
Mitigating Recommendation Biases via Group-Alignment and
Global-Uniformity in Representation Learning

MIAOMIAO CAI, Hefei University of Technology, China
MIN HOU, Hefei University of Technology, China
LEI CHEN, Tsinghua University, China
LE WU∗, Hefei University of Technology, China
HAOYUE BAI, Hefei University of Technology, China
YONG LI, Tsinghua University, China
MENGWANG∗, Hefei University of Technology, China

Collaborative Filtering (CF) plays a crucial role in modern recommender systems, leveraging historical user-item interactions
to provide personalized suggestions. However, CF-based methods often encounter biases due to imbalances in training data.
This phenomenon makes CF-based methods tend to prioritize recommending popular items and performing unsatisfactorily
on inactive users. Existing works address this issue by rebalancing training samples, reranking recommendation results, or
making the modeling process robust to the bias. Despite their effectiveness, these approaches can compromise accuracy or be
sensitive to weighting strategies, making them challenging to train. Therefore, exploring how to mitigate these biases remains
in urgent demand.

In this paper, we deeply analyze the causes and effects of the biases and propose a framework to alleviate biases in
recommendation from the perspective of representation distribution, namely Group-Alignment and Global-Uniformity
Enhanced Representation Learning for Debiasing Recommendation (AURL). Specifically, we identify two significant
problems in the representation distribution of users and items, namely group-discrepancy and global-collapse. These two
problems directly lead to biases in the recommendation results. To this end, we propose two simple but effective regularizers
in the representation space, respectively named group-alignment and global-uniformity. The goal of group-alignment is
to bring the representation distribution of long-tail entities closer to that of popular entities, while global-uniformity aims
to preserve the information of entities as much as possible by evenly distributing representations. Our method directly
optimizes both the group-alignment and global-uniformity regularization terms to mitigate recommendation biases. Please
note that AURL applies to arbitrary CF-based recommendation backbones. Extensive experiments on three real datasets and
various recommendation backbones verify the superiority of our proposed framework. The results show that AURL not only
outperforms existing debiasing models in mitigating biases but also improves recommendation performance to some extent.
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Fig. 1. We analyze biases in the results of three typical CF models—BPRMF [33], LightGCN [18], and SimGCL [55] on the
Douban-Book dataset [54]. To facilitate our illustration, we categorize items and users into groups based on their popularity
in the training set. We then evaluate, based on the TopK recommendation lists, the recommendation frequency (�C4< '420;; )
for each item group and the accuracy performance (#���@20) for each user group.

1 INTRODUCTION
Personalized recommendations have become indispensable in various online applications, serving as valuable
tools for users to cope with information overload [4, 20, 53]. As the most popular schema for personalized
recommender systems, Collaborative Filtering (CF) [18, 33, 55] utilizes similarities between users and items
hidden in historical user-item interactions to provide recommendations. Typically, CF-based methods encode
users and items into a shared space and then recover the user-item interactions (preferences) through the
corresponding representations [47].

Although CF-based methods have achieved considerable success, their training approach, which involves
reconstructing historical interactions, makes them susceptible to imbalances within the training data, leading
to biases in recommendation results [6, 47, 65]. In real-world scenarios, the frequency distribution of users and
items in training interactions is uneven. They often follow a power-law distribution, where a small number of
popular items and active users dominate the majority of interactions [47]. This phenomenon causes CF-based
methods to prioritize recommending popular items and perform unsatisfactorily on inactive users, thereby failing
to uncover the real characteristics of items and the true preferences of users [6]. Fig. 1 shows the item popularity
bias and user consistency bias on the real-world Douban-Book dataset [54]. We group items and users according
to their frequency (popularity) of appearance in the training data, and the background histograms indicate the
ratio of items/users in each group [47]. We can observe a clear phenomenon of data imbalance. Then we train the
mainstream CF-based models BPRMF [33], LightGCN [18] and SimGCL [55]. We count the frequency of items
in the recommendation results for each item group (Fig. 1(a)) and calculate the recommendation performance
for each user group (Fig. 1(b)). In Fig. 1(a), the orange line shows the real item frequency in the test dataset. As
evident, items that are more popular in the training data are recommended far more frequently than anticipated,
highlighting a significant item popularity bias. In Fig. 1(b), there is inconsistency in the effectiveness of the
recommendations between different user groups, and inactive users experience unsatisfactory recommendations.
These biases significantly impact the performance of recommender systems, undermining both the diversity
of recommendations and the user experience [5, 6, 47]. Even more concerning, item popularity bias can cause
the “Matthew effect”, where popular items receive more recommendations and consequently become even more
popular [47].
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Given the significant impact of biases, debiasing in recommender systems has recently become a key area of
research [5, 6, 10, 14, 59, 61, 65]. Previous efforts have addressed bias mitigation from several angles: (1) Sampling
Strategies: Some studies down-sample [10] popular entities (items and users) or up-sample [65] unpopular
ones to balance interaction distributions in the training set. (2) Robust Methods: Techniques such as causal
inference [47, 63] and adversarial training [5, 50] have been employed to enhance model robustness against
biased data [61, 65]. (3) Post-Processing: Certain approaches re-rank recommendation lists to prevent the over-
recommendation of popular items[6, 65]. While these methods are commendable, they exhibit imperfections, such
as potentially compromising recommendation accuracy by oversimplifying data balancing [6], which can ignore
users’ true preferences. Causal inference methods[47], requiring stringent data generation assumptions, and
adversarial training [65], which introduces instability by blurring distinctions between popular and unpopular
entities, illustrate the challenges of existing approaches [50, 63]. Therefore, further exploration into effective bias
mitigation remains critically necessary.

In fact, it is known that the quality of learned representations plays a crucial role in the recommendation.
Most CF-based recommendation models can be divided into two parts [51]. Firstly, encoders project users and
items into a representation space [23]. Then, an interaction function computes preferences between users and
items in the space [19]. The interaction function is usually set as the simple inner product, while researchers
meticulously design various kinds of encoders to make the representations as informative as possible [41].
Consequently, we highlight that addressing the impact of biases from the perspective of representation
distribution and obtaining better representations contains a huge potential to effectively resolve the issue
of biases. However, achieving this goal is not trivial. Initially, scrutinizing the impact of biases on representations
is imperative. In Fig.2, we respectively map the learned representations of two typical CF-based models as
2-dimensional normalized vectors on the unit hypersphere S1 (i.e., the circle with radius 1). Then, we plot
the feature distribution using nonparametric Gaussian Kernel Density Estimation (KDE) in R2 and visualize
the density estimations at angles for each entity on S1. According to Fig.2, we can observe notably different
feature/density distributions between popular entities and long-tail entities. We believe that this phenomenon
arises from the imbalanced data, which results in a scarcity of interactions for long-tail entities, thereby hindering
the acquisition of accurate representations. Consequently, the distributions of representations for long-tail entities
exhibit inconsistency when compared to those of popular entities with adequate interactions. Ideally, there should
be no distributional shift between the popular entities and long-tail entities. We simplify this phenomenon as
group-discrepancy. Furthermore, we find that the distribution of entity representations exhibits a folding
pattern, clustering around several points. This clustering phenomenon indicates that the learned representations
lack informativeness and fail to capture the distinctive characteristics of each entity [42]. We name the drawback
as global-collapse. Addressing the two impacts of bias on representation distribution is the key to mitigating
recommendation biases.

In this paper, we advocate for a paradigm shift in analyzing and addressing both item-side popularity bias and
user-side consistency bias from the perspective of representation distribution.We begin by investigating the causes
of group-discrepancy and global-collapse through both mathematical and empirical analyses. To address these
two issues, we propose two simple but effective regularizers in representation space respectively, named group-
alignment and global-uniformity. Specifically, the group-alignment regularizer aims to bring the representation
distribution of long-tail entities closer to that of popular entities. This regularizer transfers knowledge from
the well-trained representations of popular entities to those of long-tail entities, thereby enhancing the latter’s
representation quality. Inspired by the uniformity property in contrastive learning [42], we design a uniformity-
based regularize. The regularizer leads the representations roughly uniformly distributed on the unit hypersphere,
preserving as much information of the entities as possible. To this end, we propose a framework from the
representation distribution, namely Group-Alignment and Global-Uniformity Enhanced Representation
Learning for Debiasing Recommendation (AURL). Our methodology directly optimizes the group-alignment
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(b) User representation distribution

Fig. 2. Representation distribution of the Douban-Book dataset on S1. We plot the representation distributions using
Gaussian Kernel Density Estimation (KDE) in R2 and von Mises-Fisher (vMF) KDE on angles (i.e., arctan 2(~, G) for each
point (G,~) on S1). Specifically, we categorize items and users into two groups based on their popularity: blue represents
popular items/users, while green denotes unpopular items/users.

and global uniformity regularization terms to reduce group-discrepancy and global-collapse, thereby further
mitigating bias issues in recommendation results. Extensive testing on three real-world datasets confirms the
efficacy of our method in reducing biases and enhancing recommendation accuracy across various CF-based
models. The main contributions of this paper are summarized as follows:

(1) We advocate a novel perspective, utilizing representation distribution, to address both item-side popularity
bias and user-side consistency bias, supported by comprehensive mathematical analyses and empirical
evidence.

