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In educational data mining, knowledge tracing (KT) aims to model learning performance based on student knowledge

mastery. Deep-learning-based KT models perform remarkably better than traditional KT and have attracted considerable

attention. However, most of them lack interpretability, making it challenging to explain why the model performed well

in the prediction. In this paper, we propose an interpretable deep KT model, referred to as fuzzy deep knowledge tracing

(FDKT) via fuzzy reasoning. Speciically, we formalize continuous scores into several fuzzy scores using the fuzziication

module. Then, we input the fuzzy scores into the fuzzy reasoning module (FRM). FRM is designed to deduce the current

cognitive ability, based on which the future performance was predicted. FDKT greatly enhanced the intrinsic interpretability

of deep-learning-based KT through the interpretation of the deduction of student cognition. Furthermore, it broadened the

application of KT to continuous scores. Improved performance with regard to both the advantages of FDKT was demonstrated

through comparisons with the state-of-the-art models.

CCS Concepts: · Applied computing→ Education; · Information systems → Information systems applications.

Additional Key Words and Phrases: educational data mining, knowledge tracing, model interpretability, fuzzy reasoning, deep

learning

1 INTRODUCTION

Online education systems such as MOOC, ASSISTments, and Khan Academy are being increasingly used,
producing large amounts of student learning data [1ś7]. Knowledge tracing (KT) [8ś10] focuses on predicting
future performance based on estimating the over-time knowledge mastery of students from the learning logs,
as shown in Fig. 1. KT is one of the important tasks of educational data mining [11, 12] and can be applied to
various scenarios, such as facilitating better personalized learning resource recommendations [13, 14].

Model interpretability recently has attracted increasing attention in the ield of educational data mining,
including the KT task. Interpretability is deined as the ability to provide explanations in understandable terms

to a human [15, 16]. Being able to explain the reasons why the model was able to achieve good prediction
performance in an interpretable KT model is as crucial as achieving desirable performance [17]. To obtain this
understanding, interpretability can be improved from both intrinsic and post hoc aspects, as shown in Fig. 2.
Intrinsic interpretability explains how the model works, the interpretability comes from the model-speciic
constraints based on the domain knowledge [18]. The way to construct an intrinsically interpretable model,
for example, is by using interpretable models such as linear regression, decision tree, and decision rules. Post
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Fig. 1. Schematic of knowledge tracing. A, B, C, and D represent four knowledge components, examined by various exercises.

Knowledge tracing estimates the over-time cognitive states of students and predicts future performance based on their

cognitive states.

Fig. 2. Schematic of model interpretability, using knowledge tracing as an example. Models with interpretability beter

reason the obtained prediction than models lacking interpretability, in terms of both intrinsic and post-hoc aspects. The

former usually explains the working of the model; the later usually interprets further workability of the model.

hoc interpretability provides answers to the question what else can the model tell us. It refers to improving
interpretability using model-agnostic methods [18], such as visualization of the features and efects. KT is more
concerned with the cognitive state of the student, and the accuracy of its assessment cannot be directly measured.
Instead, the accuracy of performance predictions is measured. Therefore, interpretability is signiicant in KT to
explain the process of obtaining the predicted results and the relationship between the predicted results and the
cognitive state.

Since it is diicult to measure students’ knowledge mastery, most existing KT models use end-to-end learning
to measure the accuracy of prediction performance [19]. Therefore, interpretability is typically not the major
focus of most existing models, especially for those deep-learning-based KT models from the intrinsic aspect
[19, 20]. This can be analyzed from the following three aspects. 1) The irst deep-learning-based KT model, the
deep knowledge tracing (DKT) [21], applied recurrent neural networks to KT. Estimating student cognition is
diicult for DKT, since there is no interpretable parameter to inspect [22]. It has achieved excellent prediction
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Fig. 3. Schematic of the limitations and contributions

accuracy owing to its large vectors of ‘neurons’ which are hard to interpret. 2) With an increasing amount of
attention being paid to interpretable machine learning approaches, some studies have attempted to improve
the interpretability of DKT using post hoc methods such as layer-wise relevance propagation [20] and visual
methods [23]. They have attempted to answer the question of what else the DKT can tell but have not been able
to explain the intrinsic process. 3) Some deep-learning-based KT models have denoted hidden layers as student
cognition to enhance the interpretability to some extent [24ś27]. However, the lack of intrinsic interpretability
can also be attributed to how the model is constructed, its parameters, non-linear activation functions, and so on.
In other words, such models cannot be explained as the interpretable ones, such as decision trees or rules.

Fuzzy theory is a powerful tool to represent human knowledge and mimic human reasoning capabilities, which
is demonstrated as successful applications in education data mining [28, 29]. FuzzyCDF [28] is a typical cognitive
diagnosis framework that leveraged fuzzy theory to model students’ abilities to continuous score scenarios.
The temporal characteristics of the learning logs were not considered in cognitive diagnosis (in other words,
KT can be regarded as a dynamic cognitive diagnosis task). In our previous work, FBKT [29] reported efective
performance fuzziing the continuous scores into the type-1 and type-2 fuzzy sets in Bayesian KT. However, as
is the case with the traditional Bayesian KT [30], they must classify students’ learning logs by the knowledge
components related to the exercises [31]. For example, (�1, �2, �1, �3,�1, �2) is the original exercising sequence
of a student, where �1 denotes the irst exercise related to the knowledge component �. FBKT cannot directly
deal with them, and instead, it preprocessed the sequence into three portions: (�1, �2, �3), (�1, �2), and (�1). As
a result, it changed the temporal information in the original sequence. Furthermore, fuzzy reasoning ofers a
better framework for interpretability considerations owing to its rules [32]. Based on fuzzy reasoning, the above
applications have not utilized fuzzy rules to reason such that they owned inadequate intrinsic interpretability.
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Contributions. The major contributions of this study are as follows, shown in Fig. 3. In this paper, we propose
fuzzy deep knowledge tracing (FDKT), which introduces fuzzy neural networks (FNNs) [33] to enhance the
interpretability of existing deep-learning-based KT models. Speciically, FDKT contains three main modules, i.e.,
the fuzziication, fuzzy reasoning, and prediction modules. First, the continuous scores on the historical exercises
are fuzziied into several fuzzy scores, rather than hard encoding similar to a black box. Subsequently, the current
fuzzy cognition is deduced according to the fuzzy reasoning module, which is the core of the proposed model
improving intrinsic interpretability. Finally, the performance is predicted. It is remarkable that the proposed
model has demonstrated interpretability in terms of both the intrinsic and post hoc aspects.

• To improve the interpretability (especially in the intrinsic aspect) of the traditional deep-learning-based KT
models, we explored the utility of fuzzy reasoning in the ield of KT. The proposed model combines the
advantages of both fuzzy theory and neural networks, i.e., the ability to combine language-based knowledge
(e.g., expert experience) and the ease of training the model parameters (e.g., backpropagation).

• To deal with the uncertainty in the KT task, i.e., uncertainty regarding the levels of continuous scores of
students and their cognitive states, we extend the application of the most deep-learning-based KT models
in continuous scenarios.

• The above-mentioned two beneits are demonstrated as follows. a) Its intrinsic interpretability is explained
through the rules and hidden semantics (Section 5), and post hoc interpretability is experimentally visualized
(Section 6.3). b) Better prediction performance, in the continuous-score application, is achieved when
compared to 14 state-of-the-art models using 4 real-world datasets (Section 6.2).

This paper is organized as follows. Related work is reviewed in the next section. In Section 3, background
material is presented, including the deep knowledge tracing and fuzzy neural networks. In Section 4, the framework
of FDKT is detailed. In Section 5, the intrinsic interpretability of FDKT is presented. In Section 6, the experiments
are discussed. Finally, Section 7 concludes the paper.

