantly different in triggering user interest, and thus simultaneously
modeling semantic correlation on multiple modalities can better model user preferences.
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Fig. 6. Effect of symmetric linear GCN module on MEGCF.

4.3.2 Is Symmetric Linear GCN Block Helpful? In Section 3.2, we propose two linear GCN, LS-
GCN-1 and LS-GCN-2 (respectively denoted by g1 and g2). They can capture high-order CF signals
and high-order multimodal semantic correlations, respectively. In order to investigate the effect of
them, we set up the following variants of MEGCF:

• w/o g2: this model retains only g1 in the symmetric linear GCN to generate the final embed-
ding representations of the nodes.
• w/o g1: this model uses g2 rather than the symmetric linear GCN module for node embed-
ding generation.
• w/o PN: this variant uses the classical Graph Laplacian Norm rather than the popularity-
aware norm (short for PN, c f . Equation (3)).

We conduct experiments on these two variants andMEGCF using the three datasets. Figure 6 shows
the top-k recommendation performance of w/o g2, w/o g1, and MEGCF, and Table 3 records the
specific performance of these methods. We have the following findings:

• MEGCF consistently outperforms w/o g2 and w/o g1, which indicates that there are signif-
icant differences between the CF signal and multimodal correlation captured by g1 and g2,
respectively. Therefore, MEGCF combined with g1 and g2 can achieve complementarity be-
tween CF signal and multimodal correlation, and it further enhance the model performance.
• w/o g1 is slightly weaker than w/o g2 in most cases, which may be due to the difference
between the captured CF signals in g1 and g2. More precisely, although g2 can be roughly
considered as a simultaneous capture of the CF signal and semantic correlation, the CF sig-
nal in g2 is mainly used to assist in the capture of semantic correlation. Therefore, it will
inevitably incorporate preference-independent multimodal noise, which makes it less pure
than the CF signal captured alone in g1. This leads to the result that w/o g1 is weaker than
w/o g2.
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Fig. 7. Effect of joint loss function on MEGCF.

• It can be seen from Table 3 that MEGCF is stronger thanw/o PN on the three datasets, which
indicates the effectiveness of the popularity-aware norm in symmetric linear GCN module.
Note that this result is consistent with that in [21].

4.3.3 Is Joint Loss Function Helpful? In Section 3.3.2, we set the corresponding loss functions
L1 and L2 for optimizing the model learning for CF signals and multimodal semantic correlations,
respectively, while the final joint loss function is their simple summation. In order to investigate
the effectiveness of the joint loss function in MEGCF, we set up the following model variants:

• w/oL1: this variant removes L1 from the final loss function of MEGCF. That is, its optimiza-
tion goal is to capture multimodal semantic correlations.
• w/oL2: this variant removesL2 from the final loss function of MEGCF, which indicates that
its optimization goal is to capture high-order CF signals, while the modeling of multimodal
semantic correlations is weaker.

Figure 7 and Table 3 document the trend plots and the specific values of model performance for
these model variants on the three datasets, respectively. w/o L2 outperforms w/o L1 in most
cases, which indicates that simply optimizing the capture of multimodal semantic correlations
is insufficient. In addition, MEGCF achieves a better performance than w/o L1 and w/o L2 on
the three datasets, which demonstrates the effectiveness of the strategy of using a joint loss
function to simultaneously optimize both the high-order CF signals and multimodal semantic
correlations.

4.3.4 Is Sentiment-weighted Neighbor AggregationHelpful? InMEGCF,we extract the sentiment
information of users from the item’s reviews and then use it to assign weights to this item node,
which allows the model to distinguish the importance of different neighbors during the graph
convolution process. In order to investigatewhether the sentiment-weighted neighbor aggregation
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Table 4. Effect of the Sentiment-weighted Neighbor Aggregation on GCN-based Methods

Methods

Beauty Art

HR@k NDCG@k HR@k NDCG@k

k = 5 k = 10 k = 20 k = 5 k = 10 k = 20 k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