(2) We design the group-alignment and global-uniformity regularizers to effectively counter the biases
induced by group-discrepancy and global-collapse, respectively.

(3) Extensive testing on three real-world datasets verifies the efficacy of our method in reducing biases and
improving recommendation accuracy across various CF-based models.

2 RELATED WORK

2.1 Collaborative filtering
Collaborative Filtering (CF) is a widely used technique in recommender systems, aiming to provide personalized
recommendations by leveraging users’ preferences and behaviors [33]. The basic idea behind CF is that users
with similar interests and preferences are likely to have similar opinions about items [23]. MMost CF-based
models can be divided into two components [51]. Firstly, encoders project users and items into a representation
space [23]. Subsequently, an interaction function computes the preferences between users and items within this
space. The interaction function is typically set as a simple inner product, while researchers meticulously design
various encoders to make the representations as informative as possible [41].

The simplest encoders can directly map user and item IDs into the representation space [23, 33]. With the
development of deep learning, neural-based encoders such as multi-layer perceptrons [19] and attention mecha-
nisms [8] have emerged in recent years to capture the complex relationships between users and items. User-item
interaction data can naturally be organized into a bipartite graph, prompting researchers to employ Graph
Neural Networks (GNNs) [7, 12, 45, 48] to encode more accurate node representations and high-order structural
information. For example, NGCF [45], LR-GCCF [9], and LightGCN [18] utilize high-order relationships on
interaction graphs to enhance representation performance. Recently, Self-Supervised Learning (SSL) has been
introduced to improve the generalizability of representations [49]. For example, SimGCL [55] employs noise
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feature enhancement methods and constructs comparison targets to enhance the accuracy and robustness of
representations. Despite their effectiveness, CF-based models often overlook biases in recommendation results
due to the imbalanced distribution of interaction data [6].

2.2 Debiasing methods in recommendation results
Mitigating biases in recommendation results is a common task in recommender systems and has been extensively
studied. Previous research work has tried to alleviate recommendation biases from multiple perspectives. We
classify the methods into re-weighting-based, decorrelation-based, and adversarial-based approaches.
Re-weighting-based methods aim to shift attention away from popular items/users either during training

or prediction, thereby increasing the importance of unpopular items/users in the recommendation process [5,
11, 25, 27, 61, 65]. For example, Inverse Propensity Scoring (IPS) [65] compensates for unpopular items/users by
adjusting predictions within the user-item preference matrix, thereby elevating preference scores and rankings for
unpopular items/users. Explanation: Expanded the acronym “IPS” for clarity and refined the sentence structure
to improve readability. Similarly, W-AdjNorm [61] enhances the focus on unpopular items/users by controlling
the normalization strength during the neighborhood aggregation process in GCNs-based models. DORL [13]
addresses the Matthew effect in offline reinforcement learning recommendations by introducing a penalty term,
mitigating the conservatism inherent in existing methods. Zerosum [34] reduces model bias in recommendation
systems by directly equalizing recommendation scores across items preferred by a user.
Decorrelation-based methods aim to mitigate the influence of popularity on item/user representations or

prediction scores by removing correlations between them [2, 30, 44, 47, 50, 58]. For example, MACR [47] utilizes
counterfactual reasoning to eliminate the direct impact of popularity on item/user outcomes. TIDE [62] leverages
temporal information to differentiate between benign bias due to item quality and harmful bias resulting from
conformity.

Adversarial-basedmethods aim to engage in aminimax game between the recommender G and an introduced
adversary D, such that D provides signals to increase the recommendation opportunities for unpopular items or
enhance user accuracy [24, 26, 36, 46, 50, 60]. FairGo [50] enhances the graph network recommendation model by
incorporating discriminators, which predict fairness-related attributes of nodes by utilizing their embeddings and
the embeddings of the surrounding network structure. FairMI [59] employs adversarial principles to minimize
mutual information between embeddings and sensitive attributes while maximizing it between embeddings
and non-sensitive information. In contrast, InvCF [56] exploits the notion that item/user representations re-
main unchanged despite variations in popularity semantics. By filtering out unstable or outdated popularity
characteristics, InvCF learns unbiased representations.

Although previous methods have worked hard to reduce biases in recommendation results, they still have
certain limitations. For example, sampling strategies and post-processing methods usually only focus on long-
tail items/users, at the expense of accuracy for popular items/users [65]. Methods based on causal reasoning
typically rely on strong assumptions about data generation [47], and adversarial learning methods are often
unstable [50]. Therefore, there is still an urgent demand to explore more effective methods to address these biases
in recommender systems [6].

2.3 Representation learning
Representation learning plays a crucial role in collaborative filtering by generating personalized representations
for each user and item [52]. These personalized representations more accurately reflect the interests of users
and the characteristics of items, leading to enhanced accuracy and effectiveness in CF-based models [18, 23, 31].
Without effective representation learning, models may struggle to capture the underlying relationships between
users and items accurately, resulting in less accurate recommendations [49].
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In the field of representation learning, researchers typically focus on two fundamental properties to measure
the quality of learned representations: alignment and uniformity [42]. The goal of alignment is to ensure that the
learned representations effectively capture the similarities between positive data points [42]. This enhances the
model’s ability to express relationships by bringing similar data points closer together in the representation space.
In Natural Language Processing (NLP), alignment is used to align words or phrases between different languages,
facilitating cross-lingual text translation and information retrieval [35]. In Computer Vision (CV), alignment is
applied to synchronize features across images from different domains, such as aligning images of varied styles or
sensors into a unified representation space for applications like image generation [66], style transfer [37], andmore.
In recommender systems (RS), alignment can be used to align user and item representations to better capture user
interests and item characteristics [41]. Unlike previous studies, this research focuses on the relationship between
popular entity groups and long-tail entity groups. By aligning the representation distributions of different groups,
we aim to achieve improved group-alignment, ensuring that the distribution of entities in the representation
space remains consistent, regardless of changes in popularity.

The goal of uniformity is to ensure that learned representations are evenly distributed in the feature space,
typically by having these representations roughly evenly spread across the unit hypersphere [42, 57]. This
enhances the model’s generalization performance, leading to a more balanced and consistent distribution of
representations [49, 55]. In NLP, uniformity ensures that word representations are evenly distributed within
the semantic space, improving the quality of word vectors and thereby enhancing performance in text-related
tasks [57]. In CV, uniformity ensures that feature representations are evenly distributed across the image space,
helping the model more effectively capture diverse image features [57]. In RS, uniformity ensures that the
distribution of user and item representations is more informative, thereby improving both the accuracy and
generalization of recommendations [41, 49, 55].

Previous studies have demonstrated that InfoNCE optimizes both the alignment and uniformity of representa-
tions by aligning positive samples and distancing negative samples [42, 55]. However, these studies typically
focus on aligning different views of the same user or item post data augmentation, which can introduce selection
bias in terms of uniformity optimization. In contrast, methods such as DirectAU [41] directly optimize both
alignment and uniformity, thus circumventing issues related to selection bias in positive and negative sample
selection. In this paper, we explore the issue of inconsistent distributions across different item sets, emphasizing
the need to align from the perspective of feature distributions. By integrating both alignment and uniformity,
our approach effectively optimizes feature representations, enhances recommendation performance, and adapts
better to variations in data distributions, thus delivering improved outcomes for recommendation systems.

3 IMPACT OF BIAS ON REPRESENTATION LEARNING IN CF

3.1 Debiasing problem formulation
In this subsection, we first establish a formal definition of the debiasing problem in CF. Let [ (where |[ | = ") and
O (where |O | = # ) denote the sets of users and items in the CF-based models, respectively. Assuming the implicit
feedback setting, let R ∈ 0, 1"×# represent the observed implicit interaction matrix, where RD,8 = 1 if user D has
interacted with item 8; otherwise, it is 0. The key to CF-based models is accurately learning the user representation
matrix Z ∈ R"×� and the item representation matrix H ∈ R#×� , where � denotes the representation size and
� � ", # . With the representation matrix, the predicted score is defined as the similarity between the user and
item representation. Specifically, the similarity between users and items is calculated using the inner product
of their representations, i.e., B (D, 8) = z)Dh8 . Here B (D, 8) is the prediction score of user D to the item 8 , zD and h8
denote the representation of user D and item 8 . To directly capture information from interactions, most studies
employ the Bayesian Personalized Ranking (BPR) loss [33], a meticulously designed ranking objective function

ACM Trans. Intell. Syst. Technol.