2 RELATED WORK

The related work is introduced including the KT models and the interpretability in educational data mining.
Several representative models mentioned in this section are compared with the proposed FDKT in Table 1.

2.1 Knowledge Tracing

With regard to the two mainstream types, that is, Bayesian and deep-learning-based KT models, the former
rely on intrinsic interpretable irst-order Markov models [30]. However, their prediction performance is not
satisfactory as they are less representative in terms of the complexity of the human brain and human knowledge.
The latter have shown remarkable improvement in terms of prediction accuracy using deep learning methods,
with the strong characterization capabilities. Therefore, they have attracted a signiicant amounts of attention
[21, 24ś27, 37].

In the type of deep-learning-based KT models, DKT uses recurrent neural networks (RNNs) to model student
learning and achieves an excellent AUC in prediction performance [21]. Using a memory-augmented neural
network, DKVMN exploits the relationships between concepts [24]. [38] proposed three distributed memory
networks to model student performance, i.e., DMN, ADMN, IADMN. To enhance the predictive consistency in
DKT, [39] introduced regularization terms to propose DKT+. DKT_DSC assigns students to a distinct classiication
to improve the accuracy of DKT [40]. Deep-IRT is a synthesis of the item response theory (IRT) model and
DKVMN. Thus, it retains the prediction performance of the DKVMN and interpretability of IRT [25]. The self-
attention-based approach SAKT captures a complex representation of human learning [34]. KQN introduces the
probabilistic skill similarity of the knowledge components [27]. AKT uses a novel monotonic attention mechanism
and the Rasch model to regularize the concept and question embeddings [35]. CKT models individualization in KT
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Table 1. Comparison between FDKT and some representative models 1

Models BKT [30] DKT [21] FuzzyCDF [28] FBKT [29]

Fuzzy sets ✪ ✪ ✧ ✧

Fuzzy reasoning ✪ ✪ ✪ ✪

Dynamic data ✧ ✧ ✪ ✧

Continuous scores ✪ ś ✧ ✧

Mixing KCs ✪ ✧ ✧ ✪

Interpretability ś ś Visualization Example

Models DKVMN [24] DeepIRT [25] SAKT [34] KQN [27]

Fuzzy sets ✪ ✪ ✪ ✪

Fuzzy reasoning ✪ ✪ ✪ ✪

Dynamic data ✧ ✧ ✧ ✧

Continuous scores ś ś ś ś

Mixing KCs ✧ ✧ ✧ ✧

Interpretability
Attention

& Visualization

Combination 2

& Example

Attention

& Visualization
Visualization

Models AKT [35] CKT [36] FDKT

Fuzzy sets ✪ ✪ ✧

Fuzzy reasoning ✪ ✪ ✧

Dynamic data ✧ ✧ ✧

Continuous scores ś ś ✧

Mixing KCs ✧ ✧ ✧

Interpretability
Attention

& Visualization
Visualization

Rules

& Hidden semantics

& Example

& Visualization

1 ś refers that the item has not been demonstrated in the paper.
2 Combination refers to a combination of the KT model and the traditional model in education.

[36]. The federated DKT collectively trains high-quality DKT models for multiple silos using federated learning
method [37]. Based on the dual-attentional mechanism, MF-DAKT [41] enriches question representations and
utilizes multiple factors to model the knowledge tracing process. CL4KT [42] uses four data enhancement methods
and hard negatives to reveal the learning history of similar and dissimilar semantics. With the evolution of graph
neural networks [43ś46], researchers have begun delving into the graph structural relationships within KT tasks.
GIKT [47] employs the graph convolutional network to efectively integrate the problem-skill correlation.

2.2 Interpretability in Educational Data Mining

In recent years, model interpretability has attracted more attention by researchers in the ield of educational data
mining, including student models. A model is expected to be easy to understand with satisfactory prediction
performance [20]. In this subsection, the existing studies towards interpretable student models are introduced
(KT is considered as a type of student model).

For the traditional student models like DINA [48], IRT [49], LFA [50], PFA [50], and BKT [30], they provide better
understanding based on interpretable probabilistic statistics or Markov models, etc. To improve the prediction
performance of the traditional models, deep-learning-based models spring up. However, it is an open problem of
model interpretability because there are large vectors of artiicial ‘neurons’ [21, 31].

To alleviate this problem, we classify the subsequent work into the following categories. 1) Some introduced the
educational theory into the models. For example, NeuralCD [51] placed a monotonicity assumption taking from
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an educational property on the framework to enhance its interpretability, where the monotonicity assumption
is described as follows: the probability of correct response to the exercise is monotonically increasing at any
dimension of the student’s knowledge proiciency. DIRT [52] and Deep-IRT [25] combined deep learning with
IRT to make the model more explainable. 2) Attention-based methods also ofer some interpretability to student
models. For example, Refs. [24, 35, 53, 54] utilized attention mechanism to makes the models more interpretable.
3) Many studies also take advantage of visualization towards interpretability. Such as RCD [55], GKT [56], HGKT
[57], FuzzyCDF [28], DKVMN [24], SAKT [34], KQN [27], AKT [35], CKT [36]. They vividly demonstrated part
of the results of the models via visualization.
The above studies have made a certain efort towards interpretable KT models, owing to the methods like

visualization and attention. However, the KT models with intrinsic interpretability still need to be further explored.

3 BACKGROUND

The backgrounds in DKT, fuzzy theory, and fuzzy neural networks (FNN) are introduced.

3.1 Deep Knowledge Tracing

KT models the students’ performance on exercises in a time-varying prediction task, where each exercise is
related to a knowledge component.
We use the DKT model as an example to explain the KT process. As shown in Fig. 4, the student answers

an exercise at each time step. �1, �2, . . . , �� denotes the input vector at each time step, where �� contains the
following two aspects of information: 1) the knowledge components of the exercise that the student answers
at time step � ; and 2) the score of the exercise that the student achieves at time step � . In particular, the scores
of exercises in the traditional DKT model were only taken in {0, 1}. �1,�2, . . . ,�� denotes the output vector at
each time step, where �� represents the predicted probability vector that the student would respond with correct
answers to the exercises, related to each knowledge component at time step � . �1, �2, . . . , �� denotes the hidden
vector in the network that temporarily stores information. The objective of the DKT model is to minimize the
negative log-likelihood of the observed sequence of the students’ scores.

3.2 Fuzzy Theory

Fuzzy logic [58] is an expansion of binary logic. It was developed to address ambiguities that exist in the real
world, such as hot and cold, fast and slow, and large and small. In classical two-valued logic, all objects are
assumed explicit [59]. For example, in a classiication task, an object may or may not belong to this class. Fuzzy
logic solves many problems in reality that cannot be clearly described.

ACM Trans. Inf. Syst.
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Fuzzy Sets and Membership Functions. Fuzzy sets [60] are a fundamental concept in fuzzy logic theory.
Fuzzy sets allow for the representation of uncertainty and vagueness by assigning degrees of membership to
elements. In a fuzzy set, each element of the universe of discourse can have a membership value ranging from
0 to 1, indicating the degree to which the element belongs to the set. The membership function deines this
mapping of elements to membership degrees. Various types of membership functions can be used, such as
triangular, trapezoidal, Gaussian, or sigmoidal functions, depending on the nature of the problem and the desired
representation. A formal description of the fuzzy sets and their operations is as follows: Suppose there exist fuzzy

sets �̃� and �̃ � . The membership functions��
(� )
� and��

(� )
� denote the degrees to which element � belongs to

�̃� and �̃ � , respectively.
T-norm Fuzzy Logics. The main objective of t-norm fuzzy logics [61] is to extend classical two-valued logic

by introducing intermediary truth values between 1 (representing truth) and 0 (representing falsity). These
intermediary truth values serve to quantify the degrees of truth associated with propositions. The degrees
of truth in t-norm fuzzy logics are considered to be real numbers within the range of the unit interval [0, 1].
Prominent examples include the minimum t-norm, product t-norm, and Lukasiewicz t-norm, among others. For

example, the fuzzy intersected set of �̃� and �̃ � is denoted by �̃� ⊓ �̃ � . When using minimum t-norm logics,

the membership function��
(� )
�, � is deined as��

(� )
�, � = min{��

(� )
� ,��

(� )
� }. When using product t-norm logics,

��
(� )
�, � =��

(� )
� ·��

(� )
� . Due to the widespread application of the minimum t-norm in fuzzy logic, this calculation

method will be used in the subsequent sections.
Fuzzy Rules. A fuzzy system is essentially a rule-based expert system consisting of a set of linguistic rules

and one of the most commonly used fuzzy rules in the form of IF-THEN [62]. A formal description of the fuzzy

rules is as follows: �: IF �1 is �̃1, and ..., �� is �̃� , THEN �1 is �̃1, and ..., and � � is �̃ � , where �̃1, ..., �̃� and �̃1, ..., �̃ �
are fuzzy sets.

