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Abstract—Recommender systems face a daunting challenge when entities (users or items) without any historical interactions, known
as the ”Completely Cold-Start Problem”. Due to the absence of collaborative signals, Collaborative Filtering (CF) schema fails to
deduce user preferences or item characteristics for such cold entities. A common solution is incorporating auxiliary discrete attributes
as the bridge to spread collaborative signals to cold entities. Most previous works involve embedding collaborative signals and discrete
attributes into different spaces before aligning them for information propagation. Nevertheless, we argue that the separate embedding
approach disregards potential high-order similarities between two signals. Furthermore, existing alignment modules typically narrow
the geometric-based distance, lacking in-depth exploration of semantic overlap between collaborative signals and cold entities. In this
paper, we propose a novel discrete attribute-enhanced completely cold-start recommendation framework, which aims to improve
recommendation performance by modeling heterogeneous signals in a unified space. Specifically, we first construct a heterogeneous
user-item-attribute graph and capture high-order similarities between heterogeneous signals in a graph-based message-passing
manner. To achieve better information alignment, we propose two self-supervised alignment modules from the semantic mutual
information and user-item preference perspective. Extensive experiments on six real-world datasets in two types of discrete attribute
scenarios consistently verify the effectiveness of our framework.

Index Terms—Recommender System, Cold-Start Problem, Contrastive Learning.

✦

1 INTRODUCTION

1 P ERSONALIZED recommendations have emerged as criti-2

cal components to alleviate information overloading for3

users in various online applications, including E-commerce,4

advertising, and so on [1; 2; 3]. At its core is estimating how5

likely a user will adopt an item based on historical inter-6

actions like purchases and clicks, known as collaborative7

signals. CF-based methods have shown remarkable success8

in modern recommender systems [4; 5; 6; 7]. Despite the9

success in serving regular users and recommending regular10

items, CF-based methods severely suffer from the cold-11

start problem, failing on new entities whose interactions12

are very limited with unsuitable recommendations. In many13

more extreme cases, models are required to make recom-14

mendations to newly registered users or recommend newly15

launched items, that without any historical records. Due to16

the absence of collaborative signals, CF-based methods fail17

to deduce user preferences or item characteristics for such18

cold entities. We refer to this dilemma as the “completely19

cold-start problem”.20

To deal with this issue, many researchers shed light on21

exploiting auxiliary discrete attributes, such as user occupa-22

tion and gender, item genre, brand , and so on [8; 9; 10; 11;23

12; 13]. The discrete attributes have the ability to describe24
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user preferences and item characteristics to a certain extent. 25

More importantly, the attributes are shared by cold entities 26

and warm entities. Thus, they are deemed as a bridge 27

to fill the gap between warm entities with collaborative 28

signals and cold entities. The modeling process of existing 29

works generally consists of two stages, as depicted in Fig. 30

1. In the first stage, two encoders are trained to separately 31

embed collaborative signals and auxiliary discrete attributes 32

into different spaces. And then perform specific alignment 33

functions (e.g., local geometric similarity, mean square error) 34

to narrow the distance of embedding from different spaces 35

for knowledge transfer, making the attribute representation 36

contains valuable collaborative signals in this way. In the 37

second stage, they generate the representation of cold en- 38

tities based on the corresponding attribute representations 39

to perform recommendation tasks. For example, Heater [12] 40

employs multiple experts network to embed auxiliary dis- 41

crete attributes and use pre-trained embedding to provide 42

collaborative signals, then sum square error is used to align 43

them. In the inference phase, the CF-aware attribute repre- 44

sentations generated by this multiple experts network are 45

used directly to recommend new entities. CLCRec [14] uses 46

two separate encoders to convert collaborative signals and 47

auxiliary discrete attributes into representations and then 48

uses contrastive loss to align the two kinds of information 49

for new entity recommendations. 50

Despite the effectiveness, we argue that these methods 51

are not sufficient to yield satisfactory information fusion 52

for collaborative signals and discrete attributes. The key 53

reason is that they perform the modeling process in two 54
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Fig. 1. The scheme of existing models for completely cold-start problem.