 



Group-Alignment and Global-Uniformity for debiasing RS • 7

for recommendations. Formally, the BPR loss is as follows:

L�%' = − 1
|R |

∑
(D,8 ) ∈R,8−∈O /O +D

;=f (B (D, 8) − B (D, 8−)), (1)

where f (·) is the sigmoid function, O +D represents the set of items interacted by users in the training, 8 is the
positive item that the user has interacted with, and 8− is a randomly sampled negative item that the user has not
interacted with. Specifically, the BPR loss ensures that the predicted score of observed interactions is higher than
that of sampled unobserved interactions.

In this paper, focusing on the CF-based recommendation task, we investigate biases in recommendation results,
specifically addressing user-side consistency bias and item-side popularity bias. To better define and analyze
biases in recommendation results, we divide items and users into two groups based on their popularity levels,
namely:

[ = �DB4A
?>? ∪�DB4A

C08;
, O = �8C4<

?>? ∪�8C4<
C08;

, (2)

where �DB4A
?>? and �8C4<

?>? represent the popular user and item groups, respectively, while �DB4A
C08;

and �8C4<
C08;

denote
the long-tail user and item groups. All groups are mutually exclusive. In our work, we aim to ensure that all
groups have fair performance. Specifically, for user consistency bias, we expect the model to provide similar
recommendation quality across user groups, regardless of their popularity levels. We define the debiasing objective
on the user side by Demographic Parity (DP) as provided in [6] :

ED∈�DB4A
?>?
[��� (D)] = ED∈�DB4A

C08;
[��� (D)], (3)

where ��� (D) define the recommendation accuracy of user D. In contrast to user-side bias, for item popularity
bias, we aim for each item group to have equal opportunities for exposure in the TopK recommendations, formally
stated as:

? (�8C4<
?>? |)>? ) = ? (�8C4<

C08;
|)>? ), (4)

where ? (�8C4<
?>? |)>? ) and ? (�8C4<

C08;
|)>? ) respectively represent the probability of popular item and long-tail

item being in the TopK recommendation list.
In summary, the primary objective of this paper is to mitigate biases in recommendation results, aiming to

ensure fairness across different entity groups and reduce disparities in those results. Additionally, we aim to
preserve the competitive advantage of the recommendation model while minimizing any adverse effects on its
overall effectiveness.

3.2 Biases in representation distribution
In this subsection, we conduct an in-depth analysis of the causes and manifestations of the biases in representation
distribution. We take the most popular BPR loss as an example to analyze the impact of biases. Formally, for a
training sample (D, 8) ∈ R, the BPR loss is defined as:

L (D,8,8− ) = −;=f (B (D, 8) − B (D, 8−)) = −;=f (z)Dh8 − z)Dh8− ), Fℎ4A4 8− ∈ O /O +D . (5)

To optimize the BPR loss function using Stochastic Gradient Descent (SGD) [1], we calculate the gradients of the
user representation zD, positive sample representation h8 , and negative sample representation h8− as follows:

∇ID =
mL (D,8,8− )
mzD

= −(1 − f (B (D, 8) − B (D, 8−))) (h8 − h8− ), (6)

∇h8 =
mL (D,8,8− )
mh8

= −(1 − f (B (D, 8) − B (D, 8−)))zD, (7)
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Fig. 3. Representation visualization of items and users in the Douban-Book dataset. We randomly selected 500 items and 200
users and utilized T-SNE to visualize the representation spaces of BPRMF and LightGCN, respectively. In the visualization,
green dots represent users, while blue and orange dots represent popular and long-tail items, respectively. It is evident that
the number of long-tail items significantly exceeds that of popular items.

∇h8− =
mL (D,8,8− )
mh8−

= (1 − f (B (D, 8) − B (D, 8−)))zD . (8)

According to these equations, it is evident that the gradient update directions for the positive sample representation
h8 and the negative sample representation h8− are diametrically opposite. As recommendation data typically
follows the power-law distribution, positive items are often popular items sampled from (D, 8) ∼ R. Conversely,
negative samples are usually drawn randomly from the entire itemset O , typically resulting in long-tail items.
Consequently, when using SGD to optimize the BPR loss, popular items and long-tail items tend to be updated to
distinct positions within the representation space:

h8 ← h8 − [∇h8 , h8− ← h8− − [∇h8− , (9)

where [ is the learning rate, and typically 8 ∈ �?>?8C4< and 8− ∈ �8C4<
C08;

. As a result, the distribution of item
groups in the representation space becomes inconsistent. Furthermore, it is observed that the update direction for
users aligns with that of the positive sample, leading most users to cluster near popular items while distancing
from long-tail items.

To intuitively understand the impact of biases on representation distribution, we visualize the representations
of users and items using two common CF-based models, BPRMF [33] and LightGCN [18]. We map the learned
representations into a two-dimensional (2D) space using t-SNE [39], ensuring all representations are captured
at the point of optimal performance. From Fig. 3, we observe a distinctly different distribution of users and
items. Consistent with our analysis, popular items and long-tail items are located in separate regions of the
representation space, with user representations predominantly clustering around popular items. The phenomenon
of inconsistent distribution may be the reason why the results of different groups are slightly different. This
distribution pattern biases the model towards recommending popular items over considering users’ actual
preferences and the attributes of the items.

Furthermore, the discussion above highlights that the optimization directions for different entities are all
aligned with the representations of positive entities. The frequent appearance of popular entities in the training set
homogenizes the optimization direction of the representations, meaning they are optimized in similar directions.
As illustrated in Fig. 2, representations from different groups tend to cluster around several focal points. This
clustering indicates that the differences between representations are minimal, rendering the representations less
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𝟐

ItemUser

Fig. 4. An illustration of the AURL framework begins with input data being encoded through CF-based models to map
users and items into the representation space. Subsequently, these representations are constrained by two modules: group-
alignment L0;86= and global-uniformity LD=8 5 >A<, which work together to generate unbiased representations. Finally,
the interaction function utilizes these unbiased representations to predict scores for user-item pairs, B (D, 8), as part of the
recommendation task LA42 . It is important to note that while the diagram specifically focuses on item-side debiasing, similar
operations are conducted on the user side as well.

informative. Furthermore, this clustering causes the representations of different groups to diverge markedly,
further exacerbating the bias towards popular entities. Based on the foregoing discussion, we summarize the
impact of bias on representations as follows:
• Group-Discrepancy: The representations of various groups’ entities are localized to distinct regions

within the representation space, indicating a segregation based on group characteristics.
• Global-Collapse: The distribution of user and item representations shows a folding pattern, with the data

densely clustering around a few focal points, leading to reduced representational diversity and potential
loss of information.

4 THE PROPOSED MODEL
We introduce a framework, Group-Alignment and Global-Uniformity Enhanced Representation Learning
for Debiasing Recommendation (AURL), designed to mitigate biases in recommender systems through repre-
sentation distribution. The group-alignment module minimizes differences between popular and long-tail entities,
thereby ensuring representation alignment. Inspired by contrastive learning [42], our global-uniformity module
aims to enhance the quality of representations. The AURLframework is illustrated in Fig. 4. This section details
the design and analysis of these modules, both theoretically and empirically, and presents the overall objective
function.

4.1 Group-Alignment module
In the previous section, we demonstrated that CF-based methods result in biased distributions in the latent space,
termed “group-discrepancy”. Consequently, despite similarities, items and users are dispersed based on popularity,
leading to a model bias towards popular entities. To address group-discrepancy, we propose group-alignment,
aiming for popular and long-tail entities to share distribution characteristics. Due to data abundance and inherent
user preference biases, popular entities’ representations align more with user preferences, whereas long-tail
entities’ representations may be less precise. Our goal is to minimize the distributional distance between these
entity groups in the representation space, thus standardizing representation distributions across groups. This
involves transferring insights from well-established representations of popular entities to enhance those of
long-tail entities. We formally define the optimality of group-alignment as follows:
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Definition (Perfect Group-Alignment). The representation distribution is perfect group-alignment if the
distribution of the popular entity group�?>? aligns perfectly with the distribution of the long-tail entity group
�C08; , i.e., ? (5 (�?>? )) = ? (5 (�C08; )). Here ? (5 (·)) represents the distribution of representations for different
groups. Drawing inspiration from domain adaptation techniques, we aim to minimize the distributional distance
between two groups, thereby achieving group-aligned representation distributions. The formal representation of
this concept is as follows:

<8=
\
�̂ (5 (�?>? ), 5 (�C08; )), (10)

where �̂ (·, ·) is an estimate of the distribution discrepancy between the representation of popular user/item
groups 5 (�?>? ) and that of unpopular user/item groups 5 (�C08; ). Potential measures for this discrepancy include
KL divergence [21], Maximum Mean Discrepancy (MMD) [38], among others.