NGCF 0.4853 0.5820 0.6810 0.3764 0.4089 0.4339 0.6742 0.7541 0.8287 0.5882 0.6141 0.6330

NGCFs 0.4878 0.5828 0.6821 0.3776 0.4114 0.4354 0.6784 0.7565 0.8295 0.5911 0.6167 0.6362

%Improv . 0.52% 0.14% 0.16% 0.32% 0.61% 0.35% 0.63% 0.32% 0.10% 0.49% 0.42% 0.51%

MMGCN 0.4934 0.6067 0.7166 0.3714 0.4081 0.4359 0.6736 0.7681 0.8526 0.5627 0.5933 0.6148

MMGCNs 0.4981 0.6092 0.7176 0.3746 0.4117 0.4379 0.6756 0.7695 0.8531 0.5685 0.5988 0.6180

%Improv . 0.95% 0.41% 0.14% 0.86% 0.88% 0.46% 0.30% 0.18% 0.06% 1.03% 0.93% 0.52%

LightGCN 0.5002 0.6063 0.7178 0.3807 0.4152 0.4435 0.6814 0.7639 0.8376 0.5886 0.6153 0.6340

LightGCNs 0.5040 0.6100 0.7207 0.3838 0.4181 0.4460 0.6834 0.7647 0.8383 0.5897 0.6166 0.6350

%Improv . 0.76% 0.78% 0.14% 1.40% 1.13% 0.54% 0.29% 0.10% 0.08% 0.19% 0.21% 0.16%

w/o S 0.5332 0.6373 0.7404 0.4135 0.4472 0.4733 0.7052 0.7854 0.8587 0.6075 0.6335 0.6521

MEGCF 0.5439 0.6464 0.7448 0.4257 0.4590 0.4838 0.7116 0.7902 0.8651 0.6144 0.6398 0.6588

%Improv . 2.01% 1.43% 0.59% 2.95% 2.64% 2.22% 0.91% 0.61% 0.75% 1.14% 0.99% 1.03%

approach can improve the performance of MEGCF, and also to explore whether this approach
is equally effective for other GCN-based recommender methods, we set up the following model
variants:

• NGCF, LightGCN, and MMGCN: the GCN-based baselines introduced in Section 4.1.3.
• NGCFs , LightGCNs , and MMGCNs : these model variants are obtained by applying the
sentiment-weighted neighbor aggregation to NGCF, LightGCN, and MMGCN, respectively.
• w/o S: this variant is obtained by removing the sentiment weighting strategy from MEGCF.

Table 4 documents the specific performance of these methods. We have the following findings:

• NGCFs , MMGCNs , LightGCNs , and MEGCF generally outperform NGCF, MMGCN, Light-
GCN, and w/o S, respectively. This demonstrates that the sentiment-weighted approach not
only brings gains for MEGCF, but it is also effective for other GCN-based methods.
• The sentiment weighting strategy achieves more significant improvement on MEGCF, com-
pared with other GCN-based methods, which may be attributed to the symmetric graph
convolution structure of MEGCF. Specifically, MEGCF is equipped with two different linear
GCN that both benefit from the sentiment-weighted neighbor aggregation, which results in
more improvement on MEGCF.
• An important phenomenon is that the improvement of these methods on NDCG is generally
higher than that on HR. In addition, the smaller the size of the recommendation list (i .e ., k),
the higher the improvement of these methods. All these results reflect the outperformance of
sentiment-weighted neighbor aggregation methods in ranking preference modeling. Specifi-
cally, these GCN-based methods with sentiment weighting will tend to rank items of interest
to users more towards the top of the top-k recommendation list. Therefore, they lead to more
improvement when k is smaller or when NDCG is computed.
• The sentiment-weighted neighbor aggregation method has a significantly higher improve-
ment on the Beauty dataset (almost 1.97%) than on the Art dataset (almost 0.91%), which is
coherent with the results of overall comparison in Table 2. This is probably because in the
recommendation scenario corresponding to the Art dataset, using only interaction data can
achieve remarkable recommendation results (HR@5 > 0.7), which means that the room for
further improvement will be more limited.
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Fig. 8. Performance trends on different training epochs on the Beauty dataset.