separate spaces. To be specific, first, the general practice of55

independently training collaborative signals and attribute56

representations in two separate spaces structurally isolates57

the interactions among warm entities and attributes. The58

two encoders aim to learn information from two sides59

separately, without considering the collaborative signals-60

attributes interactions. The interactions are only used to61

define the alignment loss function for model training. As62

a result, when the embeddings are insufficient in per-63

ceiving high-order similarities, the methods have to rely64

on the alignment loss function to make up for the de-65

ficiency of suboptimal embeddings. Secondly, due to the66

two-spaces-based modeling approach, existing alignment67

modules typically narrow the geometric-based distance of68

representations from two spaces to make collaborative sig-69

nals transfer to attribute representations, lacking an in-depth70

guarantee that cold entities’ and warm entities’ semantic71

characteristics are consistent. To overcome these defects,72

it is necessary to model collaborative signals and discrete73

attributes in a unified space. However, there are still many74

unique challenges inherent in designing an effective uni-75

fied framework. On the one hand, the collaborative signals76

and discrete attributes are heterogeneous. The collaborative77

signals consist of user-item historical interactions, which78

are usually represented by an adjacency matrix. And each79

user and item is initialized as a free embedding. Besides,80

auxiliary discrete attributes are diverse. And there are also81

interactions between some attributes, such as knowledge82

graphs. Therefore, representing two heterogeneous types83

of information in a unified space and capturing the high-84

order similarities between them is not non-trivial. On the85

other hand, how to design an effective alignment method86

that preserves semantic consistency between warm and cold87

representation is still an open issue.88

Our proposed framework introduces a new approach to89

enhance completely cold-start recommendations by model-90

ing collaborative signals and discrete attributes in a unified91

space. Unlike previous works that model heterogeneous in-92

formation in different spaces, we construct a heterogeneous93

user-item-attribute graph by representing heterogeneous94

information as different types of nodes. Then we capture95

higher-order information and proximity between different96

types of nodes in a message-passing manner. Meanwhile, to 97

better inject collaborative signals into cold representation, 98

we propose two self-supervised alignments from the per- 99

spective of semantic mutual information and user-item pref- 100

erence, including maximizing mutual information between 101

different representations and distance-based constraints be- 102

tween different preference scores. Our more comprehensive 103

and well-designed alignment module results in better col- 104

laborative signal-aware cold representations. To prove the 105

effectiveness and universality of the proposed model, we 106

choose six real-world datasets to evaluate the performance 107

of the model. The experiment results clearly verify the 108

superiority and effectiveness of the proposed model and 109

show that our model can be adapted to various types of 110

discrete attributes, including the single and complex rela- 111

tionship between attributes and entities. We summarize our 112

contributions as follows: 113

• We construct a unified heterogeneous user-item- 114

attribute graph to capture high-order similarities be- 115

tween collaborative signals and discrete attributes in 116

a graph-based message-passing manner. 117

• We propose two self-supervised alignment modules 118

to achieve better information alignment between col- 119

laborative signals and discrete attributes from the se- 120

mantic mutual information and user-item preference 121

perspective, respectively. 122

• We conduct extensive experiments on six real-world 123

datasets to demonstrate the superiority and effective- 124

ness of the proposed model in solving the completely 125

cold-start problem. 126

2 RELATED WORK 127

2.1 Completely Cold-Start Recommendation 128

CF-based methods are widely used in recommendation 129

[4; 15; 16; 17; 18]. Rich historical interaction records are 130

key to the success of these methods. However, CF-based 131

methods encounter a significant hurdle with the cold-start 132

problem, where the model struggles to provide effective 133

recommendations for users or items with insufficient histor- 134

ical interaction data. This issue can be classified into two 135

types: completely cold-start and incompletely cold-start, 136
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depending on whether there are any previous interaction137

records [19]. The most common approach to solving the138

cold-start problem is to incorporate side information, such139

as content features, social networks, and user profiles, to140

bridge the gap between the collaborative signal and cold-141

start items (users) [9; 12; 20].142

The completely cold-start problem poses greater chal-143

lenges, as the sparsity of interactions for cold-start users and144

items is 100%, making it exceedingly difficult for modeling.145

Due to the complete absence of collaborative signals, most146

methods to solve the cold-start problem fail on the com-147

pletely cold-start problem. Using side information without148

modeling the collaborative signal may lead to suboptimal149

performance [10; 21; 22; 23]. To address this issue, existing150

works usually use two separate encoders to convert hetero-151

geneous CF information and side information into different152

spaces, and then dedicate to designing various alignment153

functions to model the correlation and narrow the difference154

between two embeddings. Specifically, DropoutNet [9] and155

MTPR [20] strategically discard collaborative filtering infor-156

mation during the training phase, prompting the model to157

close the gap between different embeddings by simulating158

a completely cold start scenario. Heater [12], PGD [11] and159

so on [14; 24] design optimization objectives to explicitly160

close the distance between collaborative representation and161

content representation, including reducing the Euclidean162

distance and mutual information between the represen-163

tations. Besides, generative methods also be explored in164

this scenario [13; 25; 26; 27]. Specifically, GAR [27] and165

LARA [13] use generative adversarial networks to let the166

discriminator in the model confuse the collaborative repre-167

sentation and the generated content representation to close168

their gap. However, we argue these methods are insufficient169

in perceiving high-order similarities and lack an in-depth170

guarantee that the user and item semantic characteristics171

are consistent.172

In the incomplete cold-start scenario, some methods173

[28; 29; 30; 31] try to solve the cold-start problem based on174

the meta-learning paradigm. Here, the global parameters175

of the model are learned with the existing user data and176

locally updated to rapidly adapt to the new user preferences177

with a few interactions. However, these methods require the178

existence of a small number of interaction records, which is179

not suitable for the completely cold-start scenario we are180

concerned about.181

2.2 Contrastive Learning and Applications in Recom-182

mendations183

Contrastive learning, which aims to learn high-quality rep-184

resentation via a self-supervised manner, has achieved re-185

markable successes in CV, NLP, and other fields [32; 33;186

34; 35]. The common motivation behind these works is the187

InfoMax principle [36; 37]. By identifying the positive pair188

from some negative ones, contrastive learning maximizes189

the mutual information between two parts with semantic190

dependencies and emphasizes learning common features191

between different views of an instance. When it comes192

to recommender systems, most existing works apply con-193

trastive learning to improve recommendation performance.194

Some works [38; 39; 40] organize user behavior data as195

graphs. The graph structure with slight perturbations may 196

have similar semantics. By contrasting different structures, 197

the shared invariance to structural perturbations is obtained 198

as self-supervised signals. These works extract contrastive 199

self-supervised signals from the data structure perspec- 200

tive, there are also some studies perform contrast between 201

model-level augmentations. For instance, DuoRec [41] ap- 202

plies two different sets of dropout masks to a Transformer- 203

based backbone for two model-level representation aug- 204

mentations. SRMA [42] proposes to randomly drops some 205

layers of the feed-forward network in the Transformer 206

for model-level augmentation. Compared to the structure- 207

level and model-level contrast, the feature-level contrast is 208

relatively less explored. Inspired by contrastive learning, 209

we maximize the mutual information between collaborative 210

signal and side features to encourage the feature embedding 211

level information fusion. 212

3 PROBLEM DEFINITION 213

Considering widespread implicit feedback scenarios, we 214

supposed there are two sets of entities: a user set U(|U | = 215

M) and an item set V (|V | = N). Let O ∈ RM×N denote the 216

observed implicit feedback matrix, where each entry oij = 1 217

if there is an interaction between the user i and item j, 218

otherwise oi,j = 0. The user-item interaction behavior could 219

be naturally formulated as a user-item bipartite graph. We 220

use AO to represent the adjacent matrix that is constructed 221

from the interaction matrix O: 222

AO =

[
O 0M×N

0N×M OT

]
. (1)