Both KL divergence and Maximum Mean Discrepancy (MMD) are commonly used to measure the difference
between two probability distributions. However, KL divergence requires knowledge of the probability density
functions involved and is sensitive to the specific forms and assumptions underlying these distributions [21, 64].
In contrast, MMD offers several advantages when aligning distributions. MMD effectively measures differences
between two distributions without assuming specific forms [38]. This is achieved by mapping distributions
into a high-dimensional feature space and computing inner products between samples in this space to quantify
differences. This approach captures overall distribution characteristics effectively, regardless of distribution
shapes [29]. Furthermore, MMD eliminates the need for intermediate density estimation, resulting in more stable
optimization and avoiding the challenges and instabilities associated with complex alternative optimization pro-
cedures [40]. Additionally, by directly maximizing the difference between distributions, MMD reduces sensitivity
to initialization. This guidance helps models learn better feature representations and avoid suboptimal solutions.
Overall, using MMD facilitates better alignment of different distributions and yields favorable outcomes in tasks
like domain adaptation and unsupervised learning.

To achieve group alignment, we employ MaximumMean Discrepancy (MMD)[38] as our regularizer to estimate
the discrepancy between the two groups. MMD functions as a kernel-based two-sample test that assesses the null
hypothesis ? (5 (�?>? )) = ? (5 (�C08; )), based on the observed samples, where the encoder 5 (·) maps users/items
into the representation space [16]. The fundamental concept of MMD is that if the generating distributions are
identical, then all statistical measures derived from these distributions should also be identical [64]. Formally,
MMD quantifies the following difference measures:

�H (�?>? ,�C08; ) =: ‖E[q (5 (�?>? ))] − E[q (5 (�C08; ))] ‖2H, (11)

whereH represents the reproducing kernel Hilbert space (RKHS) equipped with a characteristic kernel : [64].
Here, q (·) denotes the feature map of the original representation to RKHS, and the kernel : is defined as
: (5 (�?>? ), 5 (�C08; )) =< q (5 (�?>? )), q (5 (�C08; )) >, where < ·, · > denotes the inner product of vectors. The
central theoretical result is that ? (5 (�?>? )) = ? (5 (�C08; )) holds if and only if �H (�?>? ,�C08; ) = 0 [16]. In
practice, an estimate of the MMD involves comparing the squared distance between the empirical kernel mean
representations, denoted as:

�ö
H (�?>? ,�C08; ) =: ‖

1
|�?>? |

∑
G8 ∈ 5 (�?>? )

q (G8 ) −
1
|�C08; |

∑
G 9 ∈ 5 (�C08; )

q (G 9 )‖2H, (12)

where �ö
H (�?>? ,�C08; ) is an unbiased estimator of �H (�?>? ,�C08; ) [64]. We use Eqn. (12) as the estimate of the

discrepancy between �?>? and �C08; .
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Based on our previous discussion, both the user and item sides exhibit the issue of group-discrepancy.Therefore,
we simultaneously apply MMD to both the user and item sides as follows:

L0;86= =
1
2
× (LDB4A

0;86=
+ L8C4<

0;86=
)

=
1
2
× (�ö

H (5 (�
DB4A
?>? ), 5 (�DB4A

C08;
)) + �ö

H (5 (�
8C4<
?>? ), 5 (�8C4<

C08;
)))

=
1
2
× (‖ 1
|�DB4A

?>? |
∑

G8 ∈ 5 (�DB4A
?>? )

q (G8 ) −
1

|�DB4A
C08;
|

∑
G 9 ∈ 5 (�DB4A

C08;
)
q (G 9 )‖2H

+ ‖ 1

|�8C4<
?>? |

∑
G8 ∈ 5 (�8C4<

?>? )
q (G8 ) −

1

|�8C4<
C08;
|

∑
G 9 ∈ 5 (�8C4<

C08;
)
q (G 9 )‖2H),

(13)

where | · | represents the size of the set. It should be noted that the traditional training paradigm has effectively
learned the representation of popular user/item groups. However, if the distance between the two group distribu-
tions is artificially reduced, there is a risk that the performance of the popular group may diminish. Therefore, we
fix the representations of the popular entities and unilaterally push the representation distribution of long-tail
entities closer to that of popular entities. As illustrated by the black arrow in Fig. 4, when we apply L0;86= , the
long-tail group (depicted with a blue dotted line) in the bias distribution moves closer to the popular group
(depicted with an orange dotted line) in the representation space. This operation allows the model to enhance the
long-tail entity group without compromising the performance of the popular entity group.

4.2 Global-Uniformity module
In addressing the global-collapse issue, we draw inspiration from the uniformity property observed in contrastive
learning [42] to develop a global-uniformity regularizer. This regularizer aims to enhance the even distribution of
representation across various users and items, which we refer to as global-uniformity. Optimal global-uniformity
means that feature vectors are spread as uniformly as possible across the unit hypersphere S<−1, thereby
preserving a higher degree of informational content. We now proceed to define the criteria for optimal global-
uniformity in the representation distributions within collaborative filtering as follows [41]:
Definition (Perfect global-uniformity). The representation distribution is perfect global-uniformity if the

distribution of 5 (D) for D ö ? ([ ) and the distribution of 5 (8) for 8 ö ? (O ) are the uniform distribution f3−1 on
S3−1. Here, S3−1 = {G ∈ R3 : ‖G ‖ = 1} represents the surface of the 3 − 38<4=08>=0; unit sphere, and ? ([ )
and ? (O ) denote the distributions of users and items, respectively. The global-uniformity property ensures that
each representation preserves as much intrinsic information about the user or item as possible. Studies have
demonstrated that improved global-uniformity enhances the quality of representations both theoretically and
empirically [41, 42].

To implement a global-uniformity optimizer, we aim for the global-uniformity property to be both asymp-
totically correct (i.e., the distribution optimized by this metric should converge to a uniform distribution) and
empirically reasonable with a finite number of points, as described in [42]. To achieve this, we utilize the Gaussian
potential kernel (also known as the Radial Basis Function (RBF) kernel), �C : S3 × S3 → R+ [3]:

�C (5 (E), 5 (E
′ )) ¬ 4−C ‖ 5 (E)−5 (E

′ ) ‖22 = 42C ·5 (E)
) 5 (E′ )−2C , C > 0, (14)

where E and E ′ represent any user or item, and C is a fixed parameter. We define the global-uniformity loss in the
recommendation system as the logarithm of the average pairwise Gaussian potential on both the user side and
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item side:
LD=8 5 >A< =

1
2
× (LDB4A

D=8 5 >A<
+ L8C4<

D=8 5 >A<
)

=
1
2
× (;>6 E

D,D
′ö? ([ )

�C (D,D
′ ) + ;>6 E

8,8
′ö? (O )

�C (8, 8
′ ))

=
1
2
× (;>6 E

D,D
′ö? ([ )

4−C ‖ 5 (D )−5 (D
′ ) ‖22 + ;>6 E

8,8
′ö? (O )

4−C ‖ 5 (8 )−5 (8
′ ) ‖22 ).

(15)

It is worth noting that the perfectly uniform lower bound here is not a fixed value, but is dependent on the
dimension of the representation space [42]. The above formula demonstrates that LD=8 5 >A< encourages users and
items to be distributed as evenly as possible across the entire unit sphere. This promotes more effective utilization
of semantic information within the space. Maintaining a uniform distribution of feature vectors maximizes the
retention of the original feature information in the data.

4.3 Analyses of Group-Alignment and Global-Uniformity
4.3.1 Theoretical Analyses. We first explore the necessity of group-alignment in mitigating the item-side
popularity bias. We define L34180B as the target for debiasing under ideal conditions, which aims to equalize the
expected preferences of users towards both the popular and long-tail item groups. Formally, L34180B for a user D
is defined as:

<8=
\
L34180B =<8=

\
E8∈�8C4<

?>?
[B (D, 8)] − E8∈�8C4<

C08;
[B (D, � )]

=<8=
\

E8∈�8C4<
?>?
[f (z)D 5 (8))] − E8∈�8C4<

C08;
[f (z)D 5 (8))]

=<8=
\
f (z)D (E[5 (�8C4<

?>? )] − E[5 (�8C4<
C08;
)]))

∝<8=
\

E[5 (�8C4<
?>? ) − 5 (�8C4<

C08;
)]

=<8=
\

∑
8∈�8C4<

?>?