3.3 Fuzzy Neural Networks

FNN is gradually turning into a research hotpot, because it combines the powerful calculation and representation
capabilities of the neural networks with the heuristic expert knowledge of the fuzzy system. For example, IF-THEN
[62] (introduced in Section 3.2) expresses the output preferences under the speciied conditions, which is a kind
of knowledge.

The traditional FNN is limited to static problems due to its feedforward network structure [33]. To address this
shortcoming, Lee and Teng [63] proposed the recurrent FNN (RFNN) by capturing the dynamic response of the
system through its internal feedback loop, which is more suitable for describing dynamic systems as compared to
the FNN.
In the RFNN, there are four layers: input, membership, rule, and output layers. The input nodes are fuzziied

into the membership layers that contain the memory terms storing the past information of the network. The
membership nodes enter the rule layer through the application of fuzzy intersection operation (detailed in Section
3.2). Finally, the output nodes are obtained through a linear combination of each rule node. The RFNN can be
shown to be a universal uniform approximator for continuous functions over compact sets if it satisies a certain
condition [63].

4 FRAMEWORK OF FDKT

FDKT is proposed to enhance the interpretability of the deep-learning-based KT models, owing to the reasoning
of the fuzzy rule-based module. In this section, we irst formulate the task and then present the model of the
FDKT containing the fuzziication, fuzzy reasoning, and prediction modules. Subsequently, the rules of fuzzy
reasoning and the layered operation of FDKT are detailed. Finally, the time complexity is analyzed.

ACM Trans. Inf. Syst.
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The notation used in this paper is listed in Table 2.

Table 2. Notations

Notation Description

� Number of the fuzzy cognition sets

� Number of the fuzzy score sets

� Number of the knowledge components

� Total time steps

�
(� )
� Observed score on the knowledge components � at time step � , � ∈ {1, 2, ..., � }, � ∈ {1, 2, ...,� }

�
(� )
� Target score of the knowledge components � at time step � , � ∈ {1, 2, ..., � }, � ∈ {1, 2, ...,� }

�̂
(� )
� Predicted score of the knowledge components � at time step � , � ∈ {1, 2, ..., � }, � ∈ {1, 2, ...,� }

�
(� )
� Student’s cognition of the knowledge components � at time step � , � ∈ {1, 2, ..., � }, � ∈ {1, 2, ...,� }

�̃� The �-th fuzzy cognition set, � ∈ {1, 2, ..., � }

�̃ � The �-th fuzzy score set, � ∈ {1, 2, ..., � }

��
(� )
�,�

Membership value (probability) of�
(� )
� ∈ �̃�

��
(� )
�,�

Membership value (probability) of �
(� )
� ∈ �̃ �

���,� Fuzzy rule node when�
(� )
�−1 ∈ �̃� and �

(� )
� ∈ �̃ �

��,� Output of the fuzzy rule node ���,�

� � Mean value in the Gaussian membership function of �̃ �
� � Standard deviation value in the Gaussian membership function of �̃ �
�1 Weight vector in the prediction module

�2 Weight vector in the fuzzy reasoning module

4.1 Formulation

FDKT aims to estimate student cognition of the knowledge components and predict their future performance on
exercises based on previous performance. Notably, the input is the performance which is continuous; however
the input has been bisected in most existing studies. We denote � , � , � as the numbers of fuzzy cognition sets,
fuzzy score sets, and knowledge components, respectively. Further, � is the total time step. The input consists
of the input continuous score �� and knowledge component �, � ∈ {1, 2, ..., �}. FDKT estimates the current

cognition (�
(1)
� , ...,�

(� )
� ) and predicts the next-time-step performance �

(� ′ )
� , � ′ ∈ (1, 2, ..., �) on � ′ based on

�
(� ′ )
� . For the current cognition of � ,�

(� )
� ∈ �̃1, ...,�

(� )
� ∈ �̃� with probabilities of��

(� )
�,1 , ...,��

(� )
�,�

, respectively,

where {�̃1, �̃2, ..., �̃� } denotes � fuzzy cognition sets. For clarity, the notation used is listed in Table 2, in order of
appearance in this paper.
Optimization. The objective of FDKT is to minimize the loss L� = � (�, �̂) between the ground truth and

prediction scores, optimized through gradient descent on batches. � (·) denotes the mean absolute error.

4.2 Model

The framework of FDKT is shown in Fig. 5 (a). In the framework, the fuzzy score sets and fuzzy cognition sets are
deined as follows. Fuzzy score sets are the fuzzy sets deined for the continuous scores obtained by students
answering the exercises. Diferent fuzzy score sets represent diferent score levels and continuous scores belong
to fuzzy score sets with a certain probability. Fuzzy cognition sets are the fuzzy sets deined for the students’
cognitive states of knowledge components. Diferent fuzzy cognition sets represent diferent levels of cognition.
As shown in Fig. 5 (a), FDKT contains three main modules: the fuzziication, fuzzy reasoning, and prediction
modules.
Speciically, the network structure of FDKT at time step � is shown in Fig. 5 (b). The fuzziication module

addresses the input of the continuous score �
(� )
� into the fuzzy scores (denoted as �̃ = {�̃1, �̃2, ..., �̃ � }). The fuzzy

ACM Trans. Inf. Syst.
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Fig. 5. Schematic of the FDKT. (a) is the framework of FDKT, which includes three main modules: fuzzification, fuzzy

reasoning, and prediction. (b) and (c) depict the network structures of FDKT and FRM at time step � , respectively.

reasoning module (FRM) determines the current fuzzy cognition �
(� )
� based on the fuzzy scores from the

fuzziication module and the historical cognition�
(� )
�−1 of � , where�

(� )
�−1 is obtained from (�

(1)
�−1, ...,�

(� )
�−1 ) through

the memory gate. FRM promotes the interpretability of FDKT because it can estimate the student cognition on
knowledge components through the use of fuzzy rules, thereby explaining the result of the prediction performance.

Finally, the prediction module obtains the future performance �� based on (�
(1)
� , ...,�

(� )
� ).

The pseudo-code of FDKT is detailed in Algorithm 1. The remainder of this section details the three modules.

4.2.1 Fuzzification Module. The fuzziication module fuzziies the continuous scores into several fuzzy scores.
The continuous score has a certain probability belonging to each fuzzy score, where the probability is referred
to as the membership. The Gaussian fuzzy logic system is applied to describe the membership function of
the fuzzy scores, as detailed in Eq. (1). It is worth noting that, after calculating the membership degrees of an
individual to diferent fuzzy sets, we performed probability normalization on these membership degree values to
ensure their sum is equal to 1. This normalization was done to transform all membership degree distributions
into a standardized form, allowing for a more intuitive representation of the relative sizes and proportions of

ACM Trans. Inf. Syst.
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Algorithm 1 Fuzzy deep knowledge tracing

1: Input: � , � , �,� , �
(� )
�

2: Output: �

3: Initialize (��
(1)
0 ,��

(2)
0 , ...,��

(� )
0 ) on � knowledge components at initial time step.