In addition to interactions, we also take into account 223

discrete attributes that are sparse and categorical. Take the 224

attribute of the item as an example, We use X ∈ RN×D
225

to denote the matrix of item attributes, herein D is the 226

dimension of item attributes. Besides, we employ xj ∈ RD
227

to denote item j’s one-hot attribute (0 ≤ j < N). 228

Given the above information, we aim to make recom- 229

mendations for cold entities which have no prior historical 230

interaction. We term this problem as the completely cold-start 231

problem. To assess the performance of the model in real- 232

world scenarios, we categorize our recommendation task 233

into the following three tasks: 234

• Task 1: When a cold (new) item vcold with side infor- 235

mation appears, we have to recommend new items 236

to warm (old) users u. 237

• Task 2: When a cold (new) user ucold with side infor- 238

mation appears, we recommend warm (old) items v 239

to new users ucold. 240

• Task 3: When cold (new) users and warm (old) items 241

vcold appear at the same time, we have to recommend 242

cold items to cold users ucold. 243

Our work focuses on the problem of new entities having 244

no historical interaction at all. On the one hand, the initial 245

recommendation experience greatly affects the retention rate 246

of new users, and the feedback after the recommendation of 247

new items affects their value evaluation. On the other hand, 248

most recommendation models are difficult to train incre- 249

mentally. Limited by the training cost in actual scenarios, 250
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Fig. 2. An illustration of our proposed URAC method.

new records are often not used to retrain the model the first251

time; therefore the completely cold-start scenario will exist252

for a longer time than expected. We are trying to come up253

with an effective solution to this practical problem.254

4 THE PROPOSED MODEL255

We would introduce our proposed Unified Representation256

Learning for Discrete Attribute Enhanced Completely Cold-start257

Recommendation (URAC). For clarity, in the subsequent in-258

troduction, we use Task 1, i.e., recommend new items to old259

users, as an example to introduce the technical details of260

our model and the solutions of the other two tasks can be261

obtained by a simple analogy.262

4.1 Overall Framework263

As illustrated in Fig. 2, URAC consists of three main com-264

ponents, the graph construction module, the embedding265

propagation module, and the double alignments module.266

• The graph construction module serves to construct267

heterogeneous graphs based on historical interac-268

tions and item attributes, with users, items, and269

attribute values represented as nodes.270

• The embedding propagation module is responsible271

for learning the embeddings of each node in the272

graph constructed by the graph construction mod-273

ule and converting these embeddings into cold and274

warm representations.275

• The double alignments module aligns collaborative276

signals and attributes information at different levels277

to better inject collaborative signals into cold repre-278

sentation. We propose a representation-level align-279

ment based on mutual information maximization.280

Then, using both the cold and warm representations,281

we calculate preference scores and design a distance-282

based alignment module to align preference scores.283

Through the collaboration of the above modules, we model284

and align the two types of information in a unified space285

to generate a cold representation with a richer collaborative286

signal. Finally, we optimize our model using a multi-task287

learning framework.288

4.2 Graph Construction Module 289

Unlike previous approaches, we construct a heterogeneous 290

graph by combining historical interactions and attributes. 291

Fig. 3 provides an example of how we construct the graph 292

in our model. As shown in the entity attributes part of 293

the figure, the relationship between entities and attributes 294

can be represented as an adjacency matrix. The historical 295

interaction record is also reflected in an adjacency matrix 296

shown in the middle part of the figure. By combining these 297

two adjacency matrices, we can construct a heterogeneous 298

graph where every entity and every potential value of 299

attributes are represented as nodes. The construction of 300

the heterogeneous graph allows for modeling in a unified 301

representation space. 302

The heterogeneous graph could be formulated as: G =< 303

U ∪ I ∪ X,A >, where the adjacency matrix is defined as 304

follows: 305

A =

[
AO X̂

X̂T 0D×D

]
, (2)

where X̂ = [X,0M×D]T . Herein, X ∈ RN×D denotes the 306

one-hot attribute matrix of items. 307

4.3 Embedding Propagation Module 308

Based on the heterogeneous graph constructed in the pre- 309

vious section, we employ a graph convolutional neural 310

network to propagate node embeddings, capturing higher- 311

order information and proximity between different types of 312

nodes for improved node representation. Notably, the prop- 313

agation occurs in a unified representation space, allowing 314

us to model both collaborative signals and auxiliary discrete 315

attributes in a unified representation space. Our model has 316

no additional assumptions about the graph convolution 317

method, and we use the simplest propagation method to 318

verify our proposed URAC. 319

We employ E to denote the free embedding matrix 320

in the graph encoder. Specifically, we use Eu ∈ OM×d, 321

Ev ∈ RN×d and Ex ∈ RD×d denote the free embedding 322

matrix of user, item and item attribute. eu,i, ev,j and ex,k 323

are the ith, jth and kth row in user, item, and item attribute 324

matrix, and denote user i’s, item j’s and item attribute 325

k’s embedding. All embeddings are randomly initialized 326
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with Gaussian Distribution. Let elu,i, e
l
v,j and elx,k refer to327

user i’s embedding, item j’s embedding and item attribute328

k’s embedding at lth layers, respectively. Layer 0 is free329

embedding after initialization. The propagation of different330

types of nodes in the graph is as follows:331

el+1
u,i = elu,i +

∑
j∈Au

elv,j
|Au|

,

el+1
v,j = elv,j +

∑
i∈Av

elu,i
|Av|

+
∑
k∈Av

elx,k
|Av|

,

el+1
x,k = elx,k +

∑
j∈Ax

elv,j
|Ax|

.