4.3.5 Is Sentiment Weighting Superior to Self-attention Weighting? In this part, in order to com-
pare the influences of the review-based sentiment weighting strategy and the self-attentionweight-
ing of GAT [33] on the neighbor aggregation in GCN, we set up the following model variants:

• w/o S&PN: this variant removes both the sentiment weighting strategy and the popularity-
aware norm (short for PN) from MEGCF.
• MEGCFдat : this variant uses the self-attention networks in GAT to weight the neighbor
aggregation in MEGCF, rather than the sentiment weighting strategy.

Figure 8 records the performance trends of these methods on the training epochs of 0-1000. we
have the following findings:

• MEGCF is significantly stronger than MEGCFдat , which indicates that sentiment weighting
outperforms self-attention weighting in GAT for user preference modeling. Furthermore,
we attribute this outperformance to the utilization of both interaction data and reviews in
the sentiment weighting strategy, while the weights in MEGCFдat are only learned from
interaction data.
• The curve of MEGCFдat and that of w/o S are close. This may be due to the fact that self-
attention weighting in MEGCFдat and popularity-aware norm (PN) inw/o S exert similar
effects on the model, both amplifying the CF signal (i .e ., assigning higher weights to nodes
with more interactions). We leave this phenomenon for future studies. In the late training
period (when the training epoch is greater than 700), the performance of MEGCFдat starts
to slightly decrease, probably because the self-attention networks introduce more learnable
parameters (weight matrices), which not only increases themodel complexity but alsomakes
the model more prone to the risk of overfitting.
• MEGCFдat significantly outperformsw/o S&PN in the early stage of training, which demon-
strates the effectiveness of the self-attention weighting strategy. However, in the late stage
of training, w/o S&PN performs very close to MEGCFдat , which may be because the light-
weight GCN used in these model variants has a strong ability to mine the interaction
relations, and therefore the performance gain brought by the self-attention network in
MEGCFдat can be replaced by adequate model training in w/o S&PN.

4.3.6 Effect of the Number of Graph Convolution Layers. In order to better investigate the ability
of MEGCF to capture multimodal correlation and CF signal, we compare the model performance
of MEGCF and other GCN-based baselines (NGCF, MMGCN, and LightGCN) w.r.t. different graph
convolution layers (we search the number of layers in {1, 2, 3, 4, 5, 6}), as shown in Figure 9. We
have the following findings:

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 30. Publication date: March 2023.



30:22 K. Liu et al.

Fig. 9. Performance of GCN-based methods (NGCF, LightGCN, MMGCN, and MEGCF) w.r.t. the number

of GCN layers on the three datasets.

• Generally speaking, MEGCF achieves the optimal performance for all layer settings on the
three datasets, which further demonstrates the effectiveness of MEGCF.
• NGCF and MMGCN show relatively flat performance on the three datasets w.r.t. the number
of layers, while LightGCN and MEGCF demonstrate a significant upward trend as the num-
ber of layers increases. We attribute such results to the fact that the nonlinear GCNs used by
NGCF and MMGCN limit the capture of high-order CF signal, while LightGCN and MEGCF
use linear GCNmodules, which results in better performance. These results demonstrate the
outperformance of the linear GCN structure for capturing high-order CF signals.
• MMGCN generally outperforms NGCF, while NDCG@10 ofMMGCN is significantly weaker
than that of NGCF on the Art dataset. This is attributed to the fact that the additional item
multimodal deep features incorporated in MMGCN can enhance the user preference mod-
eling. However, these features contain a considerable amount of preference-independent
multimodal information, especially in the Art dataset where the negative impact of this infor-
mation is greater. These results illustrate that the user preference-independent multimodal
features can seriously contaminate embedding generation and ranking preference modeling.
• MEGCF consistently outperforms LightGCN significantly, which is due to the fact that
MEGCF not only captures high-order CF signals but also models high-order multimodal
semantic correlations. This demonstrates the importance of high-order multimodal seman-
tic correlation in modeling user preferences. Moreover, compared with MMGCN, MEGCF,
which is also based on multimodal information, exhibits a more pronounced upward trend
as the number of graph convolution layers increases. This demonstrates that modeling high-
order multimodal semantic correlations is more effective than existing multimodal feature
processing approaches.
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Fig. 10. Real example from Taobao dataset, the target user is u8640.