4: Let � = 1.
5: while � <= � do

6: Fuzzify �
(� )
� into � fuzzy scores �̃ with membership values ��

(� )
� through the fuzziication module.

7: Obtain ��
(� )
� of � from FRM (conducted by Algorithm 2).

8: Obtain ��
(1)
� , ...,��

(�−1)
� ,��

(�+1)
� , ...,��

(� )
� (��

(� ′ )
� =��

(� ′ )
�−1 , �

′
≠ �).

9: Predict the performance �̂� = (�̂
(1)
� , �̂

(2)
� , ..., �̂

(� )
� ).

10: end while

11: return �̂ = (�̂1, �̂2, ..., �̂� ).

probabilities.

��
(� )
�, � = exp {−

(�
(� )
� − � � )

2

�2�
}, (1)

where �
(� )
� denotes the continuous score at time step � related to the knowledge component � .��

(� )
�, � denotes the

membership of �
(� )
� belongs to the fuzzy score �̃ � . � � and � � denote the mean and std of �̃ � , respectively.

4.2.2 Fuzzy Reasoning Module. The network structure of FRM is designed as follows, and the process of fuzzy
reasoning is detailed in Section 4.3. FRM determines the current cognition at each time step, based on both last
cognition (factor A) and current performance of the exercise (factor B). The former is obtained from the fuzzy
cognition at time step (� − 1) and the latter is the output of the fuzziication module at time step � . As shown
in Fig. 5 (c), diferent combinations of factors A and B lead to diferent fuzzy cognitions. Therefore, there are
� ∗ � fuzzy rules corresponding to � ∗ � combinations of factors A and B. The pseudo-code of FRM is detailed in
Algorithm 2, where ��, � ∈ � is the output of the fuzzy rule node ���, � , given by Eq. (2).

��, � =��
(� )
�, � ∗��

(� )
�−1,� . (2)

Subsequently, the probability��
(� )
�,� that the current cognition�

(� )
� ∈ �̃� is given by Eq. (3).

��
(� )
�,� = ��2,� (�) =

�︁

�=1

�︁

�=1

��,�, � ∗ ��, � . (3)

�2 = (�2,1,�2,2, ...,�2,� ) denotes the adjustable weight, where�2,� = (��,1,1,��,1,2, ...,��,�,� ), � ∈ {1, 2, ..., � }.

4.2.3 Prediction Module. The prediction module predicts the future performance of the students on exercises
based on their current cognition of the knowledge components. Speciically, there are � outputs in the prediction
process, as shown in Eq. (4), corresponding to the prediction performance on the exercise related to � knowledge
components. The performance on � is calculated using a linear function as expressed in Eq. (5).

�̂� = (�̂
(1)
� , ..., �̂

(� )
� ), (4)

where �̂
(� )
� , � ∈ {1, 2, ..., �} satisies Eq. (5).

�̂
(� )
� = ��1,�

(��
(� )
� ) = �1,� ·��

(� )
� . (5)
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Algorithm 2 Fuzzy reasoning module

1: Input: ��
(� )
�−1 = (��

(� )
�−1,1,��

(� )
�−1,2, ...,��

(� )
�−1,� ) and ��

(� )
� = (��

(� )
�,1 ,��

(� )
�,2 , ...,��

(� )
�,�

)

2: Parameter: �2

3: Output: ��
(� )
�

4: Calculate � = (�1,1, �1,2, ..., �� ,� ) according to Eq. (2).
5: Let � = 1.
6: while � <= � do

7: Calculate��
(� )
�,� that��

� ∈ �̃� according to Eq. (3).
8: end while

9: return ��
(� )
� = (��

(� )
�,1 ,��

(� )
�,2 , ...,��

(� )
�,�

).

�1 = (�1,1,�1,2, ...,�1,� ) denotes the adjustable parameter, where�1,� = (�1,�,1,�1,�,2, ...,�1,�,� ), � ∈ {1, 2, ..., �}.

��
(� )
� = (��

(� )
�,1 ,��

(� )
�,2 , ...,��

(� )
�,�

).

4.3 Fuzzy Reasoning

The process of fuzzy reasoning is detailed, to deduce the current fuzzy cognition from the last fuzzy cognition
and the current performance. This is the core of the interpretability of FDKT.

4.3.1 Reasoning in Memory Gate. According to the network structure of FDKT at time step � in Fig. 5 (b), the
current fuzzy cognition is obtained from the FRMor directly from the last fuzzy cognition through thememory gate.

In other word, ��
(� )
� satisies the decision rules as �1 = {�1(1) , �1(2) , ..., �1(� ) }, where �1(� ) (� ∈ {1, 2, ..., �}) is

given by Eq. (6).

�1(� ) : if � = � ′, then ��
(� )
� satisies ��� (��

(� )
�−1),

else ��
(� )
� = ��

(� )
�−1,

when � ′ is the knowledge component at time step � .

(6)

The antecedent is the knowledge component � whether related to the exercise at time step � , and the consequent

is the probability of the current cognition ��
(� )
� . ��� (��

(� )
�−1) is denoted as the current cognition obtained from

the FRM.

4.3.2 Reasoning in FRM. According to the network structure of the FRM in Fig. 5 (c), the current fuzzy cognition
is obtained from the current performance on the exercise and the last fuzzy cognition through � ∗ � fuzzy rules,
where � and � denote the numbers of the fuzzy cognition and fuzzy score sets, respectively. For each fuzzy rule

node ���, � , its efects on�
(� )
� belonging to �̃1, ..., �̃� satisfy the rules expressed in Eq. (7), where the antecedents

are the current performance �
(� )
� and last cognition�

(� )
�−1 and the consequent is the efects of �2

(� )
�, � .

�2
(� )
�, � : if�

(� )
�−1 ∈ �̃� with probability��

(� )
�−1,�

and �
(� )
� ∈ �̃ � with probability��

(� )
�, � ,

then the efect on�
(� )
� ∈ �̃1 is�1,�, � ∗ ��, � ,

and ... and the efect on�
(� )
� ∈ �̃� is�� ,�, � ∗ ��, � ,

(7)

where ��, � is obtained according to Eq. (2). The fuzzy rule node ���, � indicates the combination of factors A and B,

where the former is�
(� )
�−1 ∈ �̃� and the latter is �

(� )
� ∈ �̃ � .�

(� )
� and�

(� )
�−1 denote the cognition of � at time steps �
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Number of fuzzy score sets
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An instance

Fig. 6. The architecture of FDKT (taking the �-th time step as an example) is presented to explain the hidden semantics from

the input to the output of the FDKT.

and � − 1, respectively. �
(� )
� denotes the continuous score of � . �̃� and �̃ � represent the �-th fuzzy cognition set

and the �-th fuzzy score set, respectively.
Then, the current fuzzy cognition is obtained from the fuzzy rule nodes, satisfying rule �3 = {�3(1) , �3(2) , ..., �3(� ) }.

�3(� ) = {�3
(� )
1 , ..., �3

(� )
�

}(� ∈ {1, 2, ..., �}), where �3
(� )
� (� ∈ 1, 2, ..., � ) satisies Eq. (8).

�3
(� )
� : if the efect of ��1,1 on�

(� )
� ∈ �̃� is��,1,1 ∗ �1,1,

and ...

and the efect of ��� ,� on�
(� )
� ∈ �̃� is��,�,� ∗ �� ,� ,

then the probability of�
(� )
� ∈ �̃� is

�︁

�=1

�︁

�=1

��,�, � ∗ ��, � ,

(8)

where the antecedents are the efects of the fuzzy rule nodes, and the consequent is the current cognition

�
(� )
� ∈ �̃� . This FRM in FDKT can be considered as a dynamic fuzzy inference system because its input contains

a memory term for storing the past fuzzy cognition using the feedback unit [63].
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4.4 Layered Operation of FDKT

The layered operation of the proposed model FDKT is detailed in this subsection to describe the integration of
the three modules, as shown in Fig. 6. We denote � (� ) (�) and � (� ) (�) as the input and output in the �-th layer
(� ∈ {1, 2, 3, 4, 5} in the architecture) at time step � .