(3)

In the above formula, Au = {j|oij = 1} denote the item set332

that user i has interacted; Av = {i|oij = 1} ∪ {k|xjk = 1}333

denote the user set who has interacted with item j and334

the corresponding attributes of item j; Ax = {j|ojk = 1}335

denote the item which has attribute k. Free embeddings are336

iteratively propagated L times in the heterogeneous graphs337

using graph convolutional neural network to obtain the final338

embeddings eLu,i, e
L
v,j and eLx,k.339

We propose a general model to handle the completely340

cold-start problem with the help of attributes. This generic341

model can also handle scenarios where there are multiple342

relations between attributes and entities, such as the knowl-343

edge graph based recommendation. In such scenarios, a344

minor tweak is made in that we use graph convolution345

considering relations, e.g., KGAT[43], R-GCN[44], instead346

of the propagation methods mentioned above.347

After many iterations of the propagation process, we348

get the embeddings that capture higher-order information349

and proximity between different types of nodes. We then350

design a linear aggregation function to generate warm and351

cold representations by aggregating these embeddings. The352

warm representation, denoted as z, contains both collabo-353

rative signals and attribute information, while the cold rep-354

resentation, denoted as zcold, only contains attribute infor-355

mation. The cold representations are later used to represent356

cold items to deal with the completely cold start problem.357

The module aggregates the attribute embeddings learned in358

the heterogeneous graph to produce these representations.359

Importantly, the aggregation is linear, which ensures that360

the warm and cold representations still are both in the361

same unified representation space. For each item vj , we use362

eLv,j as the warm representation, and the embeddings cor- 363

responding to its attributes are aggregated to form the cold 364

representation zcoldv,j . Final representations can be expressed 365

in the following form: 366

zu,i = eLu,i,

zv,j = eLv,j ,

zcoldv,j =

|xj |∑
k=0

I(xj,k = 1) · eLx,k,
(4)

where xj,k represents the kth value of item j’s one-hot at- 367

tribute and I(·) represent indicator function, it means when 368

the condition in (·) is satisfied, the outcome of function is 1, 369

otherwise 0. 370

4.4 Double Alignments Module 371

Previous studies have focused on applying alignment be- 372

tween entity embeddings and attribute embeddings to inject 373

collaborative signals into attribute embeddings. However, 374

we argue that this is insufficient. On the one hand, only 375

narrowing the geometric-based distance of representations 376

can not guarantee that cold entities’ and warm entities’ 377

semantic characteristics are consistent. On the other hand, 378

they ignore a different but equally important stage of the 379

recommendation process, i.e., the calculation of the prefer- 380

ence score. To improve them, we impose alignments both at 381

the representation-level and preference-level. These double 382

alignments make the performance of our model less depen- 383

dent on the quality of the attribute information and better 384

infuse collaborative signals into the cold representation. 385

4.4.1 Representation-level alignment 386

Cold representations result in poor performance due to a 387

lack of collaborative signals. We design a representation- 388

level alignment that refers to the alignment between the 389

warm and cold representations to accomplish the transfer 390

of the collaborative signal from the warm to the cold repre- 391

sentation. We want the semantics of the cold representation 392

to be consistent with the warm representation. To achieve 393

the alignment, we maximize the Mutual Information (MI) 394

between collaborative representation and attribute represen- 395

tation, namely MI(Zv,Z
cold
v ). Mutual information measures 396

how much knowing the value of one random variable (or set 397

of variables) informs about another. It captures non-linear 398
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statistical dependencies between variables, and thus can act399

as a measure of true dependence[45]. The maximization400

of MI(Zv,Z
cold
v ) effectively aligns the representations of401

cold and warm items, ensuring that the shared semantic402

information is captured consistently.403

Since the precise value of MI is difficult to compute,404

a common practice[36] is to utilize neural estimators to405

maximize the lower bound of MI instead: MI(Zv,Z
cold
v ) ≥406

log(N) − Lc. N is a constant and Lc is the contrastive407

learning[36] loss function, which is defined as:408

Lc =
∑
j∈B

− log
exp(zv,j · zcoldv,j )/τ∑

p∈B exp(zv,j · zcoldv,p )/τ
, (5)

where B denote a batch items, τ is the temperature hyper-409

parameter of softmax. For item j, zv,j and zcoldv,j denote410

the corresponding warm and cold representations with L2411

normalization, the same as item p. This objective encourages412

consistency of warm and cold representations for each item.413

The contrastive loss encourages the model to bring collabo-414

rative representation zv,j and attribute representation zcoldv,j415

of the same item j closer and push different items’ two416

representations apart. This process ensures that the shared417

semantic information is emphasized and preserved.418

4.4.2 Preference-level alignment419

After obtaining high-quality representations, recommenda-420

tion models combine user and item representations through421

some operation (e.g., inner product) to generate a preference422

score that indicates the degree of preference. This preference423

score is often the direct basis for the final recommendation,424

but the semantic agreement between preference scores cal-425

culated by cold and warm representations is often ignored426

in the existing cold-start modelS. We point out that directly427

aligning the preference scores can better integrate useful428

collaborative signals into the cold representation. To achieve429

this, we calculate multiple preference scores using both the430

cold and warm item representations and the same group of431

user representations. These preference scores are then used432

to create two vectors, which we align at the preference-level433

using a distance-based alignment module, Mean Square434

Error (MSE). Our goal is to make each pair of specific435

preference scores in the two vectors as similar as possible.436

For warm items, we only use the warm representation to437

calculate the preference score, which can be calculated with438

the following function:439

ôij = zu,i(zv,j)
T . (6)