5 (8)? (5 (�8C4<
?>? )) −

∑
8∈�8C4<

C08;

5 (8)? (5 (�8C4<
C08;
))

=<8=
\

∑
8

5 (8) [? (5 (�8C4<
?>? ) − ? (5 (�8C4<

C08;
))]

(16)

According to the definition of perfect group-alignment, Eqn. (16) tends towards zero only when the encoder
achieves perfect group-alignment between the distributions of the two item groups. This suggests that reducing
the distance between the distributions of the two item groups can help narrow the gap between the scores of the
popular item group and the long-tail item group.

We then explore the necessity of group-alignment in mitigating the user-side consistency bias. Let E[L�DB4A
?>?
]

and E[L�DB4A
C08;
] represent the expected value of the loss for the popular user group and the long-tail user group,

respectively. The Bayesian Personalized Ranking (BPR) loss can then be reformulated as:

L�%' =
1
|R |

∑
(D,8 ) ∈R,8−∈O /O +D

L (D,8,8− ) =
1
|R |

∑
D∈ |[ |

∑
8∈O +D ,8−∈O /O +D

L (D,8,8− )

=
1
|R | (

∑
D∈�DB4A

?>?

∑
8∈O +D ,8−∈O /O +D

L (D,8,8− ) +
∑

D∈�DB4A
C08;

∑
8∈O +D ,8−∈O /O +D

L (D,8,8− ) )

=
1
|R | ( |R

+
�DB4A
?>?
| × E[L�DB4A

?>?
] + |R+�DB4A

C08;
| × E[L�DB4A

C08;
])

(17)
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Fig. 5. Metrics and performance of BPRMF and LightGCN experiments are visualized. Each point on the plot represents a
trained encoder, with its G and ~ coordinates indicating group-alignment and global-uniformity properties, respectively. The
color of each point denotes validation set accuracy, measured by #���@20, and debiasing metrics, represented by %'* .
Stars on the plot indicate the points where convergence was achieved.

where R+
�DB4A
?>?

and R+
�DB4A
C08;

respectively represent the interaction sets of popular users and long-tail users in the
training set. Due to imbalanced data, the number of interactions for popular users (|R+

�DB4A
?>?
|) significantly exceeds

that of long-tail users (|R+
�DB4A
C08;

|). This imbalance causes the training process to optimize predominantly for popular
users, achieving a lower average loss, while the impact on long-tail users remains minimal. Consequently, the
model tends to learn the characteristics and preferences of popular users more effectively, thereby optimizing
the recommendation results for this group more successfully. To enhance the accuracy for long-tail users, our
objective is to balance the loss between the two user groups, expressed as E[L�DB4A

?>?
] − E[L�DB4A

C08;
]. The proposed

group-alignment property facilitates the transfer of knowledge from the well-trained representations of popular
users to long-tail users, improving the representational distribution and learning of preferences for the latter.

Please note that achieving distribution consistency can be readily accomplished by encoding all items or users
into the same representation; however, this approach risks inducing global-collapse [41]. To circumvent this issue,
we have designed a global-uniformity regularizer. This regularizer ensures that representations are uniformly
distributed across the unit hypersphere, thereby preserving maximal information about the entities.

4.3.2 Empirical Observations. To further investigate the relationship between the two properties and rec-
ommendation results, we depicted the variations of the properties, along with the accuracy of recommenda-
tions (#���@20) and the debias metrics (%'* ), during the training process (Fig. 5). Lower values of group-
alignment and global-uniformity are desirable. A lower %'* metric signifies less bias towards popularity in
recommendations, while a higher #���@20 indicates better recommendation accuracy. The stars in Fig. 5
represent the convergence points of the model.

We observe a highly consistent behavior between the properties and the recommendation metrics. The upper
two subfigures illustrate the trends of #���@20 with group-alignment and global-uniformity, where darker
colors represent better recommendation quality. It is noticeable that smaller values of global-uniformity and
group-alignment are more favorable for #���@20 improvement. The lower two subfigures in Fig. 5 showcase
the relationship between the debias indicator %'* and representation distribution properties. Darker colors
signify lower %'* values, indicating better debiasing performance. As evident, achieving better group-alignment
or global-uniformity can both help alleviate the biases of the recommendation results and improve the accuracy
of the model, and it may be beneficial to optimize them simultaneously.

In summary, our theoretical and empirical analyses demonstrate a strong correlation between the ideal debiasing
objectives and the two properties we proposed. In other words, better group-alignment and global-uniformity are
advantageous for both improving the accuracy of the model’s recommendations and mitigating bias.
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4.4 Objective function
The loss function of our framework consists of three components: recommendation loss (LA42 ), group-alignment
loss (L0;86=), and global-uniformity loss (LD=8 5 >A<). For details, LA42 represents the loss function for the recom-
mendation task in any CF-based model. This could be, for example, the BPR loss [33], InfoNCE loss [55], Softmax
loss [51], or any other suitable loss function used in collaborative filtering models. To prevent overfitting, we also
apply !2 regularization to constrain all the parameters of the model. The overall loss function is formulated as
follows:

LAURL = LA42 + _1L0;86= + _2LD=8 5 >A< + _‖\ ‖2� , (18)
where _1 and _2 are hyperparameters that control the strengths of auxiliary tasks, \ = {Z,H} denotes all trainable
model parameters, and _ governs the !2 regularization strength to prevent overfitting. Additionally, it is important
to note that the auxiliary tasks do not introduce additional parameters. In our framework, by jointly training
L0;86= and LD=8 5 >A< , we achieve unbiased representations that help debias recommendation results. AURL is
designed to alleviate biases in results from both the item side and the user side. Furthermore, AURL is compatible
with arbitrary CF-based models by integrating two auxiliary loss functions.

4.5 Discussion
In this work, we primarily investigate the issue of popularity bias in recommendation system results and
propose the Group-Alignment and Global-Uniformity Enhanced Representation Learning for Debiasing
Recommendation (AURL) . We address both item-side popularity bias and user-side consistency bias by
regularizing the distribution of representations, detailing the model of AURL. Specifically, we elaborate on the
mechanism behind the group alignment regularizer, which aims to mitigate group discrepancies by aligning the
distribution of long-tail entities with that of popular entities in the representation space. Additionally, we discuss
the global uniformity regularizer, which combats global collapse phenomena by encouraging representations of
entities on the hypersphere to be more uniformly distributed.

While our method has shown some effectiveness in addressing bias in recommendation systems, it has
limitations. Our approach, which involves aligning and uniformizing the entire item/user space, might not
effectively capture subtle differences, highlighting the need for more fine-grained grouping methods. Additionally,
despite achieving group alignment, the method’s underlying mechanism lacks intuitiveness and interpretability,
which could hinder understanding and communication with users and stakeholders. These aspects suggest
significant areas for further research and improvement in the interpretability of the method.

5 EXPERIMENTS

5.1 Experimental settings
5.1.1 Dataset. We conduct experiments on three public real-world datasets: Amazon-Book for e-commerce
recommendation [55], Movielens-20M for movie recommendation [17], and Douban-Book for book recommen-
dation [55]. Following previous experimental setups [18, 55], we retain only users and items with at least 5
interactions. For each user, 70% of interactions are randomly selected as the training set, another 10% as the
validation set for hyperparameter tuning, and the remaining 20% as the test set.

To define user and item groups, we apply the “Pareto Principle”, selecting the top 20%most frequently interacted
users/items in the training set as the popular group, and the others as the long-tail group [28]. Detailed data
statistics are summarized in Table 1.

5.1.2 Evaluation metrics. In this work, we place greater emphasis on the biases in model results rather than
on accuracy. Therefore, we adopt two accuracy metrics to ensure that AURL does not significantly compromise
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Table 1. Detailed datasets statistics.

Datasets #Users #Itmes #Interactions Density

Amazon-Book 52,643 91,599 2,984,108 0.0619%
Movielens-20M 99,626 14,387 28,011,110 0.1954%
Douban-Book 12,859 22,294 792,062 0.2087%

the model’s accuracy, and we introduce two metrics to demonstrate how effectively AURL mitigates biases. To
measure the accuracy of the recommendation results, we utilize Hit Ratio (�'@ ) and Normalized Discounted
Cumulative Gain (#���@ ) [18]. To evaluate the debiasing capability of the model, we assess it from the
perspectives of both users and items.