For the fuzzy cognition of the knowledge component at time step � , the operation for the 1, 2, 3, 4-th layers is
shown in Eqs. (9) - (15). For the knowledge component that is not at time step � , the operation before the 5-th
layer is shown in (16).
The input in the (� + 1)-th layer equals the output in the �-th layer for the layer without memory terms

(� ∈ {1, 3, 4}). In other words, � (�+1) (�) = � (� ) (�), � ∈ {1, 3, 4}. In the 1-th layer, the output equals the input given
by Eq. (9).

� (1) (�) = � (1) (�). (9)

� (2) (�) = (�
(2)
1 (�), �

(2)
2 (�), ..., �

(2)
�

(�)), (10)

where �
(2)
� (�) satisies Eq. (11).

�
(2)
� (�) = exp {−

(� (2) (�) − � � )
2

�2�
}, � ∈ {1, 2, ..., � }, (11)

where � is the number of fuzzy score sets. � � and � � denote the mean and std in the membership function of the

fuzzy score set �̃ � , respectively.

In the 3-th layer, that is, the fuzzy rule layer with the memory terms, its input contains two aspects �� (3) (�) =

(��
(3)
1 (�), ��

(3)
2 (�), ..., ��

(3)
�

(�)) and �� (3) (�) = (��
(3)
1 (�), ��

(3)
2 (�), ..., ��

(3)
�

(�)). � and � are the numbers of fuzzy score

sets and fuzzy cognition sets, respectively.

� (3) (�) = (�
(3)
1,1 (�), ..., �

(2)
� ,�

(�)), (12)

where �
(3)
�, � (�) satisies Eq. (13).

�
(3)
�, � (�) = ��

(3)
� (�)

∏
��

(3)
� (�), (13)

where ��
(3)
� (�) = � (2) (�) and ��

(3)
� (�) = � (4) (� − 1).

� (4) (�) = (�
(4)
1 (�), ..., �

(4)
�

(�)), (14)

where �
(4)
� (�), � ∈ {1, 2, ..., � } satisies Eq. (15).

�
(4)
� (�) =

�︁

�=1

�︁

�=1

��,�, � ∗ �
(4)
�, � (�), (15)

where��,�, � ∈ {�1,�, � ,�2,�, � , ...,�� ,�, � } is an adjustable parameter.
For the fuzzy cognition of the knowledge components not at time step � , the operation for the 1, 2, 3, 4-th layers

is given by Eq. (16).

�
(4)
� (�) = �

(4)
� (� − 1). (16)

Thus, the fuzzy cognition of all the knowledge components � (4) (�) = {�
(4)
1 (�), �

(4)
2 (�), ..., �

(4)
�

(�)} is obtained,

where � is the number of knowledge components. �
(4)
�

(�), � ∈ {1, 2, ..., �} is obtained using Eq. (14) if � is the
conducted knowledge component or Eq. (16) otherwise. Subsequently, the input and output of the 5-th layer are
given by Eq. (17).

� (5) (�) = (�
(5)
1 (�), ..., �

(5)
�

(�)), (17)
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X where �
(5)
�

(�), � ∈ {1, 2, ..., �} satisies Eq. (18).

�
(5)
�

(�) = � ( �
(5)
�

(�)), (18)

where � (·) is a linear function. �
(5)
�

(�) = �
(4)
�

(�) and �
(4)
�

(�) = (�
(4)
1 (�), ..., �

(4)
�

(�)).

4.5 Time Complexity

The time complexity of FDKT is analyzed as follows. The FDKT algorithm is presented in Algorithm 1, invoking
Algorithm 2. The time complexity of Algorithm 2 is� (� 2 � ), where � and � denote the numbers of fuzzy cognition
sets and fuzzy score sets, respectively. Algorithm 2 is in the loop with respect to the time steps of Algorithm 1.
Therefore, the time complexity of FDKT (Algorithm 1) for an epoch is� (� � 2 � ), where� denotes the total number
of time steps.

We also analyze the complexities for other KT models (shown in Table 1), which are detailed in Appendix. The
time complexity of the proposed FDKT model can be observed to be lower than that of the neural network-based
KT models because the values of the fuzzy cognitive and fuzzy score sets are set to integers less than 10, whereas
the general representation dimension is set to tens or hundreds. Noteworthily, at lower time complexity, FDKT
performs better than the general neural network-based KT models in continuous scenarios, with more convenient
parameter optimization than traditional non-neural-network-based KT models.

5 INTRINSIC INTERPRETABILITY OF FDKT

As mentioned previously, there are two types of interpretability: intrinsic and post hoc. In this section, FDKT is
explained using rules and hidden semantics to demonstrate its intrinsic interpretability [15], in other words, to
answer the question, how does the model work (shown in Fig. 2 (b)). Then, an example is considered to clearly
demonstrate the process followed by FDKT. The interpretability of FDKT is also illustrated from the post hoc
aspect via experiments (Section 6.3).

5.1 Explanation by Rules

In this subsection, FDKT is explained with the help of the rules, where the rules may be the most powerfully
explanatory model [64].

From the input to the output of FDKT, the current cognition of the students is deduced using the rules (�1, �2,
and �3) expressed in Section 4.3, and subsequently, the future performance is predicted according to the current
cognition using Eq. (5). Speciically, after the fuzziication of the input continuous score, �1 is to select the fuzzy
cognition of the knowledge component to be updated. The selected fuzzy cognition and the fuzzy score are both
fed into the FRM, and they will irst meet �2. The number of the rules in �2 depends on the combinations of the
fuzzy cognition and the fuzzy score. Each fuzzy rule node generates its efect on the current fuzzy cognition,
according to its corresponding rule in �2. Subsequently, each rule in �3 obtains the probability of the current
fuzzy cognition by summing the efects of all the fuzzy rule nodes.

In the proposed model, the network structure is constructed based on the fuzzy rules, which relying on prior
knowledge. This demonstrates that FDKT has intrinsic interpretability.

5.2 Explanation by Hidden Semantics

Based on common knowledge of this ield, we make sense of the semantics of the hidden layers and parameters
in the model. This makes the process signiicantly easier to understand.

5.2.1 Semantics of Hidden Layers. The input nodes are fed into the fuzziication module to obtain the fuzzy
scores. Then, the fuzzy cognition nodes are obtained from fuzzy scores through fuzzy rule nodes using the FRM.
Finally, the output prediction performance is obtained from the fuzzy cognition using the prediction module.
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5.2.2 Semantics of Parameters. In the fuzziication module, � = (�1, ..., � � ), and � = (�1, ..., �� ) (Eq. (1)) denote
the mean and std of each fuzzy score set, respectively.

In the FRM, ��, � (Eq. (2)) denotes the probability of the fuzzy rule node ���, � , speciically, the probability that

the last cognition�
(� )
�−1 ∈ �̃� and the current fuzzy score �

(� )
� ∈ �̃ � .��

(� )
�,� (Eq. (3)) represents the probability that

the current cognition�
(� )
� ∈ �̃� . ��,�, � represents the contribution of the fuzzy rule node ���, � to each fuzzy

cognition of �̃� . When ��, � increases by 0.1,��
(� )
�,� increases by 0.1 ∗��,�, � (��,�, � ∈ �2) (Eq. (2)).

In the prediction module,�1 (Eq. (5)) represents the contribution of the fuzzy cognition to the predicting

performance. If��
(� )
�,� increases by 0.1, the prediction performance on � increases by 0.1 ∗�1,�,� (�1,�,� ∈ �1).