For cold items, we use the cold representation instead of440

the warm one:441

ôcoldij = zu,i(z
cold
v,j )T . (7)

We want the preference scores of warm and cold repre-442

sentations of an item to be similar after interacting with the443

same user, and this similarity is reflected in the calculation444

with both the interacted user and the non-interacted user.445

This constraint is achieved by MSE:446

Lmse = ∥Zu(Zv)
T − Zu(Z

cold
v )T ∥2. (8)

4.5 Model Optimization 447

In this section, we give the final optimal objective of our 448

model. We use mixed losses rather than a single loss ap- 449

plicable to warm items, which is commonly used in other 450

works. The warm representation is used to calculate the 451

regular loss, and the cold representation is used to calculate 452

the loss of cold-start. The two are mixed as the optimiza- 453

tion objective of the model. This design is inspired by the 454

previous works’ idea of ”dropping” or random selection 455

training, aiming to simulate the cold-start scenario in the 456

training phase. The reason why we use mixed loss instead 457

of random training is that when random training is carried 458

out, each item will only appear in one scene (for each item, 459

only its warm representation or only its cold representation 460

is involved in training), while in the method of mixed loss, 461

each item will encode information in two scenes every time 462

it participates in training. 463

The most often used optimization approach for recom- 464

mender systems based on implicit feedback is BPR-based 465

pair-wise ranking [4] and in this paper we also utilize it to 466

calculate regular loss: 467

Lwarm
BPR =

∑
(u,i,j)∈Otri

− log σ(ôui − ôuj). (9)

where σ(·) is a sigmoid activation function, Otri = 468

{(u, i, j)|oui = 1, ouj = 0} denotes the pairwise training 469

data for user u. 470

In recommendations involving cold items, we can only 471

use cold representations. Therefore, the cold-start BPR ob- 472

jective is applied to the model to directly capture the inter- 473

action in which the cold representation participates: 474

Lcold
BPR =

∑
(u,i,j)∈Otri

− log σ(ôcoldui − ôcolduj ). (10)

Our model should be able to make full use of the 475

collaborative signals in the warm representation, and at the 476

same time make sure that the cold representation of items is 477

meaningful when calculating preference scores. Therefore, 478

the recommended optimization objective form is as follows: 479

LBPR = αLwarm
BPR + (1− α)Lcold

BPR, (11)

where α is the weight of different BPR loss. 480

The final optimization objective can be stated as follows: 481

Lattr = LBPR + βLc + γLmse + ∥Θ∥2, (12)

where Θ = {Eu,Ev,Ex} represents all free embeddings in 482

the model, β and γ are hyper-parameters to balance the 483

weight of the three losses from different stages. 484

4.6 Recommendation for New Entities 485

According to the method presented in section 4.2-4.5, we 486

can get a well-trained model for the completely cold-start 487

problem. When a cold item appears, our model work in 488

an inductive way. We can directly make recommendations 489

without retraining, which is more practical and reasonable. 490

The detail of new entities recommendation is shown in Fig. 491

4. Suppose a cold item vcold appears, and xcold is its one- 492

hot attributes. According to the attributes of the cold item, 493

we select corresponding nodes in the heterogeneous graph 494
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Fig. 4. An example of recommendation for a new item.

and input embeddings of these nodes to generate the cold495

representation zcold as follows:496

zcold =

|xcold|∑
k=0

I(xcold,k = 1) · eLx,k, (13)