4.4 Case Study (RQ3)

In order to more intuitively explain the important role of multimodal semantic correlation in mod-
eling modality-level user preference and item similarity, we design a simple case study on the
Taobao dataset as shown in Figure 10. For simplicity, we only consider semantic entity mining
of visual modality. Firstly, we randomly select a user u8640 having an ID of 8640. Her historical
interacted items are i6339, i8261, and i3125, and we give the images corresponding to these items
in Figure 10. Then, we leverage the method introduced in Section 3.1 to mine the visual semantic
entities in the images. Afterwards, using all this information, a partial collaborative multimodal in-
teraction graph with user u8640 as the central node can be constructed. Finally, we use the MEGCF
that has been trained on the Taobao dataset to predict user preference scores for different modality
semantic entities, and calculate the similarities between different items using the inner product of
the embeddings. We have the following findings:

• For the semantic entities (e14: T-shirt, e78: backpack, and e63: overskirt), MEGCF computes a
significantly higher score for e78 than for e14 and e63, which is consistent with the fact that
the images of all the three items contain e78, i.e., this user is more interested in the “backpack”.
This result illustrates that incorporating multimodal semantic entities can effectively model
user preference over multimodal latent space.
• The similarity score between items i8261 and i3125 is higher than that between items i6339
and i3125, i.e., compared with i6339, i8261 is more similar to i3125, which also corresponds to
the fact that i8261 and i3125 share three semantic entities, while i8261 and i6339 share only two.
This result illustrates that capturing multimodal semantic correlation can better mine the
similarity between items at the multimodal level.
• Based on this simple case, we find that there is still room for enhancing the multimodal
semantic entity extraction in MEGCF. Specifically, since the deep method we leverage for
visual semantic entity mining is pre-trained on the ImageNet dataset with only 1,000 cat-
egories, the extracted semantic entities are limited by these 1,000 categories. For exam-
ple, all the styles of hats and bags in the images are roughly identified as “cowboy hat”
and “backpack”, respectively. In addition, directly transferring the deep approach from the
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computer vision research field to the recommendation scenario would significantly reduce
the accuracy of the semantic entity recognition. Nevertheless, MEGCF still achieves the state-
of-the-art performance. Based on this analysis, MEGCF will be significantly enhanced if the
categories of entities can be refined and the accuracy of multimodal semantic entity extrac-
tion can be improved.

5 CONCLUSION AND FUTURE WORK

In this work, we propose a novel GCN-based multimodal recommender method, referred to as
MEGCF, which introduces multimodal semantic correlation to tackle the mismatch problem in
multimodal recommendation scenarios. By constructing a symmetric linear graph convolution
network,MEGCF can achieve simultaneous capture of high-ordermultimodal semantic correlation
and collaborative signal. In addition, we design a review-based sentiment weighting strategy to
enhance the neighbor aggregation in GCN-based methods, in order to better capture high-order
structural features on the graph. We conduct extensive experiments on three real-world datasets.
The obtained results demonstrate the state-of-the-art performance of MEGCF. Further ablation
experiments and analysis validate the effectiveness and rationality of MEGCF.
The multimodal entity extraction and semantic correlation modeling in MEGCF still has room

for improvement as follows:

• Improving the accuracy of the extraction of multimodal semantic entities can better model
semantic correlation and thus reduce the negative impact of misidentified entities. Conse-
quently, in future work, we aim at using a larger dataset to enhance the pre-training of the
feature extraction module, while employing contrastive learning [45] techniques to improve
the representation learning of multimodal features in a self-supervised manner.
• Multimodal semantic entity extraction inMEGCF fails to extract complete preference-related
semantic information, thus leading to the limitation of low utilization of multimodal fea-
tures. To tackle this problem, we aim at using techniques such as causal inference [37] and
transformer [32] in order to discover and distinguish more fine-grained preference-related
multimodal information in future research.
• Rich semantic information in multimodal content can also be used to enhance the inter-
pretability of recommender systems, which is left for future work.
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