5.3 Example

By reviewing Fig. 2, the interpretable model explains why the model can obtain this prediction. Based on this, a
simple example is considered to discuss the interpretability of FDKT. As can be understood from Fig. 7, FDKT can
not only obtain the prediction results but also explain them.
Five fuzzy cognition sets (i.e., the irst to ifth bin from the best to the worst) and four fuzzy score sets (i.e.,

poor, medium, good, and excellent) are deined in the example. It is worth noting that, after calculating the
membership degrees of an individual to diferent fuzzy sets, we performed probability normalization on these
membership degree values to ensure their sum is equal to 1. This is for the starndardized degree distributions and
the convenience of neural network computations [65ś67]. Suppose that Sam performed some exercises related
to three knowledge components �� , �� , and �� , and the last fuzzy cognition of them is given. At time step � ,
Sam received a score of 0.4 when conducting an exercise related to �� . (0, 0.6, 0.4, 0) is obtained through the
fuzziication module, representing there is a great possibility that the score of 0.4 is indicative of mediocre
performance.

Then, FRM infers the current fuzzy cognition of �� through diferent combinations of the last fuzzy cognition
and the current fuzzy score of �� . The maximum possibility of the rule is 0.4 ∗ 0.6 = 0.24 of Rule 6, in which
the last fuzzy cognition on �� is in 2-bin with a probability of 0.4, and the current fuzzy performance is in the
medium range with a probability of 0.6. Therefore, the efect of Rule 6 on the ive probabilities of the current
fuzzy cognition is the largest, compared with the other 19 rules.

Finally, the prediction (0.67, 0.25, 0.35) on �� , �� , and �� are obtained through the prediction module. FDKT
outputs the prediction performance for Sam, as it explains that he may obtain the highest score on �� because
has achieved a good level of mastery (2-bin) on it.

6 EXPERIMENTS

1) how does FDKT perform in continuous score scenarios (Section 6.2) and 2) how FDKT do interpretation
(Section 6.3). The parameters in FDKT are analyzed in Section 6.4.

6.1 Setup

The setup is introduced, including the datasets, baselines, and evaluation index.

6.1.1 Data Sets. Four well-known datasets were used in the experiments: Algebra05, Algebra06, Bridge06 [68],
and ASSISTments (https://sites.google.com/site/assistmentsdata/). To evaluate the performance of the models in
continuous-score scenarios, the datasets were preprocessed as in [29], according to [69, 70]. We iltered the logs
of students who practiced less than 10 exercises [26, 71]. After preprocessing, the size of the datasets is listed in
Table 3.

6.1.2 Baselines. To demonstrate the prediction performance of FDKT, it was compared with the following deep
learning-based KT models: DKT 1 [21], DKVMN 2 [24], DeepIRT 3 [25], SAKT 4 [34], KQN 5 [27], AKT 6 [35],
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Note 2:

The output r2,2 (0.24) of the rule node R2,2 is the largest, where  his cognitive state of Ka belongs to the  2-bin 

with the probability of 0.4 and his observed score of  Ka belongs to the medium with the probability of 0.6.

Note 3:

It is the largest probability (0.72) that his current cognitive state of Ka 

belongs to the  2-bin. The probability has increased than that at the last 

time step, influenced by the fuzzy scores at the current time step.

Note 4:

FDKT outputs the prediction performance which is continuous.
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Fig. 7. An illustrative example of the whole FDKT process for an individual at a time step is provided. Five fuzzy cognition

sets and four fuzzy score sets were defined. FDKT outputs the prediction performance for Sam. More importantly, it explains

that he may obtain the highest score on �� as he has a good level of mastery (2-bin) on it, where his current cognition was

updated via the fuzzy reasoning.

Table 3. Description of data sets

Name Students Exercises Skills Logs

Algebra05 514 172,758 435 605,051

Algebra06 1,247 549,165 1,701 1,805,754

Bridge06 1,100 129,186 564 1,816,138

ASSISTments 4,163 17,751 149 283,105

CKT 7 [36], DMN 8 [38], ADMN 8 [38], IADMN 8 [38], DKT+ 9 [39], CL4KT 10 [42], GIKT 11 [47], and APGKT 12

[72]. The models are introduced in Section 2. We treated partially correct responses as wrong if the scores for the
compared models were less than 0.5 due of their inapplicability to continuous scenarios [28].
In this paper, the Bayesian-based KT models were not included in the baselines, because they must mark the

relationship between exercises and knowledge components and classify the exercises with the same knowledge

1https://github.com/lingochamp/tensorlow-dkt [21]
2https://github.com/jennyzhang0215/DKVMN [24]
3https://github.com/ckyeungac/DeepIRT [25]
4https://github.com/TianHongZXY/pytorch-SAKT [34]
5https://github.com/JSLBen/Knowledge-Query-Network-for-Knowledge-Tracing [27]
6https://github.com/arghosh/AKT [35]
7https://github.com/bigdata-ustc/Convolutional-Knowledge-Tracing [36]
8https://github.com/nathan-f-elazar/Distributed-Memory-Networks [38]
9https://github.com/ckyeungac/deep-knowledge-tracing-plus [39]
10https://github.com/UpstageAI/cl4kt [42]
11https://github.com/ApexEDM/GIKT [47]
12https://github.com/DMiC-Lab-HFUT/APGKT-PRICAI2022 [72]
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Table 4. Parameter seting of FDKT

Parameter Fuzzy score sets Fuzzy cognition sets Epoch

Value 6 6 100

Parameter Optimizer Weight decay Learning rate

Value Adam 0.001 0.02

CD=10.72

151413121110 9 8 7 6 5 4 3 2 1

3 FDKT
4.75 CL4KT
5.25 APGKT
5.75 GIKT

7.5 KQN
7.5 CKT
7.5 DKT+

7.63 IADMN

7.75DKT
8.5ADMN
9.75DMN
9.88SAKT
10.75DeepIRT
11AKT
13.5DKVMN

CD=10.72

151413121110 9 8 7 6 5 4 3 2 1

1.25 FDKT
3.25 CL4KT

5 GIKT
5.5 APGKT
6.5 CKT

7.25 DKT+
7.5 DKT

8.25 KQN
8.25IADMN
8.63ADMN
9.88SAKT
9.88DMN
10.13AKT
14.25DeepIRT
14.5DKVMN

(a) Nemenyi test in MAE (b) Nemenyi test in RMSE

Fig. 8. Nemenyi test of the prediction performance in continuous score scenarios

components (detailed in Section 1). In this way, the temporal properties of the learning sequences would be
altered after adopting this pretreatment. Thus it has less reference value when compared between them with
deep-learning-based KT models. Moreover, as mentioned previously, KT can be regarded as a dynamic cognitive
diagnosis task. The cognitive diagnosis models require a students’ interactive matrix with the same exercises, for
example, a matrix with the size of 3000*20 where there are 3000 students and 20 exercises. Note that there is no

temporal relationship between these 20 exercises. However, the three data sets used in the experiments do not

satisfy such an input. Students have diferent lengths of interaction sequences with the temporal relationship.

For example, some students only have 10 interactions, while some have more than 3,000 interactions. Therefore,

the cognitive diagnosis models were also not included in the baselines.

6.1.3 Evaluation. KT in continuous-score scenarios can be regarded as a regression task. Thus, two regression

metrics, RMSE andMAE, were selected to quantify the prediction performance of the models [28].

The parameters used in FDKT are listed in Table 4. The batch size of the datasets was set to 128. The experiments

were conducted using the ive-fold cross-validation method to obtain stable results. All the experiments were

implemented using the PyTorch public toolbox on a standard Ubuntu 16.04.7 LTS with TU102 USB Type-C UCSI

Controller GPUs and 512 GB memory size.