where xcold,k represents the kth value of cold item zcold’s497

one-hot attribute. As we mentioned, attributes are shared498

by cold entities and warm entities. All attribute node em-499

beddings eLx,k that we use are trained and informative.500

Finally, the cold representation zcold is regarded as the501

representation of the cold item and is used to calculate the502

preference score with warm user representation.503

5 EXPERIMENTS504

In this section, we conduct extensive experiments on six505

datasets (three datasets with monotonic relations between506

entities and attributes and three datasets with multiple507

relations between entities and attributes) to verify the ef-508

fectiveness of our proposed URAC model. Overall, we aim509

to answer the following questions:510

• RQ1: How does our model perform compared with511

state-of-the-art completely cold-start recommenda-512

tion methods?513

• RQ2: How do different designs (i.e., unified space,514

double alignments, mixed loss) affect our model?515

• RQ3: What are the advantages of using contrastive516

learning to align representation?517

5.1 Experimental Settings518

5.1.1 Datasets Description519

To evaluate the effectiveness of our proposed model, we520

conduct experiments on datasets with different character-521

istics, i.e., have monotonic relations between entities and522

attributes and have multiple relations. For datasets with523

monotonic relations, we select three real-world datasets:524

Yelp [11], XING [46], and Amazon-Video Games [47]. For525

datasets with multiple relations, we selected three widely526

used benchmark datasets for our experiments, which are527

publicly accessible and vary in terms of domain, size,528

and sparsity: Yelp2018, Last-FM, Book-Crossing[43; 48]. It529

should be noted that in order to better compare the work of530

corresponding research lines, the Yelp2018 dataset here and531

the previous Yelp dataset come from different open sources,532

and the attribute on the two sides is different.533

We manually set up cold-start users and items [11]. 534

Specifically for Task 1, we randomly select 30% items from 535

the original datasets and then remove their connections with 536

all users with whom they have interacted. Similarly, for Task 537

2, we randomly select 30% users from the original datasets 538

and then remove their connections with all items with which 539

they have interacted. For Task 3, based on the previous 540

processing, we collated interaction records belonging to 541

both the new user and the new item as the test set. In 542

addition, during model training, we divided 10% of warm 543

entities or cold users items) as the valuation set according to 544

the needs. The statistics of all datasets after pre-processing 545

are summarized in Appendix A. 546

5.1.2 Evaluation Metrics and Baselines. 547

We select two metrics that are widely used in personal- 548

ized recommender systems to evaluate our model: Hit Ra- 549

dio (HR@K) and Normalized Discounted Cumulative Gain 550

(NDCG@K). HR@K measures the number of successfully 551

predicted items in the top-K ranking list that the user likes 552

in the test data. NDCG@K further considers the hit positions 553

of the items. 554

To verify the effectiveness of our framework, we catego- 555

rize existing approaches according to their problem-solving 556

approaches and pick novel approaches representative of 557

each category as the baseline: (1) content-based methods, 558

which only model preferences or characteristics of entities 559

based on their side information to make recommenda- 560

tions, including KNN [8], xDeepFM [21] and CDL [23]. 561

(2) Robustness-based methods, which strategically discard 562

collaborative information during the training phase to en- 563

hance the robustness of the model by simulating cold start 564

scenarios, including DropoutNet [9] and MTPR [20]. (3) 565

Regularization-based methods, which explicitly align be- 566

tween collaborative representation and content represen- 567

tation by adding regular terms to the optimization target, 568

including Heater [12], CLCRec [14] and CCFCRec [24]. (4) 569

Graph-based methods, such as using graphs to model the 570

relationship between collaborative signals and side infor- 571

mation, including PGD [11]. (5) Generation-based methods, 572

which generate pseudo-collaborative representations for 573

new items based on side information, including GAR [27]. 574

It is important to note that datasets with relations be- 575

tween attributes and entities are knowledge graph datasets. 576

As far as we know, there is still no work considering the 577

completely cold-start problem based on such data, and most 578

existing models cannot be applied to such data. This is 579
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TABLE 1
Comparison of different completely cold-start recommendation models on Yelp. ’-’ represents an unavailable result.

Model
Yelp(Task 1) Yelp(Task 2) Yelp(Task 3)

HR NDCG HR NDCG HR NDCG
@10 @20 @10 @20 @10 @20 @10 @20 @10 @20 @10 @20

KNN 0.0159 0.0278 0.0099 0.0137 0.0181 0.0310 0.0153 0.0207 - - - -
xDeepFM 0.0202 0.0349 0.0128 0.0174 0.0198 0.0323 0.0161 0.0215 0.0131 0.0244 0.0075 0.0112

CDL 0.0196 0.0341 0.0128 0.0175 0.0193 0.0326 0.0160 0.0216 0.0127 0.0200 0.0081 0.0105
DropoutNet 0.0173 0.0282 0.0105 0.0141 0.0201 0.0328 0.0168 0.0221 0.0114 0.0214 0.0069 0.0100

MTPR 0.0203 0.0332 0.0125 0.0171 0.0200 0.0311 0.0168 0.0224 0.0118 0.0222 0.0072 0.0110
Heater 0.0244 0.0418 0.0150 0.0206 0.0206 0.0337 0.0173 0.0227 0.0123 0.0244 0.0073 0.0113

CLCRec 0.0246 0.0412 0.0156 0.0211 0.0202 0.0333 0.0169 0.0225 0.0122 0.0250 0.0070 0.0113
GAR 0.0233 0.0402 0.0146 0.0208 0.0212 0.0343 0.0171 0.0227 - - - -

CCFCRec 0.0255 0.0432 0.0160 0.0220 0.0200 0.0310 0.0165 0.0220 - - - -
PGD 0.0272 0.0471 0.0166 0.0231 0.0208 0.0340 0.0177 0.0232 0.0144 0.0259 0.0087 0.0124