For the item side, we select Popularity-Rank Correlation (%'* ) [61, 65], which measures the correlation
between the user’s true preference and the item’s popularity. Specifically, %'* is defined as:

%'* = − 1
|U |

∑
D∈U

('� (?>? (U+
u), A0=: (U+

u)), (19)

where ('� (·) is the Spearman Rank Correlation coefficient, and U+
u represents the set of items interacted with

by user D in the test dataset, reflecting user preferences. In particular, a smaller value of %'* indicates that the
model more accurately captures the user’s true preference, independent of item popularity.

For the user side, we employ Demographic Parity (�%@ ) to evaluate the consistency of recommendation
results among different user groups [6, 10, 50]. This metric utilizes Jensen–Shannon Divergence, �(� (·, ·), to
measure the distributional distance in accuracy among different groups, specifically:

�%@ = �(� (��� (�DB4A
?>? ), ��� (�DB4A

C08;
)), (20)

where ��� (�DB4A
?>? ) and ��� (�DB4A

C08;
) represent the distribution of recommendation accuracy for the popular user

group and long-tail user group, respectively. A smaller value of �%@ indicates less bias on the user side.

5.1.3 Baselines. We implement AURL using three classic CF-based models as the backbone to validate its
effectiveness. The three backbones are:

(1) BPRMF [33]: Maps user/item IDs into the representation space using matrix factorization techniques,
capturing intricate relationships between users and items.

(2) LightGCN [18]: An advanced CF-based model based on GCNs. It captures higher-order interactions
between users and items.

(3) SimGCL [55]: A cutting-edge Graph Contrastive Learning (GCL) method. It adds uniform noise to node
representations when generating different views.

We compare our methods with various state-of-the-art models in three broad categories, as follows:
• Re-weighting-based methods:

(1) RS [32]. The key to RS is to balance the number of interactions for high item/user and low engagement
training by resampling.
(2) PC [65]. This is a post-processing approach that directly modifies the prediction score by compensating
based on the item/user popularity.
(3) Zerosum [34]. It reduces model bias in recommendation systems by directly equalizing recommendation
scores across items preferred by a user.
(4) r-AdjNorm [61]. It obtains asymmetric aggregation by adjusting the gamma parameter during aggrega-
tion in the graph so that the model is more inclined to long-tail nodes.
(5) CPFair [27]. It integrates fairness constraints from both consumer and producer perspectives in a joint
objective framework for recommender systems based on the re-ranking approach.
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Table 2. Performance of the AURL variant and the baseline using the BPRMF backbone with  = 20, where ↑ indicates that
higher values are preferable and ↓ indicates that lower values are preferable.

Model Amazon-Book Movielens-20M Douban-Book
HR↑ NDCG↑ PRU↓ DP↓ HR↑ NDCG↑ PRU↓ DP↓ HR↑ NDCG↑ PRU↓ DP↓

BPRMF 0.0318 0.0232 0.5189 0.2845 0.3291 0.2284 0.6400 0.2352 0.1290 0.1027 0.6692 0.2923
+RS 0.0297 0.0219 0.5178 0.2863 0.2971 0.2297 0.6242 0.1946 0.1151 0.0937 0.6065 0.2136
+PC 0.0297 0.0215 0.4944 0.2652 0.3269 0.2274 0.6208 0.2451 0.1174 0.0977 0.5840 0.1704

+Zerosum 0.0287 0.0208 0.4792 0.2373 0.3057 0.2141 0.6302 0.1772 0.1115 0.0905 0.6436 0.2029
+CPFair 0.0309 0.0225 0.5038 0.2757 0.3194 0.2215 0.6208 0.2280 0.1250 0.0995 0.6490 0.2837
+DICE 0.0310 0.0229 0.5477 0.2907 0.3204 0.2282 0.6358 0.2392 0.1213 0.1001 0.6106 0.1641
+MACR 0.0297 0.0195 0.4980 0.2704 0.3180 0.2219 0.6299 0.2019 0.1030 0.0849 0.6607 0.1845
+InvCF 0.0316 0.0230 0.5241 0.2873 0.3264 0.2261 0.6464 0.2377 0.1284 0.1016 0.6759 0.2955
+FairMI 0.0314 0.0229 0.5113 0.2803 0.3243 0.2251 0.6305 0.2318 0.1274 0.1013 0.6592 0.2880
+ AURL 0.0322 0.0235 0.4063 0.1858 0.3372 0.2370 0.5168 0.1341 0.1232 0.1045 0.4814 0.1850

Improvement(%) 1.25% 1.29% 15.21% 21.70% 2.46% 3.17% 16.75% 24.32% -4.59% 2.75% 17.57% 12.74%

• Decorrelation-based methods:
(6) DICE [63]. Based on the idea of decoupling, it designs a causal data framework that decomposes user
interest and item popularity into two representations.
(7) MACR [47]. MACR is a method based on counterfactual reasoning for eliminating the item side bias in
the result.

• Adversarial-based methods:
(8) FairMI [59]. It leverages adversarial principles to minimize mutual information between embeddings
and sensitive attributes, while simultaneously maximizing it with non-sensitive information.
(9) InvCF [56]. It exploits the notion that item/user representations remain unchanged despite variations in
popularity semantics. By filtering out unstable or outdated popularity characteristics, InvCF learns unbiased
representations.

In summary, the baselines cover a wide array of methods aimed at debiasing recommendation results. These
techniques include re-sampling, re-weighting, regularization, re-ranking, causal approaches, among others. For
a fair comparison, we exclude methods that necessitate additional training data, such as Autodebias [5] and
DecRs [43].

5.1.4 Hyper-Parameter Settings. In all our experiments, the number of negative samples is set to 1, consistent
with other studies [18, 55, 65]. We employ the Xavier initializer [15] to set up the parameters and utilize Adam [22]
with a learning rate of 0.001 for optimizing all models. The representation size is fixed at 64, the batch size at 2048,
and the !2 regularization coefficient at 0.0001. For all baseline hyper-parameters, we adopt the values recommended
in the respective papers and meticulously adjust them for the new dataset to optimize recommendation outcomes.
We fine-tune _1 and _2 over the range 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1 with an appropriate step size. We run
all models five times and report the mean results.

5.2 Overall performance
As demonstrated in Table 2, Table 3, and Table 4, we compare AURL with various debiasing methods across
different backbones to assess the overall performance. To better elucidate the trade-off between recommendation
accuracy and debiasing efforts, we visualize the relationships among recommendation accuracy (#���@20),
item-side debiasing (%'* ), and user-side debiasing (�%@20) across various models, as illustrated in Fig. 6. Based
on the experimental results, we observe the following key points.
• Traditional debiasing methods, such as re-weighting, decorrelation, and adversarial approaches, have

shown promise in reducing bias in recommendation results. These methods typically surpass backbone
models in metrics like %'* and �% , indicating their potential to partially mitigate biases. However, these
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Table 3. Performance of the AURL variant and the baseline using the LightGCN backbone with  = 20, where ↑ indicates
that higher values are preferable and ↓ indicates that lower values are preferable.

Model Amazon-Book Movielens-20M Douban-Book
HR↑ NDCG↑ PRU↓ DP↓ HR↑ NDCG↑ PRU↓ DP↓ HR↑ NDCG↑ PRU↓ DP↓

LightGCN 0.0380 0.0282 0.4955 0.2796 0.3145 0.2172 0.3453 0.2146 0.1550 0.1282 0.6319 0.2804
+RS 0.0386 0.0280 0.4934 0.2803 0.3085 0.2130 0.3408 0.2149 0.1553 0.1285 0.5905 0.2606
+PC 0.0378 0.0282 0.4921 0.2703 0.3085 0.2130 0.3348 0.2139 0.1505 0.1230 0.5899 0.2646

+Zerosum 0.0376 0.0274 0.4911 0.2736 0.3031 0.2087 0.3342 0.2044 0.1534 0.1256 0.5719 0.2536
+r-AdjNorm 0.0387 0.0288 0.4901 0.2671 0.3214 0.2199 0.4361 0.2255 0.1664 0.1401 0.6196 0.2687
+CPFair 0.0370 0.0274 0.4950 0.2743 0.3054 0.2108 0.3360 0.2090 0.1525 0.1244 0.6137 0.2721
+DICE 0.0384 0.0284 0.4925 0.2772 0.3179 0.2164 0.3402 0.2083 0.1562 0.1285 0.6168 0.2747
+MACR 0.0356 0.0264 0.4951 0.3283 0.2905 0.1974 0.3442 0.2144 0.1392 0.1028 0.6230 0.2792
+InvCF 0.0409 0.0309 0.5028 0.2691 0.3241 0.2207 0.4846 0.2247 0.1690 0.1388 0.6260 0.2656
+FairMI 0.0391 0.0291 0.4906 0.2761 0.3244 0.2237 0.3408 0.2123 0.1597 0.1322 0.6259 0.2772
+AURL 0.0458 0.0349 0.3543 0.2399 0.3495 0.2450 0.2992 0.1884 0.1831 0.1585 0.3599 0.2247

Improvement(%) 11.98% 12.94% 27.71% 8.99% 7.84% 11.01% 26.69% 7.82% 8.34% 13.13% 37.06% 11.40%

Table 4. Performance of the AURL variant and the baseline using the SimGCL backbone with  = 20, where ↑ indicates that
higher values are preferable and ↓ indicates that lower values are preferable.