6.2 Comparison of Prediction Performance

This subsection describes the performance of FDKT in continuous score scenarios, as compared with the baselines

(question 1). To ensure fairness, the parameters, epochs, optimizer, weight decay, and learning rate of the models

to be compared were set to be the same as those in FDKT. Smaller values of RMSE and MAE indicate better

performance.

Table 5 presents the MAE and RMSE results of the prediction performance, when FDKT was compared with

the deep-learning-based KT models. The prediction performance of FDKT outperforms those of both DKT and

the other compared models in most cases in continuous score scenarios. This is attributed to the mechanisms

such as fuzzy processing and fuzzy rules in FDKT that efectively adapt to continuous scenarios.

The Nemenyi test [73] was conducted to present a comprehensive comparison between FDKT and the baselines.

The results were statistically compared over multiple datasets, as shown in Fig. 8. Lower ranks indicate better
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Table 5. Comparison of prediction performance in continuous score scenarios 4

Datasets Metrics FDKT (Ours) DKT [21] DKVMN [24] DeepIRT [25] SAKT [34] KQN [27]

Algebra05
MAE 0.1700 0.1882 0.2111 0.2122 0.1995 0.1920

RMSE 0.2130 0.2473 0.3002 0.2889 0.2516 0.2622

Algebra06
MAE 0.1590 0.1646 0.1989 0.1954 0.2040 0.1928

RMSE 0.2075 0.2162 0.2703 0.2600 0.2564 0.2555

Bridge06
MAE 0.1450 0.1621 0.2062 0.2064 0.2065 0.1921

RMSE 0.1850 0.2060 0.2672 0.2641 0.2581 0.251

ASSISTments
MAE 0.1874 0.2508 0.2002 0.1593 0.0832 0.1644

RMSE 0.2588 0.3238 0.3102 0.3459 0.2877 0.2679

Datasets Metrics AKT [35] CKT [36] DMN [38] ADMN [38] IADMN [38] DKT+ [39]

Algebra05
MAE 0.2110 0.1932 0.1997 0.1992 0.1984 0.2048

RMSE 0.2856 0.2575 0.2670 0.2661 0.2642 0.2784

Algebra06
MAE 0.1950 0.1892 0.1944 0.1933 0.1933 0.1923

RMSE 0.2554 0.2519 0.2577 0.2555 0.2532 0.2534

Bridge06
MAE 0.1900 0.1951 0.2062 0.2020 0.2017 0.1556

RMSE 0.2492 0.2491 0.2603 0.2557 0.2575 0.1878

ASSISTments
MAE 0.1920 0.1669 0.1613 0.1608 0.1602 0.1624

RMSE 0.3023 0.2679 0.2656 0.2668 0.2662 0.2721

Datasets Metrics CL4KT [42] GIKT [47] APGKT [72]

Algebra05
MAE 0.1732 0.1849 0.1842

RMSE 0.2182 0.2250 0.2297

Algebra06
MAE 0.1592 0.1593 0.1602

RMSE 0.1995 0.2077 0.2089

Bridge06
MAE 0.1483 0.1476 0.1513

RMSE 0.1851 0.1905 0.1895

ASSISTments
MAE 0.1975 0.2061 0.1906

RMSE 0.2842 0.2848 0.2850

4 The bold and underlined results refer to the irst and second best values, respectively.
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Fig. 9. Feature value and efect distributions of the students with higher (a-b) and lower (c-d) prediction scores in Algebra05.

The fuzzy cognition sets from 1 to 6 denote the cognition from low to high. The beter fuzzy cognition achieves high feature

values and efects in (a-b), while those in (c-d) are on the contrary. This demonstrates that students with high prediction

scores have high fuzzy cognition, which is in line with our initial understanding.

performance. There is no signiicant diference in the same crossline-connected models. FDKT was found to
perform better in continuous score scenarios.
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Fig. 10. Case study to demonstrate how FDKT can do intrinsic interpretation on Algebra05.

6.3 Illustratration of Interpretability

This subsection shows the case studies to demonstrate how FDKT can do interpretation, including intrinsic and
post hoc interpretability.

6.3.1 Case Study of Intrinsic Interpretability. To illustrate the working process of FDKT in a visually intuitive
manner, we have selected three records of a student from the Algebra05 dataset, where a student has provided
consecutive responses to a particular skill (No. 224). We will demonstrate how FDKT predicts the outcome for the
third record. According to Table 4, in the experiment, we set the number of fuzzy score sets and fuzzy cognition
sets to 6. Firstly, after the fuzziication module of FDKT, we obtained fuzzy scores and the last fuzzy cognition
with a continuous score of 0.8. We can observe that the student’s last fuzzy cognition has a higher probability
(0.45) of belonging to the 4-bin, while the current fuzzy score has a higher probability (0.36) of belonging to
the 5-bin. Based on the inference of fuzzy rules, we obtained the current fuzzy cognition. At this point, the
student’s fuzzy cognition for skill 224 has a higher probability (0.44) of belonging to the 5-bin. This indicates an
improvement compared to the last fuzzy cognition. As a result, FDKT predicts a score of 0.86 for the student’s
performance on the skill-related exercises in the next time step. This predicted score represents an improvement
compared to the score of 0.8. Furthermore, when comparing FDKT’s predicted scores with the ground truth,
we ind that the predicted score trend (continuously increasing) aligns consistently with the actual scores. The
above case study demonstrates the intrinsic interpretability of FDKT, that is, FDKT provides explanations for its
corresponding prediction results.

6.3.2 Results of Post Hoc Interpretability. This subsection demonstrates the post hoc interpretability of FDKT
(question 2), that is, to answer what else FDKT tells us (shown in Fig. 2 (b)).

According to the domain knowledge (the basic unit of interpretability [15]) in education data mining, better
performance on exercises thanks to better knowledge mastery of students. Student cognition and prediction
performance are the cause and efect for the KT task, respectively. In this subsection, the interpretability of FDKT
is visualized from the following two aspects: 1) From the efect (performance) to cause (fuzzy cognition), and 2)
From the cause (fuzzy cognition) to efect (performance).
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Fig. 11. Distributions of the target and prediction scores of Algebra05 for students with higher (a) and lower (b) cognition. The

scores in (a) were statistically higher than those in (b). Both cases show excellent prediction performance. This demonstrates

that the good prediction of FDKT is atributed to the good cognition estimate from the cause to efect.

From Performance to Cognition. The relation from the prediction scores to the fuzzy cognition is analyzed
in this part. The fuzzy cognition includes its feature values and feature efects. The feature efects [64, 74] were
obtained by multiplying the feature values with the weights in the optimized FDKT.

The feature value and efect distributions of the students with higher and lower prediction scores in Algebra05
are shown in Fig. 9, where the weight in the optimized FDKT is 0.23, 0.50, 0.81, 0.60, 0.96, 1.38. Higher and lower
scores denote normalized prediction scores higher than 0.8 and lower than 0.2, respectively. The fuzzy cognition
from the 1 to 6 level denotes cognition from low to high. Comparing the fuzzy cognition of students between the
higher (Fig. 9 (a-b)) and lower prediction scores (Fig. 9 (c-d)), better fuzzy cognition achieves high feature values
and efects in the former, while those in the latter are on the contrary. This demonstrates that students with high
prediction scores have high fuzzy cognition, which is line with our common knowledge.

From Cognition to Performance. The relation from the fuzzy cognition to the prediction scores is analyzed
as follows. The distributions of the target and prediction scores of Algebra05 for students with higher and lower
cognition levels are shown in Fig. 11. The probability that students belong to the top (4-6 levels) and bottom (1-3
levels) of the three fuzzy cognition sets are denoted as ���� and ������� , respectively. Higher and lower cognition
denote the cognition that ���� > ������� and ���� < ������� , respectively. |���� − ������� | > � (� = 0.2) because
cognition with a small probability diference cannot be arbitrarily deined.