URAC 0.0285 0.0482 0.0179 0.0240 0.0219 0.0348 0.0184 0.0235 0.0156 0.0266 0.0088 0.0126

because most work converts attributes into a vector input580

model, but the amount of attributes in knowledge graph581

datasets is too huge, and each attribute may possibly be582

connected to any entity. Thus the vector is too sparse and583

the dimension of it is too high to input into the model.584

So we mainly compare variations of our model on these585

datasets. We select the following methods as baseline: Ran-586

dom: We randomly select items as candidates to users in the587

test stage. KGAT[43]: It applies an attentive neighborhood588

aggregation mechanism on a holistic graph, which combines589

the knowledge graph with the user-item graph, to generate590

user and item representations. URAC-UR: We model differ-591

ent information in a unified representation space and only592

impose representation-level alignment. URAC-UP: We only593

impose preference-level alignment.594

5.1.3 Parameter Settings595

We implement our URAC and all baselines with Pytorch596

framework. We fix the dimension as 64 whether CF embed-597

ding or attribute embedding. A Gaussian distribution with598

a mean of 0 and a variance of 0.01 is employed to initialize599

the embedding matrices. The batch size is set to 2048. The600

number of iterations of embedding propagation is searched601

in {1, 2, 3, 4}. During training, we employ Adam [49] as602

the optimizer and set the learning rate at 0.001, the early603

stop strategy is employed to avoid overfitting. For con-604

trastive learning, we carefully turn the temperature and find605

URAC performs the best performance when temperature606

τ = 0.07. We analyze the results of three hyper-parameters607

on five tasks in {0.0001, · · · , 1000}, respectively.608

5.2 Overall Performances (RQ1)609

The overall results of the baseline comparison of our model610

on datasets with monotonic relations are reported in Table611

1 and Tabel 2. The best performance is in bold, and the612

strongest baselines are underlined. We find that:613

• URAC consistently outperforms all baselines across614

five tasks regarding all measures. Compared to the615

strongest baseline, our models improved by up616

to 7.7%, 5.3%, 8.2%, 6.8%, and 33%, respectively,617

which demonstrates the effectiveness of our pro-618

posed model. Besides, we find that URAC achieves619

higher improvements on the small-length ranking620

task, e.g, 7.72% relative improvement on NDCG@10 621

and 4.08% on NDCG@20 compared to PGD on the 622

Yelp(Task 1), which is more suitable to real-world 623

recommendation scenarios. This improvement is the 624

result of the rational design of each module, and the 625

main reasons are the modeling of different informa- 626

tion in the unified space and the combination of two- 627

level alignments. Subsequent ablation experiments 628

have verified our views. 629

• CLCRec does not perform well in our experiments, 630

we guess that the reason is that it was originally 631

designed for multimedia recommendation, and per- 632

formance depends on the quality of side information 633

representation. In contrast, the representation of at- 634

tributes generated by MLP is not rich in information. 635

As such, CLCRec performs better on Yelp(Task 1), 636

which has denser attributes than other tasks. 637

• PGD is the strongest baseline in all tasks. The reason 638

is that it distills the preference matrix information, 639

that is, unconsciously imposes preference-level con- 640

straints, so as to obtain better performance. Never- 641

theless, URAC also consistently outperforms PGD, 642

which shows the effectiveness of learning in a unified 643

space instead of two graph encoders. 644

Table 3 shows the overall result of our model on datasets 645

with multiple relations between entities and attributes. The 646

best performance is in bold, and the strongest baselines are 647

underlined. We have the following observations: 648

• Our proposed URAC still consistently outper- 649

forms all baselines under different settings. Specif- 650

ically, URAC improves the strongest baseline 651

w.r.t NDCG@10 by 29.66%, 4.09% and 21.86% on 652

Yelp2018, Last-FM and Amazon-Book dataset, re- 653

spectively. Extensive empirical studies have shown 654

that the proposed URAC remains effective even 655

after taking into account multiple relations between 656

entities and attributes. 657

• Alignment between warm and cold representations 658

is necessary for the completely cold-start recom- 659

mendation. To be specific, our model uses KGAT 660

as a method of embedding propagation on datasets 661

with multiple relations, so KGAT can be viewed as 662

only guaranteeing a uniform space, but not aligning 663
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TABLE 2
Comparison of different completely cold-start recommendation models on Xing and Amazon-Video Games.

Model
XING(Task 2) Amazon-Video Games(Task 1)

HR NDCG HR NDCG
@10 @20 @50 @10 @20 @50 @10 @20 @50 @10 @20 @50

KNN 0.0030 0.0060 0.0125 0.0016 0.0024 0.0039 0.0013 0.0019 0.0084 0.0008 0.0010 0.0024
xDeepFM 0.0079 0.0148 0.0275 0.0042 0.0062 0.0090 0.0183 0.0249 0.0390 0.0084 0.0095 0.0130

CDL 0.0077 0.0153 0.0282 0.0042 0.0063 0.0024 0.0185 0.0250 0.0419 0.0083 0.0095 0.0144
DropoutNet 0.0067 0.0128 0.0235 0.0033 0.0050 0.0074 0.0114 0.0161 0.0288 0.0054 0.0067 0.0099

MTPR 0.0067 0.0133 0.0240 0.0035 0.0055 0.0088 0.0210 0.0271 0.0420 0.0064 0.0087 0.0119
Heater 0.0069 0.0152 0.0272 0.0034 0.0057 0.0085 0.0203 0.0266 0.0410 0.0093 0.0103 0.0133

CLCRec 0.0068 0.0130 0.0252 0.0033 0.0051 0.0080 0.0121 0.0177 0.0302 0.0060 0.0083 0.0105
GAR 0.0086 0.0202 0.0306 0.0047 0.0068 0.0099 0.0213 0.0286 0.0430 0.0098 0.0113 0.0148

CCFCRec 0.0101 0.0210 0.0342 0.0053 0.0072 0.0111 0.0221 0.0297 0.0460 0.0100 0.0116 0.0167
PGD 0.0115 0.0220 0.0406 0.0065 0.0092 0.0133 0.0224 0.0295 0.0451 0.0101 0.0116 0.0160

URAC 0.0123 0.0226 0.0421 0.0066 0.0096 0.0141 0.0298 0.0351 0.0522 0.0120 0.0133 0.0181

TABLE 3
Comparison of different completely cold-start recommendation models on Yelp2018, Last-FM, and Amazon-Book.

Model
Yelp2018 Last-FM Book

HR NDCG HR NDCG HR NDCG
@10 @20 @10 @20 @10 @20 @10 @20 @10 @20 @10 @20

Random 0.0002 0.0003 0.0001 0.0002 0.0003 0.0004 0.0002 0.0003 0.0006 0.0002 0.0035 0.0006
PGD 0.0046 0.0070 0.0030 0.0039 0.0202 0.0305 0.0133 0.0170 0.0035 0.0063 0.0016 0.0024

KGAT 0.0006 0.0009 0.0004 0.0005 0.0008 0.0009 0.0006 0.0006 0.0032 0.0045 0.0017 0.0021
URAC-UR 0.0032 0.0056 0.0020 0.0029 0.0350 0.0441 0.0306 0.0333 0.0035 0.0051 0.0018 0.0023
URAC-UP 0.0030 0.0062 0.0020 0.0032 0.0315 0.0462 0.0257 0.0308 0.0039 0.0063 0.0018 0.0024

URAC 0.0050 0.0081 0.0031 0.0041 0.0372 0.0488 0.0318 0.0354 0.0043 0.0083 0.0022 0.0031

HR@10 NDCG@10
0.00

0.02

0.04
Ours
w/o URS
w/o RLA
w/o PLA
w/o MIX
only URS
only RLA

(a) Ablation Study on Yelp.

HR@10 NDCG@10
0.000

0.008

0.016
Ours
w/o URS
w/o RLA
w/o PLA
w/o MIX
only URS
only RLA

(b) Ablation Study on Xing.

HR@10 NDCG@10
0.00

0.02

0.04

Ours
w/o URS
w/o RLA
w/o PLA
w/o MIX
only URS
only RLA

(c) Ablation Study on Amazon-Video
Games.