Model Amazon-Book Movielens-20M Douban-Book
HR↑ NDCG↑ PRU↓ DP↓ HR↑ NDCG↑ PRU↓ DP↓ HR↑ NDCG↑ PRU↓ DP↓

SimGCL 0.0537 0.0414 0.2154 0.2500 0.3603 0.2624 0.4575 0.1751 0.1927 0.1677 0.3653 0.2401
+RS 0.0517 0.0402 0.2142 0.2592 0.3583 0.2619 0.4551 0.1740 0.1925 0.1673 0.3604 0.2330
+PC 0.0537 0.0414 0.2133 0.2455 0.3596 0.2532 0.4340 0.1906 0.1862 0.1634 0.3656 0.2416

+Zerosum 0.0506 0.0403 0.2136 0.2438 0.3485 0.2508 0.4027 0.1692 0.1865 0.1570 0.3450 0.2378
+r-AdjNorm 0.0551 0.0426 0.2113 0.2736 0.3518 0.2573 0.3965 0.1629 0.1875 0.1631 0.3329 0.2675
+CPFair 0.0521 0.0400 0.2186 0.2445 0.3492 0.2551 0.4481 0.1710 0.1901 0.1640 0.3562 0.2377
+DICE 0.0526 0.0404 0.2193 0.2673 0.3603 0.2606 0.4562 0.1764 0.1921 0.1635 0.3546 0.2361
+MACR 0.0508 0.0397 0.2310 0.2858 0.3359 0.2474 0.5286 0.1770 0.1684 0.1490 0.3951 0.2792
+InvCF 0.0540 0.0411 0.2486 0.2847 0.3402 0.2495 0.4620 0.1768 0.1846 0.1539 0.3847 0.2730
+FairMI 0.0537 0.0409 0.2149 0.2482 0.3592 0.2597 0.4183 0.1667 0.1924 0.1669 0.3492 0.2342
+AURL 0.0541 0.0418 0.1875 0.2281 0.3616 0.2632 0.3638 0.1559 0.1884 0.1644 0.2967 0.2192

Improvement(%) -1.98% -1.72% 11.27% 6.31% 0.33% 0.30% 10.76% 4.29% -2.23% -1.96% 10.87% 5.92%

methods tend to overly focus on reducing the over-representation of popular users/items. As a result, the
performance on these popular entities is deliberately decreased, leading to a notable decline in overall
model performance. For example, using BPRMF as the backbone, among all traditional debiasing methods,
Zerosum exhibits a relative decrease in metrics like #���@20 and �'@20. Nonetheless, it achieves the
best performance in terms of %'* and �%@20 across various datasets. Beyond traditional techniques,
we also explore state-of-the-art methods like r-adjnorm, which adjusts standardization terms in graph
aggregation. We have discovered that for graph-based models, fine-tuning aggregation parameters yields
the most effective debiasing results. This improvement is largely due to the ability of these parameters
in GCNs to balance the influence of long-tail nodes, thus enhancing both the debiasing effect and the
model’s accuracy.
• AURL significantly outperforms existing methods in reducing biases across all datasets and backbone

models. For example, compared to the best existing debiasing baselines, our method shows remarkable
performance improvements on the BPRMF backbone across three real datasets, with gains of 15.21%,
21.70%, 16.75%, 24.32%, 17.57%, and 12.74% in the %'* and �%@20metrics. Similarly, under the LightGCN
backbone, improvements include 27.71%, 8.99%, 26.69%, 7.82%, 37.06%, and 11.40%. Additionally, with
the SimGCL backbone, our approach enhances performance by 11.27%, 6.31%, 10.76%, 4.29%, 10.87%, and
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Fig. 6. Trade-off between recommendation accuracy and debiasing efforts in the Amazon-Book dataset.

5.92%. These enhancements are the result of optimizing two critical properties in the representation space:
group-alignment and global-uniformity.
• AURL significantly reduces biases in recommendation results while also preserving model accuracy

to a notable degree, thus enhancing the model’s practical utility. For instance, with BPRMF as the
backbone, AURL achieves performance gains in �'@20 and #���@20 across three datasets, with
improvements of 1.25%, 1.29%, 2.46%, 3.17%, -4.59%, and 2.75% respectively. With LightGCN as the
backbone, these gains are even more pronounced, with increases of 11.98%, 12.94%, 7.84%, 11.01%, 8.34%,
and 13.13%. These improvements demonstrate that AURL effectively mitigates bias without sacrificing
accuracy, making it highly suitable for practical applications, as depicted in Fig. 6, where it is clear
that other methods compromise accuracy to reduce bias. Additionally, AURL shows significantly better
performance enhancements compared to other graph-based backbone models. This can be attributed
to the inherent properties of graph convolution operations, where nodes assimilate information from
their neighbors. Through successive convolution layers, node representations tend to converge, reducing
their discriminative power between different entities and resulting in a less uniform distribution of
representations in graph-based collaborative filtering methods.
• GCL-based methods like SimGCL optimize the uniformity of representations, enhancing their infor-

mativeness to a degree. Consequently, AURL does not significantly improve accuracy beyond what is
achieved by SimGCL alone. However, the combination of SimGCL and AURL consistently and substantially
reduces biases. Specifically, when compared with the strongest baseline methods, AURL achieves notable
improvements in %'* and �%@20, with increases of 11.27% and 6.31% on the Amazon-Book dataset,
10.76% and 4.29% on Movielens-20M, and 10.87% and 5.92% on Douban-Book, respectively. These results
underscore the significant impact of our proposed group-alignment approach in mitigating biases.

5.3 Ablation study
To demonstrate the effectiveness of the various components of AURL, we conducted ablation studies on the
Douban-Book dataset using BPRMF+AURL: (1) AURL w/o AL: This variant removes the group-alignment module
to examine its impact on the consistency of representation distribution among different groups. (2) AURL w/o
UN: This configuration excludes the global-uniformity module to assess the influence of the global-uniformity
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Table 5. Effect of different model components on BPRMF+AURL.

Model Douban-book
HR↑ NDCG↑ PRU↓ DP↓

BPRMF 0.1290 0.1027 0.6692 0.2923
AURLw/o AL 0.1325 0.1031 0.6231 0.2403
AURLw/o UN 0.1213 0.1001 0.6116 0.1642
AURLw/o U 0.1261 0.0993 0.4872 0.2623
AURLw/o I 0.1236 0.1046 0.5571 0.1847

BPRMF+AURL 0.1295 0.1027 0.4070 0.1558

property on the model. (3) AURL w/o U and AURL w/o I: These versions respectively remove the regularization
terms on the user and item sides, testing the model’s ability to concurrently mitigate biases for both user and
item sides. By comparing these variants with the complete AURL model, we gain insights into the specific
contributions of each component and assess their impact on the overall model performance. The results of this
study are presented in Table 5.

Analyzing the results of AURL w/o AL and AURL w/o UN, we observe that these modules enhance performance
with respect to %'* by 6.89% and 8.61%, respectively. This indicates that both components effectively alleviate
bias in the model. Additionally, while the group-alignment module significantly mitigates bias, it also results in a
slight decrease in recommendation accuracy. In contrast, the global-uniformity module is vital for maintaining
the accuracy of the recommendation model. The synergistic interaction between these two components not only
ensures the accuracy of recommendations but also effectively addresses the issue of bias.