Fig. 11 is analyzed from the following two aspects. 1) Comparing two target distributions between the higher
and lower cognition, the target scores of students with higher cognition are statistically higher than those with
lower cognition, according to the student cognition obtained from the proposed model. This is consistent with
our domain knowledge that students with greater cognitive ability can achieve higher grades. It also shows the
evaluation of student cognition is reasonable in the proposed model. 2) Comparing the target and prediction
for the same level of cognition, they show a relatively consistent distribution, in which the red transverse lines
represent the median values. The median values of the target and prediction data, for higher and lower-cognition
students, are around 0.8 and 0.4, respectively. This demonstrates the good prediction performance of FDKT is
attributed to good cognition estimation from cause to efect.

6.4 Parameter Analysis

In this subsection, an analysis of the two hyper parameters, that is, the numbers of fuzzy cognition sets � and
fuzzy score sets � , is presented as follows. As shown in Table 6, the results demonstrate that the FDKT performs
best when both � and � are set to six. This illustrates the applicability of the FDKT to continuous scenarios
because it is equivalent to considering that the input scores are only two sets (similar to the discrete scenario)
when � is set to 2. For example, for the RMSE results of FDKT on the ASSISTments dataset, the best results were
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Table 6. Comparison of prediction performance in continuous score scenarios between diferent numbers of fuzzy sets 6

Datasets Metrics Case A (2, 2) Case B (2, 6) Case C (6, 2) Case D (6, 6)

Algebra05
MAE 0.1770 0.1768 0.1777 0.1700

RMSE 0.2320 0.2300 0.2301 0.2130

Algebra06
MAE 0.1612 0.1610 0.1612 0.1590

RMSE 0.2090 0.2090 0.2088 0.2075

Bridge06
MAE 0.1662 0.1474 0.1489 0.1450

RMSE 0.2188 0.2004 0.2014 0.1850

ASSISTments
MAE 0.1944 0.1864 0.1936 0.1874

RMSE 0.2710 0.2602 0.2596 0.2588

6 (�, � ) indicate that the numbers of fuzzy cognition and fuzzy score sets are � and � , respectively.

obtained in Case D (the number of both fuzzy sets is set to 6), with a 4.71% improvement over the results in Case
A (the number of both fuzzy sets is set to 2).

The speciic analysis is as follows. Deining a greater number of fuzzy sets (within a reasonable range) can
efectively improve the accuracy of the FDKT in continuous scenarios and can be attributed to the following: 1)
According to the deinition of fuzzy rules in the FDKT (Section 4.2.2), the greater the number of fuzzy sets, the
greater the number of fuzzy rules. 2) According to the fuzzy reasoning module in the FDKT framework (Fig. 5 (c)),
the number of fuzzy rules is equal to that of hidden units in the FDKT fuzzy rule layer, which directly afects the
network structure. 3) According to fuzzy theory, the higher the number of fuzzy rules, the more expert knowledge
the model can incorporate [75]; moreover, according to the experience of neural networks, the higher the number
of hidden units, the higher the number of network parameters and the stronger the representation capability
of the model [76]. Therefore, one of the main reasons for the excellent performance of FDKT in continuous
scenarios stems from the larger number of fuzzy sets.

In discrete scenarios, only two deinite categories for the exercise scores exist (i.e., correct or incorrect answers,
denoted by 1 and 0, respectively). That is, the score of a student on an exercise can be categorized under only
two score sets (i.e., correct or incorrect set). Thus, the number of two fuzzy sets (i.e., fuzzy score sets and fuzzy
cognitive sets) in FDKT is set to two to make the proposed FDKT more adaptable to discrete scenarios. Thus,
the number of fuzzy rules in discrete scenarios is 2 ∗ 2 = 4 (according to Section 4.2.2), which is signiicantly
smaller than that in continuous scenarios. Therefore, the FDKT has a smaller number of fuzzy rules in the discrete
scenarios, which limits its accuracy according to the above analysis.

6.5 Discussion

The experiments answered the main questions in the experiments, which are summarized as follows: 1) From the
prediction performance perspective, the proposed model outperforms the compared models in most cases, both
on two regression metrics RMSE and MAE, in the continuous-score scenarios. 2) From the model interpretability
perspective, the proposed model illustrates the post hoc interpretability both from cause to efect and efect to
cause, respectively.

The reasons for the better performance of FDKT in continuous scenarios are analyzed as follows. 1) FDKT uses
backpropagation to update the network parameters for improving the prediction performance by designing a
reasonable loss function, similar to most neural network-based KT models. The direction of gradient descent
guides the parameters to be updated in a better direction. 2) The process of updating the gradient-guided
parameters is combined with domain-related expert experience through fuzzy rules for equalizing its prediction
results with domain knowledge. In FDKT, educational expertise is combined in neural networks through fuzzy
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rules (detailed in Section 4.3). And we also demonstrated the consistency in the prediction results with expert
knowledge through visualization (detailed in Section 6.3).
Compared with the existing neural-network-based KT model, the advantages of the proposed FDKT with an

FNN are analyzed as follows. 1) FDKT improves the interpretability of the traditional neural-network-based KT
model, both in intrinsic and post-hoc aspects. As for the intrinsic interpretability of the FDKT (detailed in Section
5), we designed a set of fuzzy rules regarding the fuzzy cognitive states and fuzzy performance scores, relying on
prior knowledge. The post hoc interpretability of FDKT is illustrated through the experimental results (detailed
in Section 6.3). 2) FDKT combines the advantages of both fuzzy theory and neural networks, i.e., the ability to
combine language-based knowledge (e.g., expert experience) and the ease of training the model parameters (e.g.,
backpropagation). The FDKT combines neural networks and fuzzy theory, which solves the limitation that neural
networks cannot receive linguistic knowledge, since fuzzy sets and rules are powerful tools for dealing with this
type of linguistic data. 3) FDKT could address the uncertainty in the KT task, relected in the following three
aspects. a) Performance of students on exercises is uncertain. For example, if a student scores 0.55, evaluating
the score as high or low is not possible. b) A student’s knowledge of the knowledge component is uncertain. c)
Reasoning about the current time step cognition based on the performance of a student in an exercise and the
previous time step cognition is uncertain. 4) FDKT extends the application scenarios of most neural network-based
KT to make them suitable for continuous scenarios. Most existing KT models cannot directly handle continuous
scoring scenarios. They must be fed into the network by binarizing the continuous scores and then encoding
them as 0 or 1. Instead, FDKT extends KT to continuous scoring scenarios by representing continuous inputs as
fuzzy sets after a fuzzy ailiation function.
Moreover, in other ields, the approaches for designing FNNs are as follows: Combining fuzzy systems with

neural networks or deep learning in uncertain application scenarios is a powerful solution. We consider that this
might include the following two approaches. 1) Converting the weights or inputs of neural networks into fuzzy
sets. 2) Designing expert knowledge into fuzzy rules to be added between the input and output of the neural
network.

7 CONCLUSION

Most deep learning-based KT models are less interpretable because of the diiculty in explaining the achievement
of accurate predictions. To address this problem, a fuzzy knowledge tracing (FDKT) model is proposed with
a fuzzy reasoning module that estimates student cognition of the knowledge components. The intrinsic and
post-hoc interpretability of FDKT is demonstrated through rules, hidden semantics, and visualization experiments.
In addition, FDKT performs better than the deep-learning-based KT models on continuous scores, broadening
the application of KT. It should be pointed out that in discrete scenarios, students’ practice scores have only
two deinite categories (i.e. correct or wrong answers), resulting in a much smaller number of fuzzy rules and
hidden units than in continuous scenarios (see Section 6.4 for details). This limits the performance of the FDKT
model in discrete scenarios. In the future, the authors plan to design reasonable mechanisms to further improve
applicability of FDKT to discrete scenarios.
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