Fig. 5. The impact of each component on the model on the datasets of category attribute.

different representations. URAC-UR improves KGAT664

w.r.t NDCG@10 by 451.35% and URAC-UP improves665

KGAT w.r.t NDCG@10 by 448.65% on the Yelp2018666

dataset, which shows alignment at any stage can667

significantly improve model performance.668

5.3 Analysis of URAC (RQ2)669

5.3.1 Ablation Study670

In this section, we conduct an ablation study to exploit671

the effectiveness of each component in URAC . We imple-672

ment some variants of URAC and compare performances673

with URAC . We use URS to denote unified representation674

space, RLA to denote representation-level alignment, PLA675

to denote preference-level alignment, and MIX to denote the676

mixed BPR objective. We remove different components on677

the complete model in turn. In order to verify the influence678

of the unified representation space, we use an additional 679

LightGCN [50] model to generate warm representations, 680

URAC only provides cold representations. For the other 681

ablation experiments, we simply set the corresponding co- 682

efficient to 0. In addition, we do separate tests for our high- 683

light URS and RLA modules. only URS and only RLA mean 684

that we use only a single module to test model performance 685

in a cold start scenario. We conduct ablation experiments 686

on datasets with monotonic relation and show the results in 687

Fig. 5. From the figure, we can observe that among these 688

components, URS consistently has a great impact on the 689

model in different datasets, which once again verifies the 690

significance of modeling in the unified representation space. 691

Specifically, damage to the URS condition reduces the per- 692

formance of our model w.r.t NDCG@10 by 36.01%, 18.17%, 693

and 25.17% on yelp(Task 1), XING(Task 2), and Amazon- 694

Video Games(Task 1), respectively. Besides, removing any 695
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other components also can have a significant impact on the696

final result. This shows that every module in our model is697

reasonable, and the good performance of URAC is the result698

of the combined action of all modules.699

5.3.2 Parameter Sensitivities Analysis.700
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Fig. 6. The effect of different hyper-parameters on the model. Each row
shows the result of a data set, and each column represents a hyper-
parameter. If the hyper-parameter α is 0, it indicates that only the cold-
start BPR objective is used. If the hyper-parameter α is 1, it indicates
that only the common BPR objective is used.

There are three hyper-parameters in URAC : α, β, and γ,701

which are used to balance each part of the optimization ob-702

jective. Fig. 6 shows how they affect the model on different703

datasets. For all three hyper-parameters, the model perfor-704

mance increases first and then decreases with the increase705

of the hyper-parameters. The results show that the three706

hyper-parameters have important impressions on the model707

and need to be adjusted appropriately. It is worth noting708

that even if only a small proportion of cold BPR objective709

is introduced, the model will improve greatly, but only710

using cold BPR objective will reduce the performance. For711

example, as reflected in Fig. 6a and 6d, the model achieves712

the best performance when α = 0.8, that is, the mixed713

objective is composed of 80% regular BPR objective and714

20% cold BPR objective; but when α = 0, that is, only cold715

BPR objective is used as the final optimization objective, the716

model has the worst effect. This may be because we need717

a regular BPR objective to ensure adequate collaborative718

signals in the warm representation, which is a prerequisite719

for double alignments to be effective.720

TABLE 4
Comparison of the results of different alignments at the

representation-level.

Alignment yelp(Task 1)
Amazon Video
Games(Task 1)

XING(Task 2)

NDCG@10 NDCG@10 NDCG@10

w/o 0.01628 0.00538 0.00560
MSE 0.01570 0.01002 0.00556
SSE 0.01624 0.01012 0.00561
CS 0.01632 0.00999 0.00545

InfoNCE 0.01787 0.01201 0.00664

5.4 Investigation of Representation-level Alignment 721

(RQ3) 722

In this section, we mainly answer the question, ”What 723

are the advantages of using contrastive learning to align- 724

ment different information at the representational-level?”. 725

Representation-level alignments are more intuitive and ef- 726

fective, so it has been considered in most of the previous 727

work. Different from previous work, we use contrastive 728

learning to maximize the mutual information between dif- 729

ferent representations, so as to narrow the semantic differ- 730

ences between them. We will discuss how useful contrastive 731

learning and give an explanation of the unique role of 732

contrastive learning. 733

Table 4 shows the results using different alignments at 734

the representation-level, herein, w/o means no alignments, 735

MSE means using mean square error, SSE means using 736

summation square error, CS means using cosine similarity, 737

and InfoNCE represents our setup. The results showed that 738

InfoNCE played a great role and could not be replaced 739

by MSE. Simply bringing different representations closer 740

together may even degrade model performance. 741

6 CONCLUSION AND LIMITATION 742

In this paper, we pointed out the limitations of combining 743

discrete attributes and collaborative signals in current work 744

to solve the completely cold-start problem. Aiming at the 745

discrete attribute which is not sufficiently explored and 746

difficult to leverage, we proposed a comprehensive model 747

to generate warm and cold representations and to carry out 748

multiple alignments between them to transfer collaborative 749

signals from warm to cold representations. We chose two 750

different discrete side information data to verify our model. 751

A large number of experimental results show that our 752

model is more effective. In future work, we plan to further 753

explore the completely cold-start problem in an attempt to 754

address some of the limitations of the approach presented 755

in this paper. Our work focuses on discrete attributes and 756

designs a heterogeneous graph construction scheme for the 757

data with more discrete attributes. While efficiently utilizing 758

discrete attribute information, our method requires addi- 759

tional processing when using other data. We believe that 760

appropriate data pre-processing methods can enhance the 761

application scope of our model, such as continuous attribute 762

discretization. In addition, how to extend to other types 763

of side information more efficiently remains to be further 764

explored. 765
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