After comparing the experimental results of AURL w/o U and AURL w/o I, it is evident that addressing
the distribution of either users or items separately can effectively alleviate biases in recommendation results.
This demonstrates that biases are prevalent on both the user and item sides, underscoring the necessity and
effectiveness of AURL in treating these biases within a unified framework. Specifically, when item representations
are treated separately ( AURL w/o U), there is a more significant improvement in %'* , with an increase of 27.19%.
Conversely, addressing the user side alone ( AURL w/o I) leads to a more substantial enhancement in the �%@20
metric, with a 35.89% improvement. In comparison, AURL w/o U shows a 20.53% improvement in �%@20. These
results highlight that AURL can be specifically tailored to mitigate one-sided biases and that biases on both user
and item sides are interconnected. This emphasizes the importance of simultaneously considering biases on both
sides to achieve a more balanced and fair recommendation system.

5.4 Parameter sensitivity
In this section, we explore the impact of the hyperparameters _1 and _2 on the outcomes of our recommendation
system. We specifically focus on how adjustments to group alignment and global uniformity influence key perfor-
mance indicators such as accuracy (#���@20), item-side bias (%'* ), and user-side bias (�%@20). Additionally,
we examine the sensitivity of our model to the distribution of entities across the popularity spectrum, from
popular to long-tail items.

5.4.1 Impact of the _1. In our objective function, the parameter _1 is crucial for controlling the group-alignment
of representation distributions. To assess the effects of varying _1, we systematically modified its value from
0.001 to 1. The results of these variations are presented in the upper three subplots of Fig. 7. Our analysis reveals
that, across all backbone models, increasing _1 leads to a consistent decline in the %'*@20 and �%@20 metrics.
This pattern underscores the effectiveness of stronger group-alignment constraints in reducing biases within
recommendation results. However, it is important to note that there is also a noticeable decrease in the #���@20
metric, which suggests that while enhancing group-alignment is beneficial for bias mitigation, it may adversely
affect the overall recommendation accuracy.
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Fig. 7. Performance comparison w.r.t. different _1 and _2. The top shows the impact of _1 on the results, while the bottom
shows the impact of _2 on the results. We present results for three metrics on the Douban-Book dataset: #���@20, %'* ,
and �%@20.

5.4.2 Impact of the _2. In the lower three subfigures of Fig. 7, we examine the impact of the global-uniformity
hyperparameter, _2. We were pleasantly surprised to discover that an optimal value of _2, particularly around 0.1,
not only boosts the accuracy of recommendations but also effectively reduces biases. Specifically, both BPRMF
and LightGCN models exhibit peak accuracy at this _2 setting. Moreover, as we increase the value of _2, the
debiasing effect within the models becomes more pronounced. It is important to note, however, that for the
SimGCL model, a higher _2 value results in diminished accuracy. This may be attributed to the inherent nature of
SimGCL, which incorporates contrastive learning elements that already contribute to a level of global-uniformity.
Despite this, our approach continues to effectively mitigate bias within the SimGCL model.

5.4.3 Impact of the division percentage. To assess the sensitivity of our model to the division ratio between
popular and long-tail entities, we conducted a series of experiments varying the proportion of entities considered
as ’popular’. We defined popular entities as the top 5%, 10%, 20%, and 30% of entities in the dataset.The outcomes of
these experiments are summarized in Table 7. The experimental results indicate that, in most scenarios, adjusting
the division percentage leads to increased accuracy and reduced bias compared to the best-performing baselines.
Specifically, when the proportion of popular users or items is below 10%, our model tends to show suboptimal
results in both accuracy and debiasing effectiveness. This is likely due to the insufficient representation of popular
entities, which hampers the model’s ability to effectively learn and align their distribution, thus diminishing
overall performance. Conversely, increasing the proportion of popular entities generally improves both the
accuracy and the debiasing capability of the model, particularly for user-side popularity bias. This enhancement
is attributed to the more abundant interaction data available for popular users, which allows the model to more
accurately capture their preferences and behavioral patterns. Our findings demonstrate that our model maintains
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Fig. 8. Visualization of AURL user and item representations on Douban-Book on S1. To improve the readability of the figure,
we uniformly randomly select 500 items/users for display. We show the entities with Gaussian KDE and the angles with vMF
KDE. Green and blue points represent different user or item groups.

strong performance across various division percentages, highlighting its robustness and adaptability to different
entity distribution scenarios.

5.5 Visualizing the distribution of representations
To intuitively demonstrate how AURLmitigates recommendation biases, we employed t-SNE [39] to visualize user
and item representations within the Douban-Book dataset. The distributions of representations under various
backbones facilitated by AURL are depicted in Fig. 8 and 9.

Compared to the baseline shown in Fig. 2, the representations learned through our method display a more
even and consistent distribution across the space. Notably, both popular and long-tail entity groups are uniformly
dispersed and become indistinguishable from one another, enhancing the likelihood of achieving unbiased
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Fig. 9. Representation visualization of users and items. The green points represent users, and the blue and orange points
represent popular items and long-tail items, respectively. To improve the readability of the figure, we uniformly randomly
select 500 items/users to show on each subplot after performing t-SNE.

Table 7. Performance of AURL across different division percentages of popular users/items. The division percentages represent
the proportion of entities considered as popular (top 5%, top 10%, top 20%, and top 30%) in the Amazon-book and Douban-book
datasets.

Dataset Amazon-book Douban-book

BPRMF

+Zerosum 0.0287 0.0208 0.4792 0.2373 0.1115 0.0905 0.6436 0.2029
+InvCF 0.0316 0.0230 0.5241 0.2873 0.1284 0.1016 0.6759 0.2955

AURL-5% 0.0300 0.0224 0.3497 0.2871 0.1231 0.1043 0.4800 0.2317
AURL-10% 0.0327 0.0243 0.3915 0.2918 0.1231 0.1041 0.4735 0.2005
AURL-20% 0.0322 0.0235 0.4063 0.1858 0.1232 0.1045 0.4814 0.1850
AURL-30% 0.0325 0.0231 0.4107 0.2649 0.1229 0.1005 0.5456 0.2128

LightGCN

+Zerosum 0.0376 0.0274 0.4911 0.2736 0.1534 0.1256 0.5719 0.2536
+InvCF 0.0409 0.0309 0.5028 0.2691 0.1690 0.1388 0.6260 0.2656

AURL-5% 0.0459 0.0350 0.3661 0.2398 0.1830 0.1584 0.3579 0.2900
AURL-10% 0.0460 0.0349 0.3633 0.2410 0.1829 0.1583 0.3577 0.2452
AURL-20% 0.0458 0.0349 0.3543 0.2399 0.1831 0.1585 0.3599 0.2247
AURL-30% 0.0451 0.0340 0.3891 0.2525 0.1807 0.1544 0.3648 0.2329

SimGCL

+Zerosum 0.0506 0.0403 0.2136 0.2438 0.1865 0.1570 0.3450 0.2378
+InvCF 0.0540 0.0411 0.2486 0.2847 0.1846 0.1539 0.3847 0.2730

AURL-5% 0.0491 0.0374 0.3138 0.2565 0.1845 0.1611 0.2712 0.2809
AURL-10% 0.0502 0.0380 0.2903 0.2677 0.1879 0.1641 0.2828 0.2424
AURL-20% 0.0541 0.0418 0.1875 0.2281 0.1884 0.1644 0.2967 0.2192
AURL-30% 0.0537 0.0414 0.2133 0.2485 0.1893 0.1656 0.2999 0.2241

recommendation results. This uniform distribution indicates that AURL effectively mitigates biases on both
the user and item sides as intended. Further comparisons with Fig. 3 reveal that in the representation space,
users are more uniformly dispersed and are not predominantly clustered around popular items. This alteration
suggests that the model recommendations are now more heavily influenced by genuine user preferences and
item characteristics rather than by the popularity bias. Consequently, both popular and long-tail items are less
distinguishable, leading to a more consistent distribution across the board.

Moreover, we discuss the inherent trade-off between effectiveness and debiasing. By constraining the rep-
resentation distribution, AURL modifies the natural grouping of users and items, forcing a greater similarity
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between different groups. While this approach enhances debiasing, it may occasionally reduce the effectiveness
of recommendations due to altered distribution dynamics.

6 CONCLUSION AND FUTURE WORK
In this paper, we analyzed deep-rooted biases in recommender systems, focusing on group-discrepancy and global-
collapse in representation distribution, which led to biased outcomes. We introduced a framework, AURL, that
addressed these biases by enforcing group-alignment and global-uniformity. This approach was compatible with
any CF-based model as an auxiliary task, requiring no extra parameter tuning. Our extensive evaluations across
multiple domains using three datasets demonstrated that AURL outperformed existing baselines in debiasing,
effectively reducing user and item biases while maintaining accuracy. For future work, we aim to identify and
mitigate additional types of biases and expand our model’s application to broader scenarios, thereby enhancing
the fairness and accuracy of recommender systems